JPH0583903A - Cooling device for electric rotary machine - Google Patents
Cooling device for electric rotary machineInfo
- Publication number
- JPH0583903A JPH0583903A JP24085891A JP24085891A JPH0583903A JP H0583903 A JPH0583903 A JP H0583903A JP 24085891 A JP24085891 A JP 24085891A JP 24085891 A JP24085891 A JP 24085891A JP H0583903 A JPH0583903 A JP H0583903A
- Authority
- JP
- Japan
- Prior art keywords
- stator core
- axial length
- air
- baffle plate
- cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Motor Or Generator Frames (AREA)
- Motor Or Generator Cooling System (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、冷却ファンを備えた回
転電機の冷却装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling device for a rotating electric machine equipped with a cooling fan.
【0002】[0002]
【従来の技術】回転電機例えば電動機には、冷却ファン
によって固定子および巻線を強制冷却する構成としたも
のがある。その一例を図12ないし図14に示す。固定
子フレーム1の内面には、巻線2を備えた固定子鉄心3
が固着されている。この固定フレーム1の両端部に固着
されたブラケット4,4には回転子鉄心5を備えた回転
軸6が軸受7,7を介して挿通支持されている。2. Description of the Related Art Some rotating electric machines, such as electric motors, have a structure in which a stator and windings are forcibly cooled by a cooling fan. An example thereof is shown in FIGS. 12 to 14. On the inner surface of the stator frame 1, a stator core 3 having windings 2 is provided.
Is stuck. A rotary shaft 6 having a rotor core 5 is inserted and supported by brackets 4, 4 fixed to both ends of the fixed frame 1 via bearings 7, 7.
【0003】そして、固定子フレーム1の外側には、一
対の冷却装置8,8が配設されており、これについて述
べる。導風板9は、固定子フレーム1の外面に沿ってこ
れから離間した状態に両端板10,10を介して取り付
けられている。この導風板9と両端板10,10とで内
部に導風路11が形成されている。導風板9にはファン
取付筒部12が形成されており、この取付筒部12内に
冷却ファン13が取り付けられている。A pair of cooling devices 8, 8 are arranged outside the stator frame 1, which will be described below. The baffle plate 9 is attached along the outer surface of the stator frame 1 via both end plates 10 and 10 in a state of being separated from the outer surface. An air guide path 11 is formed inside the air guide plate 9 and both end plates 10, 10. A fan mounting cylinder portion 12 is formed on the baffle plate 9, and a cooling fan 13 is mounted in the mounting cylinder portion 12.
【0004】上記構成において、冷却ファン13が運転
されると、冷却風が、矢印にて示すように導風路11を
通り、開口11aから出る。これにて固定子鉄心3およ
び巻線2が空冷される。In the above structure, when the cooling fan 13 is operated, cooling air passes through the air guide passage 11 as shown by the arrow and exits from the opening 11a. As a result, the stator core 3 and the winding 2 are air-cooled.
【0005】[0005]
【発明が解決しようとする課題】ところで、電動機にお
いては、必要最小限の流量で効果的に冷却することが重
要である。冷却効率を高めるためには種々のファクター
を検討する必要がある。今、導風路11の通風断面積を
Aとすると、風量Qと流速vとは式(1)に示すよう
に、通風断面積Aに反比例する。 v=Q/A ……(1) また、風速vと熱伝達率αとの関係は式(2)で示され
る。By the way, in an electric motor, it is important to effectively cool it with a minimum necessary flow rate. In order to improve the cooling efficiency, it is necessary to consider various factors. Assuming that the ventilation cross-sectional area of the air guide passage 11 is A, the air volume Q and the flow velocity v are inversely proportional to the ventilation cross-sectional area A as shown in the equation (1). v = Q / A (1) Further, the relationship between the wind speed v and the heat transfer coefficient α is expressed by the equation (2).
【0006】[0006]
【数1】 kは比例定数、nは正の指数である。固定子フレーム1
表面の温度上昇幅Tと上記αとの関係は、伝熱面積を
B、機内からの放熱量をqとすれば式(3)となる。 T=q/(αB) ……(3) 以上をまとめると、式(4)となる。[Equation 1] k is a proportional constant and n is a positive exponent. Stator frame 1
The relationship between the surface temperature increase width T and the above α is given by equation (3), where B is the heat transfer area and q is the amount of heat radiated from the inside of the machine. T = q / (αB) (3) Summarizing the above, equation (4) is obtained.
【0007】[0007]
【数2】 これから理解されるように、温度上昇幅Tを低減するに
は、伝熱面積および風速を上げれば良い。[Equation 2] As will be understood from this, in order to reduce the temperature increase width T, the heat transfer area and the wind speed may be increased.
【0008】風速は、ファンの圧力−風量特性と流路と
の関係で決まる。図15には、冷却ファンの圧力−風量
特性と、通風抵抗と作動風量との関係を示す。P−Q特
性線Fと風路の各通風抵抗曲線Ra(通風抵抗:大),
Rb(通風抵抗:中),Rc(通風抵抗:小)との各交
点の風量値が作動風量となる。流路面積が小さいほど通
風抵抗が増し風量が減少し、流路面積が大きいほど通風
抵抗が小さくなり風量が増加する。図16には、風量と
巻線温度との関係を示している。The wind speed is determined by the relationship between the pressure-air volume characteristic of the fan and the flow passage. FIG. 15 shows the relationship between the pressure-air volume characteristics of the cooling fan and the ventilation resistance and the operating air volume. P-Q characteristic line F and each ventilation resistance curve Ra of the air passage (ventilation resistance: large),
The air volume value at each intersection with Rb (ventilation resistance: medium) and Rc (ventilation resistance: small) is the operating air volume. As the flow passage area is smaller, the ventilation resistance increases and the air volume decreases, and as the flow passage area is larger, the ventilation resistance decreases and the air volume increases. FIG. 16 shows the relationship between the air volume and the winding temperature.
【0009】しかしながら、上記従来構成では、巻線温
度を下げるために、風量を確保する考え方をとってお
り、このため導風路を大きくするようにしており、この
結果、導風板も軸方向に大形化し、ファンとしても大形
のものを必要とし、全体として冷却装置が大形化してし
まい、また、ファンの騒音も無視できないといった不具
合がある。そこで、本発明の目的は、冷却効果を低減さ
せることなく、装置の小形化および騒音低減を図り得る
回転電機の冷却装置を提供するにある。However, in the above-mentioned conventional structure, in order to lower the winding temperature, the idea of securing the air volume is taken. Therefore, the air guide path is enlarged, and as a result, the air guide plate is also axially arranged. However, the size of the cooling device becomes large as a whole, and the fan noise cannot be ignored. Therefore, an object of the present invention is to provide a cooling device for a rotary electric machine that can reduce the size of the device and reduce noise without reducing the cooling effect.
【0010】[0010]
【課題を解決するための手段】本発明の回転電機の冷却
装置は、固定子フレームの外面に沿って配設された導風
板とこの導風板の軸方向両端側に配設された端板により
導風路を形成し、この導風路に冷却ファンにより強制冷
却風を供給して固定子および巻線を冷却するようにした
ものにおいて、前記導風板の軸方向長さ寸法を固定子鉄
心の軸方向長さ寸法とほぼ同等に設定してこの導風板を
固定子鉄心と対応させて配設し、且つ、前記各端板の周
方向の幅寸法を固定子鉄心の径寸法とほぼ同等に設定し
たところに特徴を有する。A cooling device for a rotary electric machine according to the present invention comprises a wind guide plate arranged along the outer surface of a stator frame and ends arranged on both axial ends of the wind guide plate. An air guide path is formed by a plate, and a forced cooling air is supplied to this air guide path by a cooling fan to cool the stator and windings. In this case, the axial length of the air guide plate is fixed. The air guide plate is set so as to be approximately equal to the axial length of the child core, and the air guide plate is arranged corresponding to the stator core, and the width of each end plate in the circumferential direction is the diameter of the stator core. It has a feature that it is set almost equal to.
【0011】[0011]
【作用】導風板の軸方向長さ寸法を固定子鉄心の軸方向
長さ寸法とほぼ同等に設定して、この導風板を固定子鉄
心と対応させて配設し、そして各端板を前記導風板の両
端側に配設したことにより、冷却風は軸方向に拡がるこ
となく固定子フレーム外面に当たり、この後は、各端板
の周方向の幅寸法を固定子鉄心の径寸法とほぼ同等に設
定していることから、軸方向に沿って拡がる。この結
果、冷却効果が低減することはなく、また導風板の軸方
向長さが固定子鉄心の軸方向長さ程度であるから、全体
が小形となる。[Function] The axial length of the baffle plate is set to be substantially equal to the axial length of the stator core, and the baffle plate is arranged corresponding to the stator core, and each end plate is arranged. By arranging at both ends of the baffle plate, the cooling air hits the outer surface of the stator frame without spreading in the axial direction, and thereafter, the circumferential width dimension of each end plate is changed to the stator core diameter dimension. Since it is set to be almost equal to, it spreads along the axial direction. As a result, the cooling effect is not reduced, and the axial length of the baffle plate is about the axial length of the stator core, so the overall size is small.
【0012】[0012]
【実施例】以下、本発明の一実施例について図1ないし
図11を参照しながら説明する。固定子フレーム21の
内面には、巻線22を備えた積層固定子鉄心23が固着
されている。この固定フレーム21の両端部に固着され
たブラケット24,24には回転子鉄心25を備えた回
転軸26が軸受27,27を介して挿通され支持されて
いる。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. A laminated stator core 23 having windings 22 is fixed to the inner surface of the stator frame 21. A rotary shaft 26 having a rotor core 25 is inserted and supported by brackets 24, 24 fixed to both ends of the fixed frame 21 via bearings 27, 27.
【0013】そして、固定子フレーム21の外側には、
その上下に冷却装置28,28が配設されており、これ
らは同一構成であるので、上側の冷却装置28について
述べる。導風板29は半円弧板状をなしており、その軸
方向長さLaは、前記固定子鉄心23の軸方向(積層方
向)長さとほぼ同等に設定されている。この導風板29
は、この固定子鉄心23に対応するように固定子フレー
ム21の外面に沿ってこれから離間した状態に両端板3
0,30を介して取り付けられている。両端板30,3
0は導風板20の両端部と固定子フレーム21外面との
間に位置してその部分を閉鎖している。この導風板29
と両端板30,30とで内部に導風路31が形成されて
いる。On the outside of the stator frame 21,
Cooling devices 28, 28 are disposed above and below the cooling device 28, and they have the same structure. Therefore, only the cooling device 28 on the upper side will be described. The baffle plate 29 has a semi-circular plate shape, and its axial length La is set to be substantially equal to the axial (stacking direction) length of the stator core 23. This baffle plate 29
The end plates 3 along the outer surface of the stator frame 21 so as to correspond to the stator core 23 and be spaced apart from the stator frame 21.
It is attached through 0 and 30. Both end plates 30,3
0 is located between both ends of the baffle plate 20 and the outer surface of the stator frame 21, and closes that portion. This baffle plate 29
An air guide passage 31 is formed inside by the both end plates 30, 30.
【0014】端板30,30の周方向の長さLb(図2
参照)は、前記固定子鉄心23の径寸法とほぼ同等に設
定されている。前記導風板29にはファン取付筒部32
が形成されており、この取付筒部32内に冷却ファン3
3が取り付けられている。The circumferential length Lb of the end plates 30, 30 (see FIG. 2)
(See) is set to be substantially equal to the diameter of the stator core 23. The air guide plate 29 has a fan mounting tube portion 32.
Is formed, and the cooling fan 3 is provided in the mounting cylinder portion 32.
3 is attached.
【0015】上記構成において、冷却ファン33が運転
されると、機外の空気がファン取付筒部32内に吸引さ
れ、そしてこの空気すなわち冷却風は、矢印で示すよう
に、導風板29と両端板30,30とから成る導風路3
1内に供給される。このとき、冷却風は、端板30,3
0が存在することから、軸方向へは拡がらず、この導風
路31を周方向に流れる(図2参照)。そして端板3
0,30のないところでは冷却風は軸方向に拡がりなが
ら、開放部31aから出る(図5参照)。In the above structure, when the cooling fan 33 is operated, the air outside the machine is sucked into the fan mounting tube portion 32, and this air, that is, the cooling air, is discharged to the air guide plate 29 as shown by the arrow. An air guide 3 composed of both end plates 30 and 30
Supplied within 1. At this time, the cooling air flows through the end plates 30 and 3
Since 0 exists, it does not spread in the axial direction and flows in the air guide passage 31 in the circumferential direction (see FIG. 2). And end plate 3
Where there is no 0 or 30, the cooling air blows out from the opening 31a while expanding in the axial direction (see FIG. 5).
【0016】ここで、導風板29の軸方向長さ寸法La
を固定子鉄心23の軸方向長さ寸法とほぼ同等に設定し
た本実施例の風量について、参考例と比較しながら図6
を参照して述べる。参考例として、導風板の軸方向長さ
が固定子鉄心の軸方向長さとほぼ同等であっても端板の
周方向長さが従来と同等の場合を考える。このもので
は、導風路の周方向の風路長さ(図13の風路長さLj
と同等)が長いため、摩擦損が大きくなる。また、出口
流路面積が小さいため、この参考例における通風抵抗特
性aは図6に示すように大きい。Here, the axial length dimension La of the baffle plate 29 is
6 is compared with the reference example for the air flow rate of this embodiment in which the axial length of the stator core 23 is set to be substantially the same as that of the reference example.
Will be described with reference to. As a reference example, consider a case where the axial length of the baffle plate is substantially equal to the axial length of the stator core, but the circumferential length of the end plates is equivalent to the conventional one. In this case, the length of the air passage in the circumferential direction of the air guide passage (the air passage length Lj in FIG.
(Equivalent to) and the friction loss is large. Further, since the outlet passage area is small, the ventilation resistance characteristic a in this reference example is large as shown in FIG.
【0017】一方、本実施例のように、端板30,30
の周方向の長さLbを短くした場合には、風路長さLh
(図2参照)も短く、摩擦損も小さくなる。また、風路
出口の長さDh(図5参照)が長くなるため、出口流路
面積も大きく通風抵抗特性は図6にbで示すように低く
なる。このとき参考例と本実施例とでは風量は図6にQ
a,Qbにて示すように、本実施例の方が多い。On the other hand, as in this embodiment, the end plates 30, 30
If the length Lb in the circumferential direction of the
(See FIG. 2) is also short and friction loss is small. Further, since the length Dh (see FIG. 5) of the outlet of the air passage becomes long, the area of the outlet flow passage becomes large and the ventilation resistance characteristic becomes low as shown by b in FIG. At this time, in the reference example and the present example, the air volume is Q in FIG.
As shown by a and Qb, there are more examples.
【0018】また、端板の周方向長さを上記Lbとした
ままでも、導風板の軸方向長さを固定子鉄心の軸方向長
さに対して短くすると通風抵抗特性は図6にdで示すよ
うに高く風量はQdとなり、導風板の軸方向長さを固定
子鉄心の軸方向長さに対して長くすると通風抵抗特性は
図6にeで示すように低く風量はQeとなる。図7には
巻線温度を示しており、同図に示す風量Qcは、導風板
および端板がなくて冷却ファンにより単に冷却風を吹き
当てる場合の風量である。なお、上述した各寸法形態と
風量Qa,Qd,Qb,Qe,Qcとの関係を表1に示
す。Further, even if the circumferential length of the end plate remains Lb, if the axial length of the baffle plate is shortened with respect to the axial length of the stator core, the ventilation resistance characteristic is shown in FIG. As shown by, the air volume is high and Qd, and when the axial length of the baffle plate is made longer than the axial length of the stator core, the ventilation resistance characteristics are low and the air volume is Qe as shown in FIG. .. FIG. 7 shows the winding temperature, and the air volume Qc shown in the figure is the air volume when the cooling fan simply blows the cooling air without the air guide plate and the end plate. Table 1 shows the relationship between the above-described dimensional forms and the air volumes Qa, Qd, Qb, Qe, and Qc.
【0019】[0019]
【表1】 [Table 1]
【0020】図8には端板の周方向長さを変化させたと
きの風量の変化を示している。図9には端板の周方向長
さを変化させたときの巻線の温度変化を示している。ま
た、図10には導風板の軸方向長さを変化させたときの
風量の変化を示し、図11には導風板の軸方向長さを変
化させたときの巻線の温度変化を示している。FIG. 8 shows the change in the air volume when the circumferential length of the end plate is changed. FIG. 9 shows the temperature change of the winding when the circumferential length of the end plate is changed. Further, FIG. 10 shows a change in the air volume when the axial length of the baffle plate is changed, and FIG. 11 shows a temperature change of the winding when the axial length of the baffle plate is changed. Shows.
【0021】図8および図9から理解できるように、端
板の周方向長さが長くなるほど風量は減っていくが、巻
線の温度は、端板の軸方向長さが長くなるにつれて減少
するものの、端板の軸方向長さが固定子鉄心の径寸法と
ほぼ同等となる長さ(Lb)になると順次増加するよう
になる。このような特性は、前述した式(3)における
伝熱面積Bと熱伝達率αとによるもので、端板の周方向
長さを変化させていくとき端板が導風板の周方向長さよ
り短くなるにつれ、軸方向への冷却風の流出が多くなり
伝熱面積が増す。そして風量も増加していき、巻線温度
も低減していく。しかし、端板が短くなり過ぎると固定
子フレーム外周面に沿うことなく軸方向に冷却風が出て
しまい、結局、伝熱面積が少なくなり、巻線温度が増加
してしまう。これから判るように、端板の周方向長さを
固定子鉄心の径寸法Dとほぼ同等となる長さ(Lb)に
設定した場合が、最も冷却効果は高い。As can be understood from FIGS. 8 and 9, the air volume decreases as the circumferential length of the end plate increases, but the temperature of the winding decreases as the axial length of the end plate increases. However, when the axial length of the end plate reaches a length (Lb) that is substantially equal to the diameter of the stator core, the length gradually increases. Such characteristics are due to the heat transfer area B and the heat transfer coefficient α in the above-mentioned formula (3), and when the circumferential length of the end plate is changed, the end plate has a circumferential length of the baffle plate. As the length becomes shorter, the amount of cooling air flowing out in the axial direction increases and the heat transfer area increases. The air volume also increases and the winding temperature also decreases. However, if the end plate becomes too short, cooling air will be emitted in the axial direction without following the outer peripheral surface of the stator frame, and eventually the heat transfer area will decrease and the winding temperature will increase. As can be seen from this, when the circumferential length of the end plate is set to a length (Lb) which is substantially equal to the diameter dimension D of the stator core, the cooling effect is highest.
【0022】また、図10および図11から理解できる
ように、導風板の軸方向長さを長くすれば、通風面積が
増え、通風抵抗が小さくなり、風量は増える。そして、
伝熱面積も増加するから巻線温度も減少していくが、導
風板の軸方向長さが固定子鉄心の軸方向長さよりも長く
なると、巻線温度は増加していく。従って、導風板の軸
方向長さは固定子鉄心の軸方向長さと同等(La)に設
定した場合が、最も冷却効果は高い。As can be understood from FIGS. 10 and 11, if the axial length of the baffle plate is increased, the ventilation area increases, the ventilation resistance decreases, and the air volume increases. And
Since the heat transfer area also increases, the winding temperature also decreases, but when the axial length of the baffle plate becomes longer than the axial length of the stator core, the winding temperature increases. Therefore, the cooling effect is highest when the axial length of the baffle plate is set to be equal to (La) the axial length of the stator core.
【0023】[0023]
【発明の効果】本発明は以上の説明から明らかなよう
に、導風板の軸方向長さ寸法を固定子鉄心の軸方向長さ
寸法とほぼ同等に設定してこの導風板を固定子鉄心と対
応させて配設し、且つ、前記各端板の周方向の幅寸法を
固定子鉄心の径寸法とほぼ同等に設定したことにより、
さほど風量を大きくせずに冷却効果を維持でき、換言す
れば、導風板の軸方向長さを短くしながらも冷却効果を
維持でき、従って、装置の小形化を図り得、また冷却フ
ァンとしても大きいものを必要とせずに、騒音の低減に
も寄与できるといった優れた効果を奏する。As is apparent from the above description, the present invention sets the axial length of the baffle plate to be substantially equal to the axial length of the stator core, and sets the baffle plate to the stator. By arranging in correspondence with the iron core, and by setting the width dimension of each end plate in the circumferential direction to be substantially equal to the diameter dimension of the stator iron core,
The cooling effect can be maintained without increasing the air volume so much, in other words, the cooling effect can be maintained even though the axial length of the baffle plate is shortened. Therefore, the device can be downsized and the cooling fan can be used. It also has an excellent effect that it can contribute to noise reduction without requiring a large one.
【図面の簡単な説明】[Brief description of drawings]
【図1】本発明の一実施例を示す要部の縦断側面図FIG. 1 is a vertical sectional side view of an essential part showing an embodiment of the present invention.
【図2】縦断正面図[Fig. 2] Front view in vertical section
【図3】要部の斜視図FIG. 3 is a perspective view of a main part
【図4】要部の上面図FIG. 4 is a top view of essential parts.
【図5】要部の側面図FIG. 5 is a side view of the main part.
【図6】風量と圧力との関係を示す図FIG. 6 is a diagram showing a relationship between air volume and pressure.
【図7】各場合における風量と巻線温度との関係を示す
図FIG. 7 is a diagram showing a relationship between air volume and winding temperature in each case.
【図8】端板の周方向長さと風量との関係を示す図FIG. 8 is a diagram showing the relationship between the circumferential length of the end plate and the air volume.
【図9】端板の周方向長さと巻線温度との関係を示す図FIG. 9 is a diagram showing the relationship between the circumferential length of the end plate and the winding temperature.
【図10】導風板の軸方向長さと風量との関係を示す図FIG. 10 is a diagram showing the relationship between the axial length of the baffle plate and the air volume.
【図11】導風板の軸方向長さと巻線温度との関係を示
す図FIG. 11 is a diagram showing the relationship between the axial length of the baffle plate and the winding temperature.
【図12】従来例を示す図1相当図FIG. 12 is a view corresponding to FIG. 1 showing a conventional example.
【図13】図2相当図FIG. 13 is a view corresponding to FIG.
【図14】図5相当図FIG. 14 is a view corresponding to FIG.
【図15】風量と圧力との関係を示す図FIG. 15 is a diagram showing a relationship between air volume and pressure.
【図16】風量と巻線温度との関係を示す図FIG. 16 is a diagram showing a relationship between air volume and winding temperature.
21は固定子フレーム、22は巻線、23は固定子鉄
心、25は回転子鉄心、28は冷却装置、29は導風
板、30は端板、31は導風路を示す。Reference numeral 21 is a stator frame, 22 is a winding wire, 23 is a stator core, 25 is a rotor core, 28 is a cooling device, 29 is an air guide plate, 30 is an end plate, and 31 is an air guide path.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 大田和 靖司 三重県三重郡朝日町大字繩生2121番地 株 式会社東芝三重工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasushi Ota Yasushi Mie 2121 No. 2 Sayo, Asahi-cho, Mie-gun, Mie Prefecture Toshiba Mie Factory
Claims (1)
た導風板とこの導風板の軸方向両端側に配設された端板
により導風路を形成し、この導風路に冷却ファンにより
強制冷却風を供給して固定子および巻線を冷却するよう
にしたものにおいて、前記導風板の軸方向長さ寸法を固
定子鉄心の軸方向長さ寸法とほぼ同等に設定してこの導
風板を固定子鉄心と対応させて配設し、且つ、前記各端
板の周方向の幅寸法を固定子鉄心の径寸法とほぼ同等に
設定したことを特徴とする回転電機の冷却装置。1. An air guide path is formed by an air guide plate arranged along an outer surface of a stator frame and end plates arranged on both axial ends of the air guide plate. In a system in which forced cooling air is supplied by a cooling fan to cool the stator and windings, the axial length of the air guide plate is set to be approximately equal to the axial length of the stator core. A lever is provided so as to correspond to the stator core, and the width dimension of each end plate in the circumferential direction is set to be substantially equal to the diameter dimension of the stator core. Cooling system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24085891A JPH0583903A (en) | 1991-09-20 | 1991-09-20 | Cooling device for electric rotary machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24085891A JPH0583903A (en) | 1991-09-20 | 1991-09-20 | Cooling device for electric rotary machine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0583903A true JPH0583903A (en) | 1993-04-02 |
Family
ID=17065760
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24085891A Pending JPH0583903A (en) | 1991-09-20 | 1991-09-20 | Cooling device for electric rotary machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0583903A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005212493A (en) * | 2005-04-20 | 2005-08-11 | Sumitomo Heavy Ind Ltd | Motor cooling structure for injection molding machine |
CN102857034A (en) * | 2012-09-18 | 2013-01-02 | 太仓东元微电机有限公司 | External motor early-warning heat radiator |
CN103633766A (en) * | 2012-08-28 | 2014-03-12 | 珠海格力电器股份有限公司 | Motor support for air conditioner |
US20150349609A1 (en) * | 2014-05-30 | 2015-12-03 | Abb Technology Ag | Fan assembly for cooling electric machine and electric machine incorporating same |
WO2022172589A1 (en) * | 2021-02-15 | 2022-08-18 | 株式会社日立産機システム | Rotating electrical machine |
-
1991
- 1991-09-20 JP JP24085891A patent/JPH0583903A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005212493A (en) * | 2005-04-20 | 2005-08-11 | Sumitomo Heavy Ind Ltd | Motor cooling structure for injection molding machine |
CN103633766A (en) * | 2012-08-28 | 2014-03-12 | 珠海格力电器股份有限公司 | Motor support for air conditioner |
CN102857034A (en) * | 2012-09-18 | 2013-01-02 | 太仓东元微电机有限公司 | External motor early-warning heat radiator |
US20150349609A1 (en) * | 2014-05-30 | 2015-12-03 | Abb Technology Ag | Fan assembly for cooling electric machine and electric machine incorporating same |
US10436204B2 (en) * | 2014-05-30 | 2019-10-08 | Abb Schweiz Ag | Fan assembly for cooling electric machine and electric machine incorporating same |
WO2022172589A1 (en) * | 2021-02-15 | 2022-08-18 | 株式会社日立産機システム | Rotating electrical machine |
JP2022124419A (en) * | 2021-02-15 | 2022-08-25 | 株式会社日立産機システム | Rotary electric machine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1361367B1 (en) | Turbo fan and air conditioner having the same applied thereto | |
CN100419274C (en) | Fan and blower unit having the same | |
JPH05332293A (en) | Multi-blade blower | |
JPH0583903A (en) | Cooling device for electric rotary machine | |
US4313493A (en) | Forced air unit | |
JP2001003899A (en) | Blower, and air conditioner and air cleaner using it | |
JPH09287451A (en) | Radiator cooling system | |
KR920006657A (en) | Vortex blower | |
JP3141663B2 (en) | Indoor unit of air conditioner | |
JPH08322188A (en) | Forced air cooling motor | |
JPH07208396A (en) | Centrifugal blower | |
CN107421001A (en) | Seat-hanging type air conditioner | |
JPH0956118A (en) | Forced-air cooling motor | |
JP2658639B2 (en) | Cross flow fan for hot air heater | |
JP3565154B2 (en) | Induction heating cooker | |
JP2675741B2 (en) | Open type rotating electric machine | |
JPH05164090A (en) | Blower | |
JPH11118198A (en) | Outdoor unit of air conditioner | |
JPH10174370A (en) | Totally enclosed fan-cooled air-cooled heat exchanger type dynamo-electric machine | |
KR102654663B1 (en) | Outer rotor motor | |
JPH07147754A (en) | Forcible ventilation cooling type motor | |
JPH07222402A (en) | Totally-enclosed fan-cooled rotary electric machine | |
JPH0429304Y2 (en) | ||
JP2006033924A (en) | Air-cooled main motor for vehicle | |
JPH10252690A (en) | Cross flow fan for air conditioner |