JPH058382B2 - - Google Patents

Info

Publication number
JPH058382B2
JPH058382B2 JP59087459A JP8745984A JPH058382B2 JP H058382 B2 JPH058382 B2 JP H058382B2 JP 59087459 A JP59087459 A JP 59087459A JP 8745984 A JP8745984 A JP 8745984A JP H058382 B2 JPH058382 B2 JP H058382B2
Authority
JP
Japan
Prior art keywords
layer
filtration
fibrous material
filtration layer
analytical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59087459A
Other languages
Japanese (ja)
Other versions
JPS60230062A (en
Inventor
Yoshiji Masuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP8745984A priority Critical patent/JPS60230062A/en
Priority to DE8585105215T priority patent/DE3583414D1/en
Priority to EP85105215A priority patent/EP0160916B1/en
Publication of JPS60230062A publication Critical patent/JPS60230062A/en
Priority to US07/098,735 priority patent/US4855108A/en
Priority to US07/338,992 priority patent/US4950454A/en
Publication of JPH058382B2 publication Critical patent/JPH058382B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/52Use of compounds or compositions for colorimetric, spectrophotometric or fluorometric investigation, e.g. use of reagent paper and including single- and multilayer analytical elements
    • G01N33/525Multi-layer analytical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/72Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood pigments, e.g. haemoglobin, bilirubin or other porphyrins; involving occult blood

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hematology (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

発明の目的 1 産業上の利用分野 本発明は固形分を含有する液体試料の乾式分析
に有効な分析素子に関する。 2 従来の技術 層状(シート状)に構成されたいわゆる乾式分
析要素を用いて、試料液中の生化学的活性成分を
検出定量する分析システムは既に多数知られてい
る(米国特許第3050373号等)。それらの分析方法
において一般的に利用されているのは、液体試料
中に含まれている分析対象成分(アナライト)と
の接触により物理的もしくは化学的な反応を起こ
す反応性成分を予め分析要素の中に含有させてお
き、分析要素内に導入されたアナライトと前記反
応性成分との反応を分析要素内に設けられた生物
学的反応層において進行させ、その反応生成物あ
るいは未反応成分などの量を分光的、蛍光的にあ
るいは放射性同位元素を用いる方法などによつて
測定し、アナライトの定量を行う方法である。 以上のような乾式分析方法は分析操作が比較的
簡便であるため、例えば、抗原・抗体反応を利用
する免疫学的分析、酵素反応を利用する酵素ある
いは基質の分析など多くの目的に利用されてい
る。分析要素を用いる方法は一般的に簡便である
との利点がある一方、種々の液体試料の分析に適
合し得る広いラチチユードをもたせるために分析
要素の層構成にはこれまでにさまざまな工夫がな
された。特に固形分を含有する液体、例えば全血
を分析試料として供する場合には、試薬層の上方
に血球濾過層を設けそこで主として赤血球を濾過
する工夫が提案された。典型的な血球濾過層は特
公昭53−21677に記載されており、これは適正な
多孔度をもたせた材料によつて血球類の濾過を行
うものである。従つて濾過層の孔径は血球類のサ
イズ(7〜30μm)よりも小さい1〜5μmに設定
すべきであることが教示されている。すなわち血
球類は濾過層内に浸透することができずその表面
に残留するいわゆる表面濾過をうけることによ
り、血清や血漿等の液体成分から分離されるので
ある。このような表面濾過による血球分離は血球
濾過層が分析要素にくみこまれている点で予め全
血試料を遠心分離していた従来慣用の方法よりも
簡便ではあるが、濾過速度が充分速いとは言えず
目づまりを起こし易い。その結果として液体試料
の展開不良を生じ分析感度の低下を招きかつ分析
精度を損なうことになる。 特開昭57−53661には平均直径0.2〜5μm及び密
度0.1〜0.5g/cm3を有する特定のガラス繊維から
構成された層によつて血液から固形分を除き血漿
及び血清を分離する器具が記載されている。しか
しながらこの分離器具の血球分離能も満足すべき
ものではなく、その実施例によれば多層分析要素
を使用する分析としては適用される血清又は血漿
量を層の吸収量の50%以下に測定し更に疎水性バ
リヤ層を設けることにより始めて実用的な血球/
血清(漿)分離を達成している。しかも上記分離
器具は血清もしくは血漿が血球よりも迅速にガラ
ス繊維層を通過するという認識に基づいて提案さ
れており、後記本発明の特徴的概念である体積濾
過に基づく固液分離についてはなんら示唆すると
ころがない。 発明が解決しようとする問題点 本発明は、予め血液を遠心分離する煩雑さ、表
面濾過に基づく固液分離に避けることができない
濾過層の目づまり、或はまた、不満足な固液分離
等従来法における問題点を解決しようとするもの
である。 発明の構成 問題点を解決するための手段 本発明においては、前記のごとく表面濾過によ
ることなく、層自身の立体的構造を効率的に利用
しその体積全体にわたつて固形分を収納する現象
(本明細書ではこの現象を「体積濾過」という)
に基づいて液体試料から固形分を分離しようとす
るものである。本発明者等は種々の材料について
検討を重ねた結果、固形分含有液体試料から体積
濾過によつて該固形分を分離するのに繊維質素材
が有効であることを見出した。又この繊維質素材
から構成される固形分を収納するための層(以下
「体積濾過層」という)をこれと密着一体化して
構成する多孔性液体試料展開層(以下「展開層」
という)を組合わせて使用すると、殆ど瞬時に完
璧な固液分離が達成されることを見出した。 本発明は繊維質素材からなる体積濾過層及び展
開層から構成された固形分含有液体試料から固形
分を分離するための分析素子に関し、展開層の保
液力が体積濾過層のそれより大きくかつ両層がそ
れらの境界面においてそれぞれの繊維質素材が相
互に絡み合つて密着一体化(一体成型)して構成
されていることを特徴とする。 上記の展開層と体積濾過層との密着一体化は、
たとえば、予め調製した展開層の上に体積濾過層
の繊維質素材の分散液を載せ、この分散液を展開
層を濾過材として利用して濾過操作を行なう方法
(濾過法)、あるいは展開層の繊維質素材の分散液
と体積濾過層の繊維質素材の分散液とを重ねた状
態で別に用意した濾過材を利用して濾過操作を行
なう方法(抄紙法)などを利用して実現すること
ができる。 本発明の分析素子を構成する体積濾過層に使用
することができる繊維質素材としては、ガラス繊
維、石綿などの無機繊維、木綿、麻、パルプ、絹
などの天然有機繊維、ビスコースレーヨン、銅ア
ンモニアレーヨン、セルロースアセテート、部分
ホルマール化ポリビニルアルコール、ポリエチレ
ン、ポリプロピレン、ポリ塩化ビニル、ポリスチ
レン、ポリエステル類(ポリエチレンテレフタレ
ート等)などの半合成繊維、合成繊維が典型的で
ある。この中でもガラス繊維は特に好ましい。こ
れらの繊維質素材は言うまでもなく液体試料又は
アナライトと実質的に反応しないものでなければ
ならない。 体積濾過層を構成するこれらの繊維質素材は約
0.02〜0.1g/cm3の密度をもつものが望ましい。
又これらの繊維質素材は約0.1〜5μmの太さ、約
100〜4000μmの長さをもつものが本発明の目的に
有利であり、常法によつて、例えば10〜200メツ
シユ(タイラー規格)程度のフルイを用いて分級
することにより所望の繊維質素材を得ることがで
きる。これらの繊維質素材は展開層を構成する繊
維質素材の保液力より小さい保液力をもつように
調整される。保液力は層の空隙の粗密(空隙率)、
層空間のクリアランス、繊維質素材の太さ等によ
り決定されるものであり、いずれかの層の材質が
決まれば、他方の材質を上記の要件に従つて選択
することにより、両層を機能的に構成することが
できる。例えば、比較的細かく、かつ繊維長の短
いガラス繊維をきわめて密に成形してある濾紙
(例えば東洋濾紙製GC−50)を展開層として選ん
だ場合、体積濾過層は、同質又はより太く又はよ
り長い繊維を分散したスラリーを上記濾紙上に抄
紙成形することにより容易に得ることができる。
具体的にはまず初めに展開層の素材を選択し比較
的密な展開層を形成する。次いで素材の選択と抄
紙方法により、展開層より密度の粗ないわゆるか
さ高性のある体積濾過層を展開層に重ねて一体成
形するのが簡便である。 素材の選択で言えば、より細かい繊維、より短
い繊維を用いればより密な展開層を形成できる
し、抄紙方法で言えば、より大きな圧力差やより
液比重の大きいスラリーを使用して抄紙を行えば
より密な展開層が得られる。又、抄紙後圧力をか
けて成形するいわゆるカレンダーリングを行うこ
とは、密な展開層を作製する有効な方法である。
体積濾過層はこれと逆の方向で素材及び方法を選
択し、展開層と一体成形すればよい。 本発明において展開層を構成する繊維質素材と
しては通常当分野において液体試料を均一に展開
するいわゆる「計量」または「メータリング」機
能をもつものとして公知の繊維質素材を挙げるこ
とができる。そのような繊維質素材の典型的なも
のとしては、一般的に密度が約0.1〜2.0g/cm3
もつものが適当であり、例えば木材(セルロー
ス)パルプ、綿、絹、羊毛のような天然繊維;セ
ルロースエステル、ビスコースレーヨンのような
半合成繊維;ポリアミド、ポリエステル、(例、
ポリエチレンテレフタート)、ポリオレフインの
ような合成繊維;ガラス繊維、石綿等の無機繊
維、濾紙をほぐして繊維状としたもの等がある。
展開層用のこれら繊維質素材は常法により親水化
処理してもよい。展開層に関する繊維質素材、そ
の親水化処理、層形成等の詳細は特開昭55−
164356、同57−66359等に記載されている。 前記の如とく保液力は種々のフアクターにより
変わり空隙率はその一つであるから、体積濾過層
及び展開層については一定の範囲を設定すること
は困難である。しかしながら一応の目安として体
積濾過層の場合には約85%以上(好ましくは95%
以上)、展開層の場合には約50〜90%の範囲の空
隙率とするのが好都合である。 本発明の分析素子は上記の素材からなる体積濾
過層と展開層とが密着一体化して構成されること
を特徴とする。本明細書において密着一体化と
は、前述のように、従来技術における一体型(通
常、複数の層を単に重ね合わせて加圧成形するか
バインダーあるいはこれに準ずる物質を使用して
接着型成形により得られる)と称するものとは異
なり、体積濾過層と展開層との界面においては両
層を構成する繊維質素材の繊維が相互に三次元的
に絡み合つたランダム構造を呈する状態をいう。
この三次元的ランダム構造は化学的なものではな
く単に物理的なものであるが充分に強固であり、
この界面状態を破壊することなく元の二層に分離
することはできない。 本発明の固液分離用反応素子は以下のようにし
て製造することができる。 (1) (イ) 体積濾過層用繊維質素材をばらばらにほ
ぐし、必要ならふるい分け等でその長さを調
整する。 (ロ) (イ)で得られる繊維質素材を液性分散媒(例
えば水、水と水相溶性有機溶媒との混合物中
に分散してスラリー(紙料液)を調製する。
その際分散媒を適宜選択しすることによりあ
るいは水可溶性の溶質(例えばシヨ糖等)を
添加することにより所望の比重及び粘度をも
つたスラリーを得ることができる。これらの
分散媒や添加物質の選択は公知の密度勾配法
等に準じて行う。スラリーの調製に際しては
分散剤、粘度調整剤、防腐剤など一般の抄紙
作業に用いられる各種の薬剤を任意に添加し
てもよい。スラリーの調製方法についても特
に限定はなく、例えば、マグネチツクスター
ラー、攪拌ばね、ホモゲナイザー、ボールミ
ルのような通常の混和装置を用いる方法、ビ
ーターのようなスラリーの製造において一般
的に用いられる方法など各種の任意の方法を
利用することができる。 (2) 一方(1)(イ)と同様にして展開層用繊維質素材を
ばらばらにほぐし必要ならその長さを調整す
る。得られた繊維質素材をほぐした状態で(1)(ロ)
と同様にしてスラリーを調製する。 (3) (1)及び(2)で得られるスラリーが互いに混じり
あわない状態の界面を形成することを確認す
る。両スラリーが混じり合わない状態とするに
は両者に適当な比重差を設けるのが最も一般的
であり、この目的のためには公知の密度勾配法
等を適用することができる。また両者が混じり
合わない状態は比重差だけでなく水溶性ポリマ
ー、(いわゆる増粘剤:例えば合成ポリマー、
ガム、多糖類など)を添加することによつて両
スラリー間に適当な粘度差を与えることによつ
ても実現することができる。 以上は両者が湿潤状態にある場合の条件であ
るが、一方が乾燥状態であれば自ら混じり合わ
ない状態となり必ずしも前記の条件を設定する
必要はない。 (4) 上記のごとく両者が互いに混じり合わないよ
うに調製したスラリー二種を容器に入れ抄紙す
る。具体的には高比重(及び/又は高粘度)の
スラリーが下層を、低比重(及び/又は低粘
度)スラリーが上層を形成しており濾過器(長
綱、丸綱、抄紙用の綱、メンブランフイルター
など)を通して吸引し分散媒を除く。この抄紙
過程でスラリー中の繊維が両層の界面で相互に
絡みあい三次元的ランダム構造を形成する。 (5) 次いでこの層状体を一定のクリアランスを有
する部材を用いてその厚さを規定する。例え
ば、該層状体を二枚の間に挟んで一定の厚さに
なるまで圧縮する、該層状体を一定のスリツト
を有するローラーの間を通過させる等各種の方
法を利用することができる。その詳細は本発明
者らの先願である特願昭57−211382に記載され
ている。このようにして層状体の厚さを、好ま
しくは100〜2000μmの範囲に規定したのち、そ
の厚さを実質的に変えることなく乾燥を行う。 そのような目的のためには乾燥は比較的低温で
行うのが好ましく、特に凍結乾燥は好ましい手段
である。乾燥は厚さを規定する前におこなつても
よい。 作 用 本発明の分析素子は複数の層(例えば、反応
層、試薬層、光遮蔽層等)が積層された構成をも
つ多層分析要素の一部として液体試料が点着され
る側の最外層が体積濾過層となるように設けて使
用される。 本発明の分析素子に固形分を含有する液体試料
が点着されると、まず体積濾過層において固形分
が収納される。収納は体積濾過層の内部において
液体試料の移動につれて行われるので目づまりを
生じることなく固液分離が行われる。その際、層
間での液体試料の移動が円滑になるように体積濾
過層と境界面において係合されて密着一体化され
た展開層の保液力が体積濾過現象と連動して固液
分離をより効果的に短時間で完結させるものと思
われる。そして液体部分の均一かつ迅速な展開に
は前記界面状態が多大の貢献をしていることは言
うまでもない。 本発明の素子を組みこんだ多層分析要素は実際
の分析に際し、例えば以下のように適用される。
多層分析要素の最上層に位置する本発明の素子の
体積濾過層上にアナライトを含有する固形分含有
液体試料を一定量滴下する。素子のなかで固液分
離が行われ液体成分のみが反応層、試薬層等へ移
動し対応する生物学的反応が生じる。その結果ア
ナライト量に相当するシグナルが発生する。この
発生シグナルを常法により測定する。 以下実施例を挙げて本発明をさらに詳細に説明
するが本発明はこれに限定するものではない。 実施例1 体積濾過層を備えたガラス繊維濾紙展
開層の調製 ガラス繊維分散物の調製: ガラス繊維濾紙GA−100(東洋濾紙(株)製)2g
を2mm角に裁断し、800mlの水を加え、エースホ
モジナイザーAM−11型((株)日本精機製作所)で
分散させた。タイラー規格のふるいメツシユNo.12
を用いて分散物をこしわけ、繊維のかたまりを除
去し、ガラス繊維分散物とした。分散物中のガラ
ス繊維固形分量は、47mm径の0.22μm孔径のメン
ブランフイルター(ミクロフイルター、富士写真
フイルム(株)製)を備えたミリポアー製濾過器で分
散物10mlを濾過後フイルターごと乾燥させて秤
量、予め秤量しておいたフイルター重量をさしひ
いて算出したところ、22mg/10ml分散液であつ
た。 体積濾過層付展開層の調製: 55mm径のガラス繊維濾紙GC−50(東洋濾紙(株))
をミリポアー製フイルター濾過器(47mm径用)に
とりつけ、で調製したスラリー15ml(固形分33
mg)と水100mlとを混合した液を濾過器に移して
濾過抄紙した。濾過後GC−50の厚みより500μm
だけ厚いスペーサーを介した2枚のテフロンコー
トしたガラス平板ではさみつけ、余分の水分を絞
り出した後に、ドライアイス上で凍結させ、ガラ
ス板をとりのぞいてから凍結乾燥した。 このようにして体積濾過層付展開層[素子
(A)]を得た。 血液(全血液)の展開性能の比較: で調製した濾過層の効果を調べるために素子
(A)と、ガラス繊維濾紙(GC−50)単独のもの
について抗凝固剤を含む新鮮血液を滴下点着し、
正確に5分経過後ガラス繊維濾紙(GC−50)上
に展開した円形部分の直径を測定した。各々につ
き10検体の測定を実施し、直径の平均値()と
その標準偏差(σ)を算出して第1表に示した
(単位はmm)。
Object of the Invention 1 Industrial Application Field The present invention relates to an analytical element effective for dry analysis of liquid samples containing solid content. 2. Prior Art Many analysis systems are already known for detecting and quantifying biochemically active components in sample liquids using so-called dry analysis elements configured in a layered (sheet-like) manner (U.S. Pat. No. 3,050,373, etc.). ). Generally used in these analysis methods, reactive components that cause a physical or chemical reaction upon contact with the target component (analyte) contained in the liquid sample are prepared in advance as analytical elements. The reaction between the analyte introduced into the analytical element and the reactive component proceeds in the biological reaction layer provided within the analytical element, and the reaction product or unreacted component is This is a method of quantifying analytes by measuring the amount of analytes spectroscopically, fluorescently, or using radioactive isotopes. Since the dry analysis method described above is relatively simple to operate, it is used for many purposes, such as immunological analysis using antigen-antibody reactions, and enzyme or substrate analysis using enzymatic reactions. There is. While methods using analytical elements generally have the advantage of being simple, various improvements have been made to the layer configuration of analytical elements in order to provide a wide latitude that can be adapted to the analysis of various liquid samples. Ta. In particular, when a liquid containing solids, such as whole blood, is used as an analysis sample, it has been proposed to provide a hemocyte filtration layer above the reagent layer to mainly filter red blood cells. A typical blood cell filtration layer is described in Japanese Patent Publication No. 53-21677, which filters blood cells through a material with appropriate porosity. It is therefore taught that the pore size of the filter layer should be set to 1-5 μm, which is smaller than the size of blood cells (7-30 μm). That is, blood cells are separated from liquid components such as serum and plasma by undergoing so-called surface filtration in which they cannot penetrate into the filtration layer and remain on the surface thereof. Blood cell separation using such surface filtration is simpler than the conventional method in which the whole blood sample is centrifuged in advance because the blood cell filtration layer is incorporated into the analytical element, but the filtration speed is not sufficiently fast. I can't say anything and it's easy to get confused. As a result, the liquid sample develops poorly, leading to a decrease in analytical sensitivity and impairing analytical accuracy. JP-A-57-53661 discloses a device for removing solids from blood and separating plasma and serum using a layer composed of specific glass fibers having an average diameter of 0.2 to 5 μm and a density of 0.1 to 0.5 g/cm 3 . Are listed. However, the blood cell separation ability of this separation device is also not satisfactory, and according to the example, in an analysis using a multilayer analytical element, the applied serum or plasma amount is measured to be less than 50% of the absorption amount of the layer. By providing a hydrophobic barrier layer, practical blood cells/
Serum (plasma) separation has been achieved. Moreover, the above separation device was proposed based on the recognition that serum or plasma passes through the glass fiber layer more quickly than blood cells, and there is no suggestion whatsoever regarding solid-liquid separation based on volumetric filtration, which is the characteristic concept of the present invention described later. There's nowhere to go. Problems to be Solved by the Invention The present invention solves problems such as the complexity of centrifuging blood in advance, clogging of the filter layer that is inevitable in solid-liquid separation based on surface filtration, and unsatisfactory solid-liquid separation. It attempts to solve problems in the law. Means for Solving the Constituent Problems of the Invention In the present invention, as described above, the phenomenon of efficiently utilizing the three-dimensional structure of the layer itself to store solids over its entire volume, without using surface filtration. In this specification, this phenomenon is referred to as "volume filtration")
The objective is to separate solids from liquid samples based on the following. As a result of repeated studies on various materials, the present inventors found that a fibrous material is effective in separating solids from a solids-containing liquid sample by volumetric filtration. In addition, a porous liquid sample spreading layer (hereinafter referred to as the ``deployment layer'') is formed by closely integrating a layer for storing solids made of this fibrous material (hereinafter referred to as the ``volume filtration layer'').
It has been found that when used in combination, complete solid-liquid separation can be achieved almost instantly. The present invention relates to an analytical element for separating solids from a liquid sample containing solids, which is composed of a volumetric filtration layer and a spreading layer made of a fibrous material, and in which the liquid holding capacity of the spreading layer is larger than that of the volumetric filtration layer. Both layers are characterized in that their respective fibrous materials are intertwined with each other at their interfaces and are tightly integrated (integral molding). The close integration of the above-mentioned expansion layer and volumetric filtration layer is
For example, a method (filtration method) in which a dispersion of the fibrous material of the volumetric filtration layer is placed on a pre-prepared spread layer and the spread layer is used as a filtering material (filtration method); This can be achieved by using a method such as a method (paper making method) in which a dispersion of the fibrous material and a dispersion of the fibrous material of the volumetric filtration layer are layered and a filtration operation is performed using a separately prepared filtration material. can. Fibrous materials that can be used for the volume filtration layer constituting the analytical element of the present invention include inorganic fibers such as glass fiber and asbestos, natural organic fibers such as cotton, hemp, pulp, and silk, viscose rayon, and copper. Semi-synthetic fibers and synthetic fibers such as ammonia rayon, cellulose acetate, partially formalized polyvinyl alcohol, polyethylene, polypropylene, polyvinyl chloride, polystyrene, and polyesters (polyethylene terephthalate, etc.) are typical. Among these, glass fiber is particularly preferred. These fibrous materials must, of course, be substantially non-reactive with the liquid sample or analyte. These fibrous materials that make up the volumetric filtration layer are approximately
It is desirable to have a density of 0.02 to 0.1 g/cm 3 .
In addition, these fibrous materials have a thickness of approximately 0.1 to 5 μm, approximately
Those having a length of 100 to 4000 μm are advantageous for the purpose of the present invention, and the desired fibrous material can be obtained by classifying it by a conventional method, for example, using a sieve of about 10 to 200 meshes (Tyler standard). Obtainable. These fibrous materials are adjusted to have a liquid retention capacity smaller than that of the fibrous materials constituting the spreading layer. The liquid holding power depends on the density of the voids in the layer (porosity),
It is determined by the clearance of the layer space, the thickness of the fibrous material, etc. Once the material for either layer is decided, the material for the other layer can be selected according to the above requirements to make both layers functional. It can be configured as follows. For example, if a filter paper made of relatively fine and short glass fibers (e.g. GC-50 manufactured by Toyo Roshi Co., Ltd.) is selected as the spreading layer, the volumetric filtration layer may be of the same quality, thicker or more densely formed. It can be easily obtained by forming a slurry in which long fibers are dispersed onto the above-mentioned filter paper.
Specifically, first, a material for the spreading layer is selected and a relatively dense spreading layer is formed. Next, depending on the material selection and paper making method, it is convenient to integrally mold a so-called bulky volumetric filtration layer, which has a lower density than the spread layer, over the spread layer. In terms of material selection, finer and shorter fibers can be used to form a denser spread layer, and in terms of papermaking methods, paper can be made by using a larger pressure difference and a slurry with a higher liquid specific gravity. If you do this, you will get a denser expanded layer. Furthermore, performing so-called calendering, which involves applying pressure to shape the paper after papermaking, is an effective method for producing a dense spread layer.
The volume filtration layer may be formed integrally with the expansion layer by selecting the material and method in the opposite direction. In the present invention, examples of the fibrous material constituting the spreading layer include fibrous materials commonly known in the art as having a so-called "measuring" or "metering" function for uniformly spreading a liquid sample. Typical such fibrous materials generally have a density of about 0.1 to 2.0 g/ cm3 , such as wood (cellulose) pulp, cotton, silk, and wool. Natural fibers; semi-synthetic fibers such as cellulose esters, viscose rayon; polyamides, polyesters, e.g.
Synthetic fibers such as polyethylene tereftate (polyethylene tereftate) and polyolefin; inorganic fibers such as glass fiber and asbestos; and fibers made by loosening filter paper.
These fibrous materials for the spreading layer may be subjected to a hydrophilic treatment using a conventional method. Details of the fibrous material related to the spread layer, its hydrophilic treatment, layer formation, etc. can be found in JP-A-55-
164356, 57-66359, etc. As mentioned above, the liquid retaining power varies depending on various factors, and porosity is one of them, so it is difficult to set a fixed range for the volumetric filtration layer and the spreading layer. However, as a rough guide, in the case of a volumetric filtration layer, it is approximately 85% or more (preferably 95%)
In the case of a spread layer, it is convenient to have a porosity in the range of about 50 to 90%. The analytical element of the present invention is characterized in that a volume filtration layer and a spreading layer made of the above-mentioned materials are closely integrated. In this specification, the term "adhesive integration" refers to the integrated type in the prior art (usually, by simply overlapping multiple layers and pressure molding, or by adhesive molding using a binder or similar substance). This refers to a state where, at the interface between the volume filtration layer and the spreading layer, the fibers of the fibrous material constituting both layers exhibit a random structure in which they are three-dimensionally intertwined with each other.
This three-dimensional random structure is not chemical but merely physical, but it is sufficiently strong.
It is not possible to separate the original two layers without destroying this interfacial state. The reaction element for solid-liquid separation of the present invention can be manufactured as follows. (1) (a) Loosen the fibrous material for the volumetric filtration layer into pieces and adjust its length by sieving, etc., if necessary. (b) A slurry (paper stock liquid) is prepared by dispersing the fibrous material obtained in (a) in a liquid dispersion medium (for example, water or a mixture of water and a water-compatible organic solvent).
At this time, a slurry having a desired specific gravity and viscosity can be obtained by appropriately selecting a dispersion medium or by adding a water-soluble solute (for example, sucrose, etc.). Selection of these dispersion media and additive substances is performed according to the known density gradient method. When preparing the slurry, various chemicals used in general papermaking operations such as dispersants, viscosity modifiers, and preservatives may be optionally added. There are no particular limitations on the method for preparing the slurry; for example, there are various methods such as methods using ordinary mixing equipment such as magnetic stirrers, stirring springs, homogenizers, and ball mills, and methods commonly used in slurry production such as beaters. Any method can be used. (2) On the other hand, in the same manner as in (1) (a), loosen the fibrous material for the spreading layer into pieces and adjust its length if necessary. In the state where the obtained fibrous material is loosened (1) (b)
Prepare a slurry in the same manner as above. (3) Confirm that the slurries obtained in (1) and (2) form an interface in which they do not mix with each other. In order to make the two slurries unmixable, it is most common to provide an appropriate difference in specific gravity between the two slurries, and for this purpose, a known density gradient method or the like can be applied. In addition, the state in which the two do not mix is due not only to the difference in specific gravity, but also to water-soluble polymers (so-called thickeners: for example, synthetic polymers,
This can also be achieved by adding a suitable viscosity difference between the two slurries by adding gum, polysaccharide, etc.). The above conditions are for when both are in a wet state, but if one is in a dry state, they will not mix by themselves, so it is not necessary to set the above conditions. (4) The two types of slurry prepared as above so that they do not mix with each other are placed in a container and paper is made. Specifically, a high specific gravity (and/or high viscosity) slurry forms the lower layer and a low specific gravity (and/or low viscosity) slurry forms the upper layer. suction through a membrane filter, etc.) to remove the dispersion medium. During this papermaking process, the fibers in the slurry become entangled with each other at the interface between the two layers, forming a three-dimensional random structure. (5) Next, the thickness of this layered body is defined using a member having a certain clearance. For example, various methods can be used, such as sandwiching the layered body between two sheets and compressing it to a certain thickness, or passing the layered body between rollers having a certain slit. The details are described in Japanese Patent Application No. 57-211382, an earlier application by the present inventors. After setting the thickness of the layered body in this manner, preferably within the range of 100 to 2000 μm, drying is performed without substantially changing the thickness. For such purposes, drying is preferably carried out at relatively low temperatures, with freeze-drying being a particularly preferred means. Drying may be performed before determining the thickness. Function The analytical element of the present invention is part of a multilayer analytical element having a structure in which a plurality of layers (e.g., a reaction layer, a reagent layer, a light shielding layer, etc.) are laminated, and the outermost layer on the side on which a liquid sample is deposited. It is used by providing it so that it becomes a volumetric filtration layer. When a liquid sample containing solids is deposited on the analytical element of the present invention, the solids are first stored in the volume filtration layer. Since storage is carried out as the liquid sample moves inside the volumetric filtration layer, solid-liquid separation is performed without clogging. At this time, the liquid retention power of the expansion layer, which is closely integrated with the volumetric filtration layer at the interface to facilitate the movement of the liquid sample between the layers, works in conjunction with the volumetric filtration phenomenon to achieve solid-liquid separation. It is believed that the process can be completed more effectively and in a shorter time. It goes without saying that the interfacial state greatly contributes to the uniform and rapid development of the liquid portion. A multilayer analytical element incorporating the element of the present invention is applied in actual analysis, for example, as follows.
A fixed amount of a solid-containing liquid sample containing an analyte is dropped onto the volumetric filtration layer of the element of the present invention located at the top layer of the multilayer analytical element. Solid-liquid separation is performed within the device, and only the liquid component moves to the reaction layer, reagent layer, etc., and a corresponding biological reaction occurs. As a result, a signal corresponding to the amount of analyte is generated. This generated signal is measured by a conventional method. The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited thereto. Example 1 Preparation of a glass fiber filter paper spreading layer with a volume filtration layer Preparation of glass fiber dispersion: 2 g of glass fiber filter paper GA-100 (manufactured by Toyo Roshi Co., Ltd.)
was cut into 2 mm squares, 800 ml of water was added, and the mixture was dispersed using an Ace homogenizer model AM-11 (Nippon Seiki Seisakusho Co., Ltd.). Tyler standard sieve mesh No.12
The dispersion was strained using a sieve to remove clumps of fibers to obtain a glass fiber dispersion. The amount of glass fiber solids in the dispersion was determined by filtering 10 ml of the dispersion using a Millipore filter equipped with a membrane filter (microfilter, manufactured by Fuji Photo Film Co., Ltd.) with a 47 mm diameter and 0.22 μm pore size, and then drying the dispersion together with the filter. The weight was calculated by subtracting the weight of the filter weighed in advance, and the dispersion was found to be 22 mg/10 ml. Preparation of spreading layer with volumetric filtration layer: 55 mm diameter glass fiber filter paper GC-50 (Toyo Roshi Co., Ltd.)
was attached to a Millipore filter (for 47 mm diameter), and 15 ml of the slurry (solid content 33
A mixture of 100 ml of water and 100 ml of water was transferred to a filter and filtered paper was made. 500 μm from the thickness of GC-50 after filtration
The mixture was sandwiched between two Teflon-coated glass plates with a thick spacer in between, and after squeezing out excess water, it was frozen on dry ice, and the glass plates were removed before freeze-drying. In this way, a spreading layer with a volume filtration layer [element (A)] was obtained. Comparison of development performance of blood (whole blood): In order to investigate the effect of the filtration layer prepared in Arrived,
After exactly 5 minutes, the diameter of the circular portion developed on glass fiber filter paper (GC-50) was measured. Measurements were performed on 10 samples for each sample, and the average value ( ) and standard deviation (σ) of the diameter were calculated and shown in Table 1 (unit: mm).

【表】 なお、ガラス繊維濾紙単独のものは、5分後で
も明らかに血液が表面に残留した状態であり、し
かも血球が全面に展開していた。これに対し本発
明の素子(A)では、血球は約1分後に体積濾過
層中へ収納され血漿のみがすみやかに展開されて
いく様子が観察された。 実施例2 体積濾過層を備えた濾紙展開層の調製 体積濾過層付展開層の調製: 実施例1−と同様の方法でガラス繊維分散物
(固形分量15mg/10ml)を得た。 濾紙No.5C(東洋濾紙(株)製)をミリポア製フイル
ター濾過器47mm径用)上に水はりし、上記ガラス
繊維分散物15ml(固形分22.5mg)と水50mlとの混
合物を供給して、濾過抄紙した。 濾過後、650μmのスペーサーを介した2枚のガ
ラス平板で抄紙物をはさみつけて厚みを一定にし
た後、ドライアイス上で凍結させ、ガラス板をと
り除いてから凍結乾燥し、体積濾過層付展開層
(素子B)を調製した。 血液の展開性能の評価: ガラス繊維体積濾過層の効果をみるために、上
記の如く調製した体積濾過層付展開層[素子
(B)]と濾紙(No.5C)単独のものに各々10,20,
30μlの血液(抗凝固剤含有)を滴下し、濾紙内で
の展開性を調べた。各試料につき10検体ずつ測定
を行い、展開部の直の平均値()及び標準偏差
(σ)を算出した。その結果を第2表に示す。
[Table] In addition, when using glass fiber filter paper alone, blood clearly remained on the surface even after 5 minutes, and blood cells were spread over the entire surface. On the other hand, in the device (A) of the present invention, it was observed that the blood cells were accommodated in the volumetric filtration layer after about 1 minute, and only the plasma was rapidly expanded. Example 2 Preparation of a filter paper spreading layer with a volume filtration layer Preparation of a spreading layer with a volume filtration layer: A glass fiber dispersion (solid content 15 mg/10 ml) was obtained in the same manner as in Example 1-. Filter paper No. 5C (manufactured by Toyo Roshi Co., Ltd.) was poured with water onto a Millipore filter for 47 mm diameter, and a mixture of 15 ml of the above glass fiber dispersion (solid content 22.5 mg) and 50 ml of water was supplied. , filter paper was made. After filtration, the paper material is sandwiched between two glass flat plates with a 650 μm spacer in between to make the thickness constant, then frozen on dry ice, the glass plates are removed, and freeze-dried to form a volumetric filtration layer. A spreading layer (device B) was prepared. Evaluation of blood development performance: In order to examine the effect of the glass fiber volumetric filtration layer, the volumetric filtration layer and the volumetric filtration layer prepared as described above [element (B)] and the filter paper (No. 20,
30 μl of blood (containing anticoagulant) was dropped and its spreadability within the filter paper was examined. Ten samples were measured for each sample, and the direct average value ( ) and standard deviation (σ) of the developed area were calculated. The results are shown in Table 2.

【表】 実施例1−と同様に、濾紙単独では血液が表
面に残りまた、展開部全面に血球の展開がみられ
た。これに対し、本発明の素子(B)では、血球
の展開はなく血漿がすみやかにかつ良好に展開し
た。 発明の効果 本発明の素子を多層分析素子にくみこんで使用
することにより、従来分析誤差を与えるものとし
て特別の手段を講じなければならなかつた固形分
含有液体試料の正確かつ迅速な分析が可能となつ
た。本発明の素子を使用することにより固形分が
体積濾過層に収納される結果目づまりを生じるこ
とがなく、又、保液力の大きい展開層が極めて短
時間で液体成分の展開を完了する。 本発明の素子は全血液、濁りをもつた尿試料や
体液、乳び血清等を液体試料とする場合に特に有
効である。例えば、固形分量の異なる全血液(ヘ
マトクリツト値の異なる全血液)の分析において
本発明の素子を用いると、ヘマトクリツト値の大
小にかかわらず、その血漿部分のみが定量的に展
開層に送り込まれ、展開層の計量効果により、血
漿量に応じた面積に展開されることになる。つま
り、本発明の素子は全血液を用いた分析におい
て、ヘマトクリツト値に左右されない分析を可能
にしかつ、計量誤差にもたえる分析を可能とする
ものである。
[Table] As in Example 1-, blood remained on the surface of the filter paper alone, and blood cells were observed to be spread over the entire surface of the spread area. On the other hand, in the device (B) of the present invention, blood cells did not develop and plasma developed quickly and well. Effects of the Invention By incorporating the element of the present invention into a multilayer analytical element, it is possible to accurately and quickly analyze solid-containing liquid samples, which conventionally required special measures to be taken due to analytical errors. Summer. By using the element of the present invention, the solid content is stored in the volume filtration layer, so that clogging does not occur, and the spreading layer, which has a large liquid holding capacity, completes spreading of the liquid component in a very short time. The device of the present invention is particularly effective when using liquid samples such as whole blood, turbid urine samples, body fluids, and chyle serum. For example, when the device of the present invention is used to analyze whole blood with different solid content (whole blood with different hematocrit values), only the plasma portion is quantitatively sent to the developing layer and developed, regardless of the hematocrit value. Due to the metering effect of the layer, the area will be expanded according to the amount of plasma. In other words, the device of the present invention enables analysis using whole blood that is not influenced by hematocrit values and also allows analysis that is resistant to measurement errors.

Claims (1)

【特許請求の範囲】 1 繊維質素材からなる体積濾過層及び該体積濾
過層より大きい保液力を有する繊維質素材からな
る展開層が、それらの境界面においてそれぞれの
繊維質素材が相互に絡み合つて一体成型されてな
ることを特徴とする固形分含有液体試料用分析素
子。 2 前記体積濾過層の密度が0.02〜0.1g/cm3
範囲にあり、前記展開層の密度が0.1〜2.0g/cm3
の範囲にある特許請求の範囲第1項記載の固形分
含有液体試料用分析素子。 3 前記一体成型が、予め調製した展開層の上に
体積濾過層の繊維質素材の分散液を載せ、この分
散液を展開層を濾過材として利用して濾過操作を
行なうことにより製造したものであるか、あるい
は展開層の繊維質素材の分散液と体積濾過層の繊
維質素材の分散液とを重ねた状態で別に用意した
濾過材を利用して濾過操作を行なうことによつて
製造したものである特許請求の範囲第1項記載の
固形分含有液体試料用分析素子。 4 前記体積濾過層および展開層の繊維質素材の
太さがいずれも0.1〜1.0μmで、長さが10〜
4000μmの範囲にある特許請求の範囲第1項記載
の固形分含有液体試料用分析素子。 5 前記体積濾過層の厚さと展開層の厚さを合わ
せた厚さが100〜2000μmの範囲にある特許請求の
範囲第1項記載の固形分含有液体試料用分析素
子。 6 前記体積濾過層および展開層の繊維質素材が
いずれもガラス繊維である特許請求の範囲第1項
記載の固形分含有液体試料用分析素子。
[Scope of Claims] 1. A volume filtration layer made of a fibrous material and a spread layer made of a fibrous material having a larger liquid retention capacity than the volume filtration layer, the fibrous materials of which are entangled with each other at their boundary surfaces. An analytical element for a liquid sample containing solids, characterized in that it is integrally molded with the elements. 2. The density of the volume filtration layer is in the range of 0.02 to 0.1 g/cm 3 , and the density of the expansion layer is 0.1 to 2.0 g/cm 3
An analytical element for solid content-containing liquid samples according to claim 1, which falls within the scope of claim 1. 3. The integral molding is manufactured by placing a dispersion of the fibrous material of the volumetric filtration layer on a previously prepared spread layer, and performing a filtration operation on this dispersion using the spread layer as a filtering material. Or manufactured by carrying out a filtration operation using a separately prepared filtration medium with the fibrous material dispersion of the spread layer and the fibrous material dispersion of the volumetric filtration layer layered. An analytical element for solid content-containing liquid samples according to claim 1. 4 The thickness of the fibrous material of the volume filtration layer and the spreading layer is 0.1 to 1.0 μm, and the length is 10 to 1.0 μm.
An analytical element for a solid content-containing liquid sample according to claim 1, which has a particle size in the range of 4000 μm. 5. The analytical element for a solid content-containing liquid sample according to claim 1, wherein the combined thickness of the volumetric filtration layer and the spreading layer is in the range of 100 to 2000 μm. 6. The analytical element for solid content-containing liquid samples according to claim 1, wherein the fibrous materials of the volume filtration layer and the spreading layer are both glass fibers.
JP8745984A 1984-04-27 1984-04-27 Analyzing element for solid-containing liquid sample Granted JPS60230062A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP8745984A JPS60230062A (en) 1984-04-27 1984-04-27 Analyzing element for solid-containing liquid sample
DE8585105215T DE3583414D1 (en) 1984-04-27 1985-04-29 COMPONENT OF AN ANALYTICAL ELEMENT FOR ANALYZING A SOLID BODY IN A LIQUID SAMPLE.
EP85105215A EP0160916B1 (en) 1984-04-27 1985-04-29 Part of an analytical element for the analysis of a solid in a liquid sample
US07/098,735 US4855108A (en) 1984-04-27 1987-09-16 Member of analytical element for the analysis of liquid sample containing solid
US07/338,992 US4950454A (en) 1984-04-27 1989-04-14 Member of analytical element for the analysis of liquid sample containing solid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8745984A JPS60230062A (en) 1984-04-27 1984-04-27 Analyzing element for solid-containing liquid sample

Publications (2)

Publication Number Publication Date
JPS60230062A JPS60230062A (en) 1985-11-15
JPH058382B2 true JPH058382B2 (en) 1993-02-02

Family

ID=13915455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8745984A Granted JPS60230062A (en) 1984-04-27 1984-04-27 Analyzing element for solid-containing liquid sample

Country Status (1)

Country Link
JP (1) JPS60230062A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2579222B2 (en) * 1989-10-18 1997-02-05 富士写真フイルム株式会社 Dry analysis element for whole blood sample analysis
EP0423784B1 (en) * 1989-10-18 1997-01-02 Fuji Photo Film Co., Ltd. Dry analysis element for quantitative analysis of analyte contained in whole blood
JPH03131757A (en) * 1989-10-18 1991-06-05 Fuji Photo Film Co Ltd Dry type analyzing element for analyzing whole blood sample

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5870161A (en) * 1981-09-26 1983-04-26 Konishiroku Photo Ind Co Ltd Analysis element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5870161A (en) * 1981-09-26 1983-04-26 Konishiroku Photo Ind Co Ltd Analysis element

Also Published As

Publication number Publication date
JPS60230062A (en) 1985-11-15

Similar Documents

Publication Publication Date Title
US4950454A (en) Member of analytical element for the analysis of liquid sample containing solid
US5423989A (en) Plasma forming device
DE69016813T2 (en) Method and device for separating plasma or serum from blood.
US4753776A (en) Blood separation device comprising a filter and a capillary flow pathway exiting the filter
US5135719A (en) Blood separation device comprising a filter and a capillary flow pathway exiting the filter
JPH0552463B2 (en)
US6093664A (en) Adsorbent for metal ions and method of making and using
US8097171B2 (en) Method of separating a fluid fraction from whole blood
DE69535720T2 (en) FIBROUS TRACK AND METHOD FOR THE PRODUCTION THEREOF
JP2000501183A (en) Method and apparatus for separating blood in a diagnostic device
JPH11503826A (en) Method of defining electrode area
JPH10513113A (en) Density gradient filter
JPS59102388A (en) Biological reaction layer and its preparation
JPH1138000A (en) Method for filtrating blood
EP1012115B1 (en) Adsorbent for metal ions and method of making and using
JPH058382B2 (en)
US6328167B1 (en) Blood filter cartridge
JPH0223831B2 (en)
JPH058384B2 (en)
JPH058383B2 (en)
JP3722255B2 (en) Plasma or serum separation filter
JPH02210265A (en) Analysis element
JPH1138001A (en) Blood filtration unit
JPH0777526A (en) All-blood weighing cup and weighing method
DE102013012678A1 (en) FLAT FILTER MEDIA FOR THE DISTRIBUTION OF PLASMA OR SERUM OF FULL BLOOD

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees