JPH0583427B2 - - Google Patents

Info

Publication number
JPH0583427B2
JPH0583427B2 JP3304184A JP3304184A JPH0583427B2 JP H0583427 B2 JPH0583427 B2 JP H0583427B2 JP 3304184 A JP3304184 A JP 3304184A JP 3304184 A JP3304184 A JP 3304184A JP H0583427 B2 JPH0583427 B2 JP H0583427B2
Authority
JP
Japan
Prior art keywords
valve
piston
pressure chamber
chamber
valve body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3304184A
Other languages
Japanese (ja)
Other versions
JPS60176859A (en
Inventor
Hideyuki Morimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nabco Ltd
Original Assignee
Nabco Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nabco Ltd filed Critical Nabco Ltd
Priority to JP59033041A priority Critical patent/JPS60176859A/en
Publication of JPS60176859A publication Critical patent/JPS60176859A/en
Publication of JPH0583427B2 publication Critical patent/JPH0583427B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/12Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Transmission Of Braking Force In Braking Systems (AREA)
  • Braking Systems And Boosters (AREA)

Description

【発明の詳細な説明】 本発明は、車両等のブレーキ或はクラツチ用マ
スタシリンダの作動を助勢する液圧式倍力装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hydraulic booster for assisting the operation of a brake or clutch master cylinder of a vehicle or the like.

従来より、この種のものとして、シリンダ孔を
形成した本体と、前記シリンダ孔に摺動自在に挿
入されるピストンと、該ピストンの側部に形成さ
れ圧液を供給する圧力源に接続される入力室と、
前記ピストンの後方に形成される圧力室と、前記
入力室及び圧力室に連絡して前記ピストンの後方
側に設けた凹所と、該凹所に設けた弁装置と、こ
の弁装置を作動可能に配設した入力軸とを備え、
前記弁装置は、前記凹所に摺動自在に挿入された
可動弁体と、これに対向して前記凹所の後方側壁
部に形成した弁座と、該弁座に着座するよう前記
可動弁体を後方に付勢する弁ばねとを有し、前記
弁座の前方側を前記入力室に後方側を前記圧力室
に各々連絡したものが知られており、更に、前記
可動弁体を鋼球としたものが知られている。
Conventionally, this kind of device has a main body formed with a cylinder hole, a piston slidably inserted into the cylinder hole, and a pressure source formed on the side of the piston and connected to a pressure source that supplies pressurized liquid. an input room;
A pressure chamber formed at the rear of the piston, a recess provided at the rear side of the piston in communication with the input chamber and the pressure chamber, a valve device provided in the recess, and the valve device operable. Equipped with an input shaft arranged in
The valve device includes a movable valve body slidably inserted into the recess, a valve seat formed on a rear side wall of the recess opposite to the movable valve body, and a movable valve seat such that the movable valve is seated on the valve seat. It is known that the movable valve body has a valve spring that biases the valve body backward, the front side of the valve seat is connected to the input chamber, and the rear side is connected to the pressure chamber, and further, the movable valve body is made of steel. It is known as a ball.

ところが、従来のこうしたものでは、可動弁体
が入力室の圧力をかなり大きな面積に受圧し、作
動開始時における開弁に要する操作力が大きくな
り、作動抵抗を大きくして作動の迅速性或は効率
が低下するという問題がある。
However, in such conventional valves, the movable valve body receives the pressure in the input chamber over a fairly large area, which increases the operating force required to open the valve at the start of operation, increases the operating resistance, and reduces the speed of operation or There is a problem that efficiency decreases.

本発明は、上記問題に鑑みて成され、作動効率
を向上した液圧式倍力装置を提供することを目的
とする。この目的は本発明によればシリンダ孔を
形成した本体と、前記シリンダ孔に摺動自在に挿
入され非作動時に後方に付勢されるピストンと、
該ピストンの側部に形成され圧液を供給する圧力
源に接続されるアキユムレータ圧室と、前記ピス
トンの後方に形成される圧力室と、前記アキユム
レータ圧室及び圧力室に連絡して前記ピストンの
後方側に設けた凹所と、該凹所に設けた弁装置
と、該弁装置を作動可能に配設した入力軸とを備
え、前記弁装置は、前記凹所に挿入され前記ピス
トンの軸線方向に移動自在な可動弁体と、これに
対向して前記凹所の後方側壁部に形成した弁座
と、該弁座に着座するよう前記可動弁体を後方に
付勢する弁ばねとを有し、前記弁座の前方側を前
記アキユムレータ圧室に後方側を前記圧力室に
各々連絡し、前記入力軸の非作動時には、前記圧
力室をリザーバに接続し、前記入力軸の前方への
作動時には、前記可動弁体を前記弁座から離座さ
せて圧液を前記圧力室に導入し前記ピストンを前
方へ移動するようにした構成した液圧式倍力装置
において、前記可動弁体には、前記ピストンの前
方側に延びて前記凹所に密封部材を介して嵌合さ
れる柱状部と、この柱状部から後方端側に延び当
該柱状部よりも小径の減径部と、前記柱状部と前
記減径部との間に位置し前記弁座に着座可能な段
部とを各々形成し、前記弁座を当該弁座に対する
前記段部の着座面積と前記柱状部の前記密封部材
による密封面積とが相等しくなるように、前記凹
所の径内方側に膨出させて形成した液圧式倍力装
置、によつて達成される。
The present invention was made in view of the above problems, and an object of the present invention is to provide a hydraulic booster with improved operating efficiency. According to the present invention, this object includes a main body having a cylinder hole, a piston that is slidably inserted into the cylinder hole and is biased rearward when not in operation.
an accumulator pressure chamber formed on the side of the piston and connected to a pressure source for supplying pressurized fluid; a pressure chamber formed at the rear of the piston; It includes a recess provided in the rear side, a valve device provided in the recess, and an input shaft on which the valve device is operable, and the valve device is inserted into the recess and aligned with the axis of the piston. A movable valve body that is movable in a direction, a valve seat formed on a rear side wall of the recess opposite to the movable valve body, and a valve spring that biases the movable valve body rearward so as to be seated on the valve seat. The front side of the valve seat is connected to the accumulator pressure chamber, and the rear side is connected to the pressure chamber, and when the input shaft is not in operation, the pressure chamber is connected to a reservoir, and the input shaft is connected to the front side. In the hydraulic booster configured to move the movable valve body away from the valve seat to introduce pressure fluid into the pressure chamber and move the piston forward during operation, the movable valve body includes: , a columnar portion extending toward the front side of the piston and fitted into the recess through a sealing member; a reduced diameter portion extending from the columnar portion toward the rear end side and having a smaller diameter than the columnar portion; and the columnar portion. and a stepped portion located between the reduced diameter portion and the valve seat, and the valve seat is sealed by the seating area of the stepped portion with respect to the valve seat and the sealing member of the columnar portion. This is achieved by a hydraulic booster formed by bulging the recess radially inward so that the areas are equal to each other.

以上の構成において、段部の着座面積と上記密
封部材による密封面積との差がほぼ零となり、入
力室の液圧が可動弁体に及ぼす力がほぼ零とな
り、結局可動弁体を弁座に押圧する力はほぼ弁ば
ねのばね力のみとなり、入力軸により可動弁体を
弁座から離座させる力は非常に小となり、作動の
迅速性及び効率を大巾に向上させることができ
る。
In the above configuration, the difference between the seating area of the stepped portion and the sealing area by the sealing member becomes almost zero, and the force exerted on the movable valve body by the hydraulic pressure in the input chamber becomes almost zero, eventually causing the movable valve body to close to the valve seat. The pressing force is almost solely the spring force of the valve spring, and the force that causes the input shaft to move the movable valve body away from the valve seat is extremely small, making it possible to greatly improve the speed and efficiency of operation.

以下、本発明の実施例によるブレーキ用液圧式
倍力装置付マスタシリンダについて図面を参照し
て説明する。
EMBODIMENT OF THE INVENTION Hereinafter, a master cylinder with a hydraulic booster for brakes according to an embodiment of the present invention will be described with reference to the drawings.

図において、本実施例の液圧式倍力装置付マス
タシリンダは全体として1で示され、そのシリン
ダ本体2内の左方部にはマスタシリンダ部3が、
右方部には倍力装置部4が設けられている。シリ
ンダ本体2には段付孔5が形成され、前端は閉塞
端となつており、後端開口は蓋体6によつて閉塞
されている。蓋体6は複数のボルト16によりシ
ールリング7を介在させてシリンダ本体2に固定
され、また同ボルト16により図示しないトーボ
ードにこの液圧式倍力装置付マスタシリンダ1全
体が固定されている。
In the figure, the master cylinder with a hydraulic booster of this embodiment is indicated as 1 as a whole, and a master cylinder part 3 is located on the left side of the cylinder body 2.
A booster unit 4 is provided on the right side. A stepped hole 5 is formed in the cylinder body 2, the front end is a closed end, and the rear end opening is closed by a lid 6. The lid body 6 is fixed to the cylinder body 2 by a plurality of bolts 16 with a seal ring 7 interposed therebetween, and the entire master cylinder 1 with a hydraulic booster is fixed to a toe board (not shown) by the bolts 16.

蓋体6の中心貫通孔8には後端部にカツプシー
ル11を装着した軸状の入力部材9が摺動自在に
嵌合しており、ばね10により後方に付勢されて
いる。(なお、本明細書において前方とは図にお
いて左方を、後方とは右方を意味するものとす
る。)また、入力部材9の後端部に形成される凹
所15内には図示しないブレーキペダルに結合さ
れている連結部材12のロツド部13の先端部が
受容され、ゴム材15aにより抜け止めされてい
る。ロツド部13と蓋体6との間にはブーツ14
が固着され、防塵を行なつている。
A shaft-shaped input member 9 having a cup seal 11 attached to its rear end is slidably fitted into the center through hole 8 of the lid 6, and is biased rearward by a spring 10. (Note that in this specification, the front means the left side in the figure, and the rear means the right side in the figure.) Also, the recess 15 formed at the rear end of the input member 9 is not shown in the figure. The tip of the rod portion 13 of the connecting member 12 connected to the brake pedal is received and prevented from coming off by a rubber member 15a. A boot 14 is provided between the rod portion 13 and the lid body 6.
is fixed to prevent dust.

シリンダ本体2の段付孔5は大径孔部17と小
径孔部18とから成り、大径孔部17と小径孔部
18にわたつて第1ピストン19が摺動自在に嵌
合しており、小径孔部18には第2ピストン20
が摺動自在に嵌合している。第1ピストン19は
後端部、中間部及び前端部にそれぞれ第1大径部
21、第2大径部22(第1大径部21と径は同
一)及び小径部23を有し、カツプシール24,
25,26を装着している。かくして、第2大径
部22と小径部23との間には補助圧力室27が
形成され、第2大径部22と第1大径部21との
間にはアキユムレータ圧室28が形成される。ま
た、第1大径部21と蓋体6との間には倍力用圧
力室29が形成される。これら補助圧力室27、
アキユムレータ圧室28及び倍力用圧力室29の
うち補助圧力室27だけがマスタシリンダ部3に
属するものであり、この圧力室27を画成するた
めの第1ピストン19の前方半部がマスタシリン
ダ部3に属するが、以下このマスタシリンダ部3
の詳細について説明する。第1ピストン19の前
端部にはボルト31が螺着され、このボルト31
の頭部にはほゞコツプ形状のばね受け33が係合
し、軸部にはリング状のばね受け32が嵌合して
おり、これらばね受け32,33間にばね34が
圧縮状態で張設され、ばね受け33を第2ピスト
ン20の後端に、ばね受け32を第1ピストン1
9の前端に圧接させている。また第1ピストン1
9の前端部に形成される頭部としての小径部23
にはこれと当接して上述のカツプシール26が装
着され、他方第2ピストン20の後端大径部36
にもカツプシール38が装着されることにより第
1ピストン19と第2ピストン20との間に第1
液圧発生室40が形成される。なお、カツプシー
ル26の背後に位置して第1ピストン19の小径
部23には通孔30が形成され、補助圧力室27
の液圧力が第1液圧発生室40の液圧力より高い
場合には、作動液がこの通孔30を通りカツプシ
ール26のリツプ部分を開弁させて第1液圧発生
室40内に流入するように構成されている。第1
液圧発生室40から通孔30を通つて補助圧力室
27内に作動液が流入することはない。すなわ
ち、カツプシール26のリツプ部分と第1ピスト
ン19の小径部23の通孔30が形成される部分
とで逆止弁が構成される。
The stepped hole 5 of the cylinder body 2 consists of a large diameter hole 17 and a small diameter hole 18, and a first piston 19 is slidably fitted into the large diameter hole 17 and the small diameter hole 18. , a second piston 20 is provided in the small diameter hole portion 18.
are slidably fitted. The first piston 19 has a first large diameter part 21, a second large diameter part 22 (same diameter as the first large diameter part 21), and a small diameter part 23 at the rear end, middle part, and front end, respectively, and has a cup seal. 24,
25 and 26 are installed. Thus, an auxiliary pressure chamber 27 is formed between the second large diameter section 22 and the small diameter section 23, and an accumulator pressure chamber 28 is formed between the second large diameter section 22 and the first large diameter section 21. Ru. Further, a boosting pressure chamber 29 is formed between the first large diameter portion 21 and the lid 6. These auxiliary pressure chambers 27,
Of the accumulator pressure chamber 28 and booster pressure chamber 29, only the auxiliary pressure chamber 27 belongs to the master cylinder section 3, and the front half of the first piston 19 that defines this pressure chamber 27 is the master cylinder. Although it belongs to part 3, hereinafter referred to as this master cylinder part 3.
The details will be explained below. A bolt 31 is screwed onto the front end of the first piston 19.
A substantially spring-shaped spring receiver 33 is engaged with the head portion of the spring, and a ring-shaped spring receiver 32 is fitted with the shaft portion of the spring receiver 33. A spring 34 is tensioned in a compressed state between these spring receivers 32 and 33. The spring receiver 33 is located at the rear end of the second piston 20, and the spring receiver 32 is located at the rear end of the first piston 1.
It is pressed against the front end of 9. Also, the first piston 1
Small diameter portion 23 as a head formed at the front end of 9
The above-mentioned cup seal 26 is mounted in contact with this, and the rear end large diameter portion 36 of the second piston 20 is mounted on the other hand.
Since the cup seal 38 is attached to the first piston 19 and the second piston 20, the first
A hydraulic pressure generating chamber 40 is formed. Note that a through hole 30 is formed in the small diameter portion 23 of the first piston 19 located behind the cup seal 26, and a through hole 30 is formed in the small diameter portion 23 of the first piston 19.
When the hydraulic pressure in the first hydraulic pressure generating chamber 40 is higher than that in the first hydraulic pressure generating chamber 40, the hydraulic fluid passes through the through hole 30, opens the lip of the cup seal 26, and flows into the first hydraulic pressure generating chamber 40. It is configured as follows. 1st
No hydraulic fluid flows from the hydraulic pressure generating chamber 40 into the auxiliary pressure chamber 27 through the through hole 30. That is, the lip portion of the cup seal 26 and the portion of the small diameter portion 23 of the first piston 19 where the through hole 30 is formed constitute a check valve.

第2ピストン20の前端大径部35にもカツプ
シール37が装着され、これにより前端大径部3
5と後端大径部36との間に無圧室39が形成さ
れ、またこのピストン20とシリンダ本体2の底
壁部との間に第2液圧発生室41が形成される。
第2ピストン20はその前端部に嵌合するばね受
け48とシリンダ本体2の底壁部との間に張設さ
れた戻しばね47によつて右方に付勢されてい
る。なお、図示せずともシリンダ本体2には第1
液圧発生室40及び第2液圧発生室41の各々と
連通して出力口が形成され、これらは各々、管路
44,43、後述する第1電磁弁110,11
2、第2電磁弁111,113を介して後輪46
のホイールシリンダ46a、前輪45のホイール
シリンダ45aに接続される。なお、前輪45、
後輪46は各々一つしか図示しないが、他方の前
輪、後輪に対しても同様な構成をとつているもの
とする。
A cup seal 37 is also attached to the front end large diameter portion 35 of the second piston 20, so that the front end large diameter portion 35
A pressureless chamber 39 is formed between the piston 20 and the rear end large diameter portion 36, and a second hydraulic pressure generating chamber 41 is formed between the piston 20 and the bottom wall of the cylinder body 2.
The second piston 20 is biased to the right by a return spring 47 stretched between a spring receiver 48 fitted to the front end of the second piston 20 and the bottom wall of the cylinder body 2 . Note that the cylinder body 2 includes a first
An output port is formed in communication with each of the hydraulic pressure generating chamber 40 and the second hydraulic pressure generating chamber 41, and these are connected to pipe lines 44, 43, and first electromagnetic valves 110, 11, which will be described later.
2. Rear wheel 46 via second solenoid valves 111, 113
The wheel cylinder 46a of the front wheel 45 is connected to the wheel cylinder 45a of the front wheel 45. In addition, the front wheel 45,
Although only one rear wheel 46 is shown in the figure, it is assumed that the other front wheel and rear wheel have a similar configuration.

第2液圧発生室41と無圧室39との間にも上
述と同様な逆止弁が配設される。すなわち、カツ
プシール37の背後に位置して第2ピストン20
の前方大径部35には通孔42が形成され、無圧
室39の液圧力が第2液圧発生室41の液圧力よ
り高い場合には、作動液がこの通孔42を通りカ
ツプシール37のリツプ部分を開弁させて第2液
圧発生室41内に流入するように構成されてい
る。第2液圧発生室41から通孔42を通つて無
圧室39内に作動液が流入することはない。すな
わち、カツプシール37のリツプ部分と第2ピス
トン20の前方大部35の通孔42が形成される
部分とで逆止弁が構成される。
A check valve similar to that described above is also provided between the second hydraulic pressure generating chamber 41 and the pressureless chamber 39. That is, the second piston 20 is located behind the cup seal 37.
A through hole 42 is formed in the front large diameter portion 35 of the cup seal 37 , and when the hydraulic pressure in the no-pressure chamber 39 is higher than the hydraulic pressure in the second hydraulic pressure generating chamber 41 , the hydraulic fluid passes through this through hole 42 and closes the cup seal 37 . The liquid pressure is configured to flow into the second hydraulic pressure generating chamber 41 by opening the lip portion of the hydraulic pressure generating chamber 41 . No hydraulic fluid flows from the second hydraulic pressure generating chamber 41 into the pressureless chamber 39 through the through hole 42 . That is, the lip portion of the cup seal 37 and the portion of the large front portion 35 of the second piston 20 where the through hole 42 is formed constitute a check valve.

シリンダ本体2の前端部分の上壁部にはボス部
51が形成され、その液接続孔52は通常の図示
するブレーキ非作動時には戻し孔50を介して第
2液圧発生室41と連通しており、補給孔49を
介して無圧室39と常時連通している。また、液
接続孔52にはグロメツトシール53を介してリ
ザーバ継手54の筒部55が圧入されており、固
定部材58とグロメツトシール53との間にその
フランジ部を介在させ、固定部材58の下方突出
部58aをボス部52の横方向突出部51aにビ
ス59により固定させることによりリザーバ継手
54はシリンダ本体2に固持される。リザーバ継
手54のゴム管接続部56には点線で示すように
ゴム管が接続されて、点57で示されているリザ
ーバに連通している。
A boss portion 51 is formed on the upper wall of the front end portion of the cylinder body 2, and its fluid connection hole 52 communicates with the second fluid pressure generating chamber 41 through the return hole 50 when the brake shown in the figure is not in operation. and is constantly in communication with the pressureless chamber 39 via the supply hole 49. Further, a cylindrical portion 55 of a reservoir joint 54 is press-fitted into the liquid connection hole 52 via a grommet seal 53, and its flange portion is interposed between the fixing member 58 and the grommet seal 53. The reservoir joint 54 is fixed to the cylinder body 2 by fixing the downward protrusion 58a to the lateral protrusion 51a of the boss portion 52 with a screw 59. A rubber tube is connected to the rubber tube connection portion 56 of the reservoir joint 54 as shown by the dotted line, and communicates with the reservoir shown at a point 57.

シリンダ本体2の中間部分の上壁部には上述の
ボス部51より高いボス部62が形成され、その
液接続孔63の下部には第2図に詳細が示される
複弁装置64が配設され、この下方の底孔部65
は戻し孔61を介して第1液圧発生室40と連通
しており、補給孔60を介して補助圧力室27と
常時連通している。また、液接続孔63の上部に
はグロメツトシール66を介してリザーバ継手6
7の筒部68が圧入されており、上述の固定部材
58とグロメツトシール66との間にそのフラン
ジ部を介在させ、固定部材58の下方突出部58
aをボス部52の横方向突出部51aにビス59
により固定させることによりリザーバ継手67は
シリンダ本体2に固持される。すなわち、固定部
材58は両リザーバ継手54,67の共通の固持
手段である。リザーバ継手67のゴム管接続部6
9には点線で示すようにゴム管が接続されて、点
57で示されているリザーバに連通している。リ
ザーバ継手67に関しては内孔70が図示されて
いるが、他方のリザーバ継手54も同様な形状を
有し、同様な内孔を備えている。またリザーバ継
手54,67のフランジ部には一方のリザーバ継
手67に関し図示するように複数の突起71が形
成され、これが固定部材58の複数の凹所に係合
することにより、両リザーバ継手54,67は堅
固にシリンダ本体2に固持される。
A boss portion 62 higher than the above-mentioned boss portion 51 is formed on the upper wall of the intermediate portion of the cylinder body 2, and a multiple valve device 64 whose details are shown in FIG. 2 is disposed below the liquid connection hole 63. This lower bottom hole 65
is in communication with the first hydraulic pressure generating chamber 40 via the return hole 61, and is always in communication with the auxiliary pressure chamber 27 via the supply hole 60. In addition, a reservoir joint 6 is connected to the upper part of the liquid connection hole 63 via a grommet seal 66.
The cylindrical portion 68 of No. 7 is press-fitted, and its flange portion is interposed between the fixing member 58 and the grommet seal 66, and the downward protruding portion 58 of the fixing member 58 is
a to the lateral protrusion 51a of the boss portion 52 with the screw 59.
By fixing the reservoir joint 67 to the cylinder body 2, the reservoir joint 67 is fixed to the cylinder body 2. That is, the fixing member 58 is a common fixing means for both reservoir joints 54 and 67. Rubber pipe connection part 6 of reservoir joint 67
A rubber tube is connected to 9 as shown by the dotted line and communicates with the reservoir shown at point 57. Although a bore 70 is shown for reservoir joint 67, the other reservoir joint 54 has a similar shape and includes a similar bore. Further, a plurality of protrusions 71 are formed on the flange portions of the reservoir joints 54 and 67 as shown in the figure for one reservoir joint 67, and by engaging with a plurality of recesses of the fixing member 58, both reservoir joints 54, 67 is firmly fixed to the cylinder body 2.

次に、ボス部62内の下部に配設される複弁装
置64の詳細について第2図を参照して説明す
る。
Next, details of the multiple valve device 64 disposed in the lower part of the boss portion 62 will be explained with reference to FIG. 2.

この弁装置64は第1弁部72と第2弁部73
とから成り、これら弁部72,73は弁本体74
を共通にしている。弁本体74にはばね受け78
が外縁部に嵌着され、該ばね受け78と係合する
ストツプリング82と、弁本体74の下方テーパ
部64aと圧接するシールリング80とによつて
弁装置64全体が液密にボス部62の液接続孔6
3に対して固着される。ばね受け78と弁本体7
4との間には第1弁室79が形成され、この弁室
79内で球弁76が弁本体74に形成される弁座
74cに着座している。球弁76はばね受け78
と弁本体74の間に張設される板ばね77によつ
て弁座74cへと付勢されている。また弁本体7
4の中央部には第1通孔74aが形成され、この
通孔74aは弁本体74の下方に形成される第2
弁室としての底孔部65と連通しており、通常の
図示する状態では球弁76によつて第1弁室79
との連通が遮断されている。
This valve device 64 includes a first valve portion 72 and a second valve portion 73.
These valve parts 72 and 73 are comprised of a valve body 74.
are common. A spring receiver 78 is provided on the valve body 74.
The entire valve device 64 is fluid-tightly secured to the boss portion 62 by a stop ring 82 which is fitted to the outer edge and engages with the spring receiver 78, and a seal ring 80 which is in pressure contact with the lower tapered portion 64a of the valve body 74. Liquid connection hole 6
Fixed to 3. Spring receiver 78 and valve body 7
A first valve chamber 79 is formed between the valve body 4 and the valve body 74, and within this valve chamber 79, a ball valve 76 is seated on a valve seat 74c formed in the valve body 74. Ball valve 76 is spring receiver 78
A leaf spring 77 stretched between the valve body 74 and the valve body 74 biases the valve seat 74c toward the valve seat 74c. Also, the valve body 7
A first through hole 74a is formed in the center of the valve body 74, and this through hole 74a is connected to a second through hole 74a formed below the valve body 74.
It communicates with a bottom hole 65 serving as a valve chamber, and in the normal illustrated state, a first valve chamber 79 is connected by a ball valve 76.
Communication with has been cut off.

弁本体74において第1通孔74aの周囲には
更に複数の第2通孔74bが形成され、これらは
第1弁室79と連通しており、通常は弁本体74
の下端部に止着されたゴム弁部材81によつて第
2弁室としての底孔部65との連通は遮断されて
いる。以上のようにして第1弁部72は球弁7
6、弁本体74、弁座74c、板ばね77によつ
て構成され、他方第2弁部73は弁本体74及び
ゴム弁部材81によつて構成される。
A plurality of second through holes 74b are further formed around the first through hole 74a in the valve body 74, and these communicate with the first valve chamber 79, and normally the valve body 74
Communication with the bottom hole 65 serving as the second valve chamber is blocked by a rubber valve member 81 fixed to the lower end of the valve chamber. As described above, the first valve portion 72 is connected to the ball valve 7.
6, the valve body 74, the valve seat 74c, and the leaf spring 77;

第1弁室79はばね受け78の中心開口78a
を介してリザーバ側と常時連通しており、他方第
2弁室としての底孔部65は上述したように戻し
孔61及び補給孔60を介して上述のシリンダ本
体2のシリンダ孔内と連通している。また弁本体
74の下端周縁部には絞り溝74dが形成され、
第1弁室79と第2弁室としての底孔部65とは
絞り溝74d及び第2通孔74bを介しては常時
連通している。
The first valve chamber 79 is a central opening 78a of the spring receiver 78.
The bottom hole portion 65 serving as the second valve chamber communicates with the inside of the cylinder hole of the cylinder body 2 through the return hole 61 and the supply hole 60 as described above. ing. Further, a throttle groove 74d is formed in the lower end peripheral portion of the valve body 74,
The first valve chamber 79 and the bottom hole portion 65 serving as the second valve chamber are always in communication via the throttle groove 74d and the second through hole 74b.

第2弁室としての底孔部65の圧力が第1弁室
79の圧力より所定値以上高くなると第1弁部7
2が開弁し、第2弁室としての底孔部65と第1
弁室79とは自由な連通状態となる。この開弁圧
力は板ばね77の強さや、弁座74に対する球弁
76の着座面積などによつて決定される。また第
2弁部73の開弁圧力は充分に小さく、リザーバ
と連通する第1弁室79の圧力より第2弁室とし
ての底孔部65の圧力が所定値以上小さくなる
と、すなわち第2弁室としての底孔部65が負圧
になると開弁するように構成されている。
When the pressure in the bottom hole 65 serving as the second valve chamber becomes higher than the pressure in the first valve chamber 79 by a predetermined value or more, the first valve chamber 7
2 opens, and the bottom hole 65 as the second valve chamber and the first
It is in free communication with the valve chamber 79. This valve opening pressure is determined by the strength of the leaf spring 77, the seating area of the ball valve 76 with respect to the valve seat 74, etc. Further, the opening pressure of the second valve part 73 is sufficiently small, and when the pressure in the bottom hole part 65 as the second valve chamber is lower than the pressure in the first valve chamber 79 communicating with the reservoir by a predetermined value or more, that is, the second valve part 73 is opened. The valve is configured to open when the bottom hole 65 as a chamber becomes negative pressure.

次に倍力装置部4の詳細について再び第1図を
参照して説明する。
Next, details of the booster section 4 will be explained with reference to FIG. 1 again.

第1ピストン19は倍力装置部4においても主
たる構成の一つであるが、この後側々周部に形成
される上述のアキユムレータ圧室28の上方に位
置してシリンダ本体2にはボス部83が形成さ
れ、これに接続部材84が螺着される。ボス部8
3内には球弁85と弁ばね86から成る逆止弁が
配設され、上方から下方へ向う方向を順方向と
し、通孔83aを介して、接続部材84に接続さ
れる管路87側はアキユムレータ圧室28と連通
可能となつている。管路87にはアキユムレータ
88が接続され、管路89、逆止弁90を介して
液圧ポンプ91の吐出口が接続されている。逆止
弁90は液圧ポンプ91の吐出口側から管路87
側に向う方向を順方向としている。また液圧ポン
プ91はモータ92によつて駆動され、その吸込
口は点線で示す管路93を介して点として図示さ
れるリザーバ57に接続される。すなわち、リザ
ーバ57は上述のマスタシリンダ部3及び倍力装
置部4に対し作動液の共通のリザーバとして働ら
く。更に後述するようにアンチスキツド配管部1
30に対するリザーバとしても働らく。
The first piston 19 is also one of the main components of the booster section 4, and is located above the above-mentioned accumulator pressure chamber 28 formed on the rear and side circumferential portions, and has a boss portion in the cylinder body 2. 83 is formed, and a connecting member 84 is screwed onto this. Boss part 8
A check valve consisting of a ball valve 85 and a valve spring 86 is disposed inside 3, and the forward direction is from the upper side to the lower side, and the side of the pipe line 87 is connected to the connecting member 84 through the through hole 83a. can communicate with the accumulator pressure chamber 28. An accumulator 88 is connected to the conduit 87, and a discharge port of a hydraulic pump 91 is connected via a conduit 89 and a check valve 90. The check valve 90 is connected to the pipe line 87 from the discharge port side of the hydraulic pump 91.
The direction toward the side is defined as the forward direction. The hydraulic pump 91 is also driven by a motor 92, and its suction port is connected to the reservoir 57, shown as a dot, via a conduit 93 shown in dotted lines. That is, the reservoir 57 serves as a common reservoir of hydraulic fluid for the master cylinder section 3 and booster section 4 described above. Furthermore, as will be described later, the anti-skid piping section 1
It also works as a reservoir for 30.

第1ピストン19の後部には軸方向に段付孔9
4が形成され、この中径孔部95及び大径孔部9
6にわたつて可動弁体97が摺動自在に挿入され
ている。可動弁体97は段付の円筒形状で前方か
ら順に柱状部97d、段部としての環状突起部9
7a、減径部97e及び後端部97fとで形成さ
れ、環状突起部97aは段部であるので、柱状部
97dの外形より径が大きく外方に突出し、その
後方の減径部97eは柱状部97d、後端部97
fの外形よりも径が小さく形成されており、その
前方端側の柱状部97dがシールリング99を介
して中径孔部95に嵌合している。段付孔94の
前端の小径孔部121は軸方向通孔122を介し
て補助圧力室27と連通している。可動弁体97
の前端と段付孔94の小径孔部121と中径孔部
95との間の段部との間にはゴムリング102が
介在させられ、また可動弁体97には軸方向に段
付孔94の小径孔部121と整列連通する貫通孔
97cが形成されている。段付孔94の中径孔部
95と大径孔部96との間の段部に当接してばね
受けリング98が配設され、これと可動弁体97
の外周部に形成される環状突起部97aとの間に
弁ばね100が張設され、可動弁体97を後方へ
と付勢している。
A stepped hole 9 is provided in the rear part of the first piston 19 in the axial direction.
4 is formed, and this medium diameter hole portion 95 and large diameter hole portion 9
A movable valve body 97 is slidably inserted over 6. The movable valve body 97 has a stepped cylindrical shape and includes, in order from the front, a columnar portion 97d and an annular protrusion 9 as a stepped portion.
7a, a reduced diameter portion 97e, and a rear end portion 97f, and the annular protrusion 97a is a stepped portion, so it has a larger diameter than the outer shape of the columnar portion 97d and protrudes outward, and the reduced diameter portion 97e at the rear thereof has a columnar shape. portion 97d, rear end portion 97
The diameter is smaller than the outer shape of f, and the columnar part 97d on the front end side fits into the medium diameter hole part 95 via the seal ring 99. A small diameter hole portion 121 at the front end of the stepped hole 94 communicates with the auxiliary pressure chamber 27 via an axial through hole 122 . Movable valve body 97
A rubber ring 102 is interposed between the front end of the stepped hole 94 and the step between the small diameter hole 121 and the medium diameter hole 95, and the movable valve body 97 has a stepped hole in the axial direction. A through hole 97c is formed which is aligned and communicates with the small diameter hole portion 121 of 94. A spring receiving ring 98 is disposed in contact with the step between the medium diameter hole 95 and the large diameter hole 96 of the stepped hole 94, and the movable valve body 97
A valve spring 100 is stretched between the movable valve body 97 and an annular protrusion 97a formed on the outer periphery of the movable valve body 97, and urges the movable valve body 97 rearward.

第1ピストン19の段付孔94の後端開口部に
はスリーブ104がシールリング103を装着し
て嵌着しており、これはストツパー105により
抜け止めされている。可動弁体97の後端部はス
リーブ104の内孔に嵌合して摺動自在となつて
おり、ゴムシート106を装着させた後端面は入
力部材9の前端面に形成された環状突起107と
通常の図示する装置非作動時には所定の距離をお
いて対向している。すなわち、可動弁体97はそ
の環状突起部97aがスリーブ104の前端部に
凹所内径方向に膨出して形成される内方フランジ
部104aと当接することにより、その第1ピス
トン19に対する相対的な後方位置が規制され
る。
A sleeve 104 is fitted with a seal ring 103 into the rear end opening of the stepped hole 94 of the first piston 19, and is prevented from coming off by a stopper 105. The rear end of the movable valve body 97 fits into the inner hole of the sleeve 104 and is slidable, and the rear end surface to which the rubber sheet 106 is attached is an annular protrusion 107 formed on the front end surface of the input member 9. and are opposed to each other at a predetermined distance when the illustrated device is not in operation. That is, the annular projection 97a of the movable valve body 97 comes into contact with the inner flange 104a formed at the front end of the sleeve 104 by bulging in the inner diameter direction of the recess, so that the movable valve body 97 changes relative to the first piston 19. Rear position is restricted.

段付孔94の大径孔部96内において可動弁体
97の中間部の周りには入力室aが形成され、こ
れは第1ピストン19に形成された通孔101を
介してアキユムレータ圧室28と常時連通してい
る。またスリーブ104内において可動弁体97
の後端部の周りには連絡室bが形成され、これは
可動弁体97の後端部外周の溝97b、入力部材
9の前端部外周の溝109を介して倍力用圧力室
29と常時連通している。可動弁体97の環状突
起部97aとスリーブ104の内方フランジ部1
04aとにより供給弁が構成され、すなわち、内
方フランジ部104aが弁座を形成させ、図示の
状態では閉じているが、これが開くと入力室aと
連絡室b、すなわち倍力用圧力室29とは連通す
る。また、可動弁体97の後端面のゴムシート1
06と入力部材9の前端の環状突起107とによ
り排出弁が構成され、図示の状態では開いて、可
動弁体97の軸方向通孔97c及び第1ピストン
19の段付孔94の小径孔部121、径方向貫通
孔122補助圧力室27を介してリザーバ側と倍
力用圧力室29側とは連通しているが、これが閉
じるとこれらの間の連通は遮断される。入力部材
9は上述したようにばね10により後方へと付勢
されているが、スリーブ104の後端開口部に止
着されたストツパー108により、その後方位置
が規制されている。
An input chamber a is formed around the middle portion of the movable valve body 97 in the large diameter hole portion 96 of the stepped hole 94, and is connected to the accumulator pressure chamber 28 through a through hole 101 formed in the first piston 19. I am in constant communication with. Also, within the sleeve 104, the movable valve body 97
A communication chamber b is formed around the rear end, and this communicates with the boosting pressure chamber 29 via a groove 97b on the outer periphery of the rear end of the movable valve body 97 and a groove 109 on the outer periphery of the front end of the input member 9. We are in constant communication. Annular protrusion 97a of movable valve body 97 and inner flange 1 of sleeve 104
04a constitutes a supply valve, that is, the inner flange portion 104a forms a valve seat, which is closed in the illustrated state, but when opened, the input chamber a and the communication chamber b, that is, the boosting pressure chamber 29 communicate with. In addition, the rubber sheet 1 on the rear end surface of the movable valve body 97
06 and the annular protrusion 107 at the front end of the input member 9 constitute a discharge valve, which is opened in the illustrated state to open the axial passage hole 97c of the movable valve body 97 and the small diameter hole portion of the stepped hole 94 of the first piston 19. The reservoir side and the boosting pressure chamber 29 side communicate with each other via the radial through hole 122 and the auxiliary pressure chamber 27, but when this is closed, the communication between them is cut off. As described above, the input member 9 is biased rearward by the spring 10, but its rear position is restricted by the stopper 108 fixed to the rear end opening of the sleeve 104.

次に、以上のように構成される液圧式倍力装置
付マスタシリンダ1と前輪45、後輪46との間
に配管接続されるアンチスキツド配管部130に
ついて説明する。
Next, an explanation will be given of the anti-skid piping section 130 which is connected by piping between the master cylinder 1 with a hydraulic booster configured as described above and the front wheels 45 and rear wheels 46.

マスタシリンダ部3の第2液圧発生室41、第
1液圧発生室40はそれぞれ管路43,44を介
して第1電磁弁110,112に接続される。こ
の第1電磁弁110,112と前輪45、後輪4
6のホイールシリンダ45a,46aとの間に第
2電磁弁111,113が接続される。また、第
1電磁弁110,112と第2電磁弁111,1
13とを結ぶ管路に、逆止弁118,119管路
123,124を介して第3電絞弁117が接続
される。第3電磁弁117の入口は管路120を
介して倍力装置部4の圧力室29に接続される。
また、第2電磁弁111,113の排出口はそれ
ぞれ第4電磁弁114,115、管路116を介
してリザーバ57に接続される。
The second hydraulic pressure generating chamber 41 and the first hydraulic pressure generating chamber 40 of the master cylinder section 3 are connected to first electromagnetic valves 110 and 112 via conduits 43 and 44, respectively. These first solenoid valves 110, 112, front wheels 45, rear wheels 4
Second electromagnetic valves 111 and 113 are connected between the six wheel cylinders 45a and 46a. In addition, the first solenoid valves 110, 112 and the second solenoid valves 111, 1
A third electric throttle valve 117 is connected to the conduit connecting 13 through check valves 118 and 119 and conduits 123 and 124. The inlet of the third solenoid valve 117 is connected to the pressure chamber 29 of the booster section 4 via a conduit 120.
Furthermore, the discharge ports of the second solenoid valves 111 and 113 are connected to the reservoir 57 via fourth solenoid valves 114 and 115 and a conduit 116, respectively.

第1、第2、第3及び第4電磁弁110,11
2,111,113,117,114,115は
2位置電磁弁でそれぞれのソレノイド110a,
112a,111a,113a,117a,11
4a,115aが励磁されるが、励磁されないか
によつて2つの状態をとることができる。図示せ
ずともアンチスキツド制御回路の各出力端子がソ
レノイド110a,112a,111a,113
a,117a,114a,115aに接続されて
おり、“1”なる出力で各ソレノイドは励磁され、
“0”なる出力では各ソレノイドは励磁されない。
前輪45、後輪46に装着されたホイール・スピ
ード・センサーの車輪速度検出信号に基づいてア
ンチスキツド制御回路は車輪のスキツド状態を判
断し、ブレーキを込めるべきか、ゆるめるべき
か、又は一定に保持すべきかを決定する。この決
定に応じて、各出力端子に選択的に“1”又は
“0”なる出力が発生する。
First, second, third and fourth solenoid valves 110, 11
2, 111, 113, 117, 114, and 115 are 2-position solenoid valves, and each solenoid 110a,
112a, 111a, 113a, 117a, 11
4a and 115a are energized, but can take two states depending on whether they are energized or not. Although not shown, each output terminal of the anti-skid control circuit is connected to solenoids 110a, 112a, 111a, 113.
a, 117a, 114a, and 115a, and each solenoid is energized by an output of “1”.
With an output of "0", each solenoid is not energized.
Based on wheel speed detection signals from wheel speed sensors mounted on the front wheels 45 and rear wheels 46, the anti-skid control circuit determines the skid condition of the wheels and determines whether the brakes should be applied, loosened, or held constant. Decide on the strength. Depending on this determination, an output of "1" or "0" is selectively generated at each output terminal.

第1電磁弁110,112及び第4電磁弁11
5は、いわゆる「オン・オフ」型の弁であつてソ
レノイド110a,112a,115aが励磁さ
れないときは図示のA状態をとり、入口と出口と
が連通状態とされる。またソレノイド110a,
112a,115aが励磁されるとB状態をと
り、入口と出口とが非連通とされる。第2電磁弁
111,113及び第3電磁弁117はいわゆる
「3ポート弁」で、入出口、排出口を有し、それ
ぞれのソレノイド11a,113a,117aが
励磁されないときは図示のC,Eの状態をとる。
すなわち、第2電磁弁111,113では第1電
磁弁110,112側と前、後輪45,46のホ
イールシリンダ45a,46aとが連通状態にお
かれ、第3電磁弁117では逆止弁118,11
9側とリザーバ57側とが連通状態におかれてい
るが、入口と出口、すなわち管路120側と逆止
弁118,119側とは非連通の状態におかれて
いる。ソレノイド111a,113aが励磁され
ると第2電磁弁111,113はDの状態をと
り、入口と出口とは遮断されるが、出口と排出口
とが連通する。すなわち、前後輪45,46のホ
イールシリンダ45a,46a側と第4電磁弁1
14,115側とが連通するようになる。また、
ソレノイド117aが励磁されると第3電磁弁1
17はFの状態をとり、入口と出口とが連通状態
におかれる。すなわち、逆止弁118,119側
と管路120側とが連通させられる。なお、逆止
弁118,119は第3電磁弁118,119側
から第1、第2電磁弁110,112,111,
113間の管路側に向う方向を順方向としてい
る。
First solenoid valves 110, 112 and fourth solenoid valve 11
Reference numeral 5 denotes a so-called "on-off" type valve, which takes the illustrated state A when the solenoids 110a, 112a, and 115a are not energized, and the inlet and outlet are in communication. Also, the solenoid 110a,
When 112a and 115a are excited, they assume the B state, and the inlet and outlet are out of communication. The second solenoid valves 111, 113 and the third solenoid valve 117 are so-called "3-port valves" and have an inlet and an outlet, and an outlet, and when the respective solenoids 11a, 113a, 117a are not excited, the take a state.
That is, in the second solenoid valves 111 and 113, the first solenoid valves 110 and 112 are placed in communication with the wheel cylinders 45a and 46a of the front and rear wheels 45 and 46, and in the third solenoid valve 117, the check valve 118 is placed in communication. ,11
Although the 9 side and the reservoir 57 side are in communication, the inlet and the outlet, that is, the pipe line 120 side and the check valves 118 and 119 side are in a non-communicating state. When the solenoids 111a and 113a are energized, the second electromagnetic valves 111 and 113 take the state D, and the inlet and the outlet are cut off, but the outlet and the discharge port are in communication. That is, the wheel cylinders 45a, 46a side of the front and rear wheels 45, 46 and the fourth solenoid valve 1
14 and 115 side come into communication. Also,
When the solenoid 117a is excited, the third solenoid valve 1
17 assumes state F, and the inlet and outlet are placed in communication. That is, the check valves 118, 119 side and the pipe line 120 side are communicated. Note that the check valves 118, 119 are connected from the third solenoid valve 118, 119 side to the first, second solenoid valves 110, 112, 111,
The direction toward the pipe line between 113 and 113 is defined as the forward direction.

本発明の実施例による液圧式倍力装置付タンデ
ムマスタシリンダは以上のように構成されるが、
次にこの作用、効果などについて説明する。
The tandem master cylinder with hydraulic booster according to the embodiment of the present invention is configured as described above,
Next, this action, effect, etc. will be explained.

ブレーキ非作動時には、各部分は図示する状態
にある。この状態で運転手が図示しないブレーキ
ペダルを踏み込むと、連結部材12は前進し、入
力部材9を押動させる。入力部材9の先端の環状
突起107が可動弁体97の先端のゴムシート1
06に着座する。すなわち、排出弁が閉じ圧力室
29とリザーバ側とは非連通の状態におかれる。
入力部材9が更に前進すると可動弁体97は弁ば
ね100及びゴムリング102の弾性力に抗して
第1ピストン19に対し相対的に左方へ移動し、
その環状突起部97aはスリーブ104の内方フ
ランジ部104aから離座する。すなわち、供給
弁が開き、入力室aから圧液が連絡室b、可動弁
体97の外周の溝97b及び入力部材9の外周の
溝109を通つて圧力室29内に流入する。これ
により第1ピストン19はその第1大径部21の
右端面で液圧力を受圧して左方への移動力が生ず
る。なお、車両の走行開始と共に、またはブレー
キの作動開始と共にモータ92が駆動し、液圧ポ
ンプ91を作動させているものとする。アキユム
レータ98には所定の圧力で圧液が蓄圧される。
これは球弁85を介してアキユムレータ圧室28
内に供給されている。入力室aには通孔101を
介してアキユムレータ圧室28の圧力が常時加え
られている。
When the brake is not activated, each part is in the state shown. When the driver depresses a brake pedal (not shown) in this state, the connecting member 12 moves forward and pushes the input member 9. The annular projection 107 at the tip of the input member 9 is connected to the rubber sheet 1 at the tip of the movable valve body 97.
Seated in 06. That is, the discharge valve is closed and the pressure chamber 29 and the reservoir side are placed in a non-communicating state.
When the input member 9 moves further forward, the movable valve body 97 moves to the left relative to the first piston 19 against the elastic force of the valve spring 100 and the rubber ring 102.
The annular projection 97a is separated from the inner flange 104a of the sleeve 104. That is, the supply valve opens, and pressure fluid flows from the input chamber a into the pressure chamber 29 through the communication chamber b, the groove 97b on the outer periphery of the movable valve body 97, and the groove 109 on the outer periphery of the input member 9. As a result, the first piston 19 receives hydraulic pressure at the right end surface of its first large diameter portion 21, and a force for moving it to the left is generated. It is assumed that the motor 92 is driven and the hydraulic pump 91 is operated when the vehicle starts running or when the brake starts operating. Pressure liquid is accumulated in the accumulator 98 at a predetermined pressure.
This is connected to the accumulator pressure chamber 28 via the ball valve 85.
Supplied within. The pressure of the accumulator pressure chamber 28 is constantly applied to the input chamber a through the through hole 101.

第1ピストン19の前進と共に入力部材9も前
進し、排出弁は閉じたまゝである。第1ピストン
19の小径部23に装着されたカツプシール26
が戻し孔61を通過すると、第1液圧発生室40
はリザーバ側に対して密閉状態となるが、ホイー
ルシリンダ側の液ロス分を補償するために第1液
圧発生室40の圧力は前進し始めにおいては殆ん
ど上昇しない。他方、補助圧力室27の圧力が第
1ピストン19の前進と共に増大し、補助圧力室
27と第1液圧発生室40との圧力差により作動
液が第1ピストン19の小径部23の通孔30を
通り、カツプシール26のリツプ部を変形させ
て、第1液圧発生室40内に流入する。これによ
り第1液圧発生室40の出力口に接続されるホイ
ールシリンダ側の液ロス分が急速に補償される。
As the first piston 19 advances, the input member 9 also advances, and the discharge valve remains closed. Cup seal 26 attached to small diameter portion 23 of first piston 19
passes through the return hole 61, the first hydraulic pressure generating chamber 40
is in a sealed state with respect to the reservoir side, but the pressure in the first hydraulic pressure generating chamber 40 hardly increases at the beginning of forward movement in order to compensate for the liquid loss on the wheel cylinder side. On the other hand, the pressure in the auxiliary pressure chamber 27 increases as the first piston 19 advances, and the pressure difference between the auxiliary pressure chamber 27 and the first hydraulic pressure generating chamber 40 causes the hydraulic fluid to flow through the through hole of the small diameter portion 23 of the first piston 19. 30, deforms the lip portion of the cup seal 26, and flows into the first hydraulic pressure generating chamber 40. As a result, the fluid loss on the wheel cylinder side connected to the output port of the first fluid pressure generating chamber 40 is rapidly compensated for.

補助圧力室27内の圧力が第1弁部72の開弁
圧力に達すると、補助圧力室27内の作動液は補
給孔60第2弁室としての底孔部65、通孔74
a、球弁76と弁座74cとの〓間、第1弁室7
9を通つてリザーバ側に導かれる。更に第1ピス
トン19が前進すると、すでにホイールシリンダ
側の液ロス分は補償されているので第1液圧発生
室40、すなわちこれに接続されるホイールシリ
ンダ側の圧力は急上昇する。第2ピストン20も
第1ピストン19と共に前進するが、第1ピスト
ン19がわずか前進した後に第1液圧発生室40
内の圧力が急上昇し始めるので、第2ピストン2
0の前後の圧力差も加わつて第1ピストン19と
共に迅速に前進しホイールシリンダ側の液ロス分
が補償されて第1液圧発生室40と殆んど同時に
第2液圧発生室41の圧力は急上昇し始め、第
1、第2液圧発生室40,41の液圧は同等に上
昇して行く。かくて車両に所望のブレーキがかけ
られる。
When the pressure in the auxiliary pressure chamber 27 reaches the opening pressure of the first valve part 72, the hydraulic fluid in the auxiliary pressure chamber 27 flows through the supply hole 60, the bottom hole part 65 as the second valve chamber, and the through hole 74.
a, between the ball valve 76 and the valve seat 74c, the first valve chamber 7
9 to the reservoir side. When the first piston 19 moves further forward, the pressure in the first hydraulic pressure generating chamber 40, that is, in the wheel cylinder connected thereto, increases rapidly, since the liquid loss on the wheel cylinder side has already been compensated for. The second piston 20 also moves forward together with the first piston 19, but after the first piston 19 moves forward slightly, the first hydraulic pressure generating chamber 40
As the pressure inside begins to rise rapidly, the second piston 2
In addition to the pressure difference before and after 0, the first piston 19 moves forward quickly, compensating for the fluid loss on the wheel cylinder side, and the pressure in the second fluid pressure generating chamber 41 increases almost simultaneously with that in the first fluid pressure generating chamber 40. begins to rise rapidly, and the hydraulic pressures in the first and second hydraulic pressure generating chambers 40, 41 rise equally. In this way, the desired brake can be applied to the vehicle.

所望のブレーキがかけられている状態では入力
部材9に連結部材12を介して加えられている入
力Fと圧力室29に導入された液圧Paが入力部
材9に及ぼす力とが釣り合い、また、液圧Paが
第1ピストン19の右端面に及ぼす力と第1液圧
発生室40の発生液圧Pmが第1ピストン19の
左端面に及ぼす力とが釣合つて、第1ピストン1
9は停止し、供給弁も閉じるに至つている。すな
わち、可動弁体97の環状突起部97aはスリー
ブ104の内方フランジ部104aに当接してお
り、圧力室29には上述の一定の液圧Paが導入
されている。
When the desired brake is applied, the input F applied to the input member 9 via the connecting member 12 and the force exerted on the input member 9 by the hydraulic pressure Pa introduced into the pressure chamber 29 are balanced, and When the force exerted by the hydraulic pressure Pa on the right end surface of the first piston 19 and the force exerted on the left end surface of the first piston 19 by the hydraulic pressure Pm generated in the first hydraulic pressure generation chamber 40 are balanced, the first piston 1
9 has stopped and the supply valve has also closed. That is, the annular projection 97a of the movable valve body 97 is in contact with the inner flange 104a of the sleeve 104, and the above-mentioned constant hydraulic pressure Pa is introduced into the pressure chamber 29.

すなわち、以上の釣合い状態では次の等式が成
立する。
That is, in the above balanced state, the following equation holds true.

F=Pa(S4−S3) ……(1) Pm×Sm=Pa×Sa ……(2) こゝで、S4は入力部材9の後端大径部9aの断
面積、S3は入力部材9の先端部の環状突起107
のゴムシート106への着座面積、Smは第1ピ
ストン19の小径部23の断面積、及びSaは第
1ピストン19の第1大径部21が嵌合する大径
孔部17の断面積Sから前記S3を差し引いた(S
−S3)をそれぞれ表わすものとする。
F=Pa( S4 - S3 )...(1) Pm×Sm=Pa×Sa...(2) Here, S4 is the cross-sectional area of the large diameter portion 9a at the rear end of the input member 9, and S3 is an annular projection 107 at the tip of the input member 9
Sm is the cross-sectional area of the small-diameter portion 23 of the first piston 19, and Sa is the cross-sectional area S of the large-diameter hole 17 into which the first large-diameter portion 21 of the first piston 19 fits. The above S 3 is subtracted from (S
−S 3 ) respectively.

上記(1),(2)式から Pm=Sa/Sm×F/S4−S3=S−S3/Sm×F/S4−S3 倍力装置部4を用いない場合の入力Fに対する
第1液圧発生室40の液圧をPm′とすれば、
Pm′=F/Smであるので、次の等式が成立する。
From equations (1) and (2) above, Pm=Sa/Sm×F/S 4 −S 3 =S−S 3 /Sm×F/S 4 −S 3 Input F when booster section 4 is not used If the hydraulic pressure in the first hydraulic pressure generating chamber 40 is Pm',
Since Pm'=F/Sm, the following equation holds.

Pm′/Pm′=S−S3/S4−S3 Pm'/Pm'=S- S3 / S4 - S3 .

図から明らかにS>S4であるので、倍力化され
ていることがわかる。
From the figure, it is clear that S>S 4 , so it can be seen that the power is doubled.

ブレーキをゆるめるべく運転手がブレーキペダ
ルを元に戻すと、入力部材9は圧力室29の液圧
及びばね10のばね力を受けて右方へと復動す
る。これにより先端の環状突起107が可動弁体
97のゴムシート106から離座する。すなわ
ち、排出弁が開く。圧力室29の圧液は入力部材
9の先端部の外周の溝109、可動弁体97の通
孔97c及び径方向貫通孔122を通つて補助圧
力室27内へと流入する。
When the driver releases the brake pedal to release the brake, the input member 9 moves back to the right under the hydraulic pressure in the pressure chamber 29 and the spring force of the spring 10. As a result, the annular projection 107 at the tip is separated from the rubber sheet 106 of the movable valve body 97. That is, the discharge valve opens. The pressure liquid in the pressure chamber 29 flows into the auxiliary pressure chamber 27 through the groove 109 on the outer periphery of the tip of the input member 9, the through hole 97c of the movable valve body 97, and the radial through hole 122.

圧力室29の圧力の減少と共に、第1液圧発生
室40の液圧及びリターンスプリング47のばね
力を受けて第1ピストン19及び第2ピストン2
0は右方へと復動し始める。第1ピストン19の
復動により補助圧力室27の圧力が負圧になろう
とするが、これは圧力室29及びリザーバ57か
らの作動液の流入により補償される。他方、第1
液圧発生室40も負圧になろうとするが、補助圧
力室27内に流入した作動液は部分的に更に第1
ピストン19の小径部23の通孔30を通り、カ
ツプシール26の外縁部をたわませて第1液圧発
生室40に流入する。よつて負圧を補償する。第
2液圧発生室41も負圧になろうとするが、この
室41内には補給孔49、第2ピストン20の大
径部35の通孔42を通り、カツプシール37の
外縁部をたわませてリザーバ側から作動液が流入
する。よつて負圧を補償する。圧力室29の圧力
が零となり、第2弁部73が閉弁した後は、絞り
溝74dを通つて徐々に補助圧力室27内に作動
液が流入し、かくて補助圧力室27、第1液圧発
生室40及び第2液圧発生室41の圧力は零とな
り、各部は図示の状態に至る。なお、絞り溝74
dは第1弁部72及び第2弁部73が閉弁してい
るときに補助圧力室27内の作動液が温度変化に
より容積が変化するのを補償する働らきもしてい
る。
As the pressure in the pressure chamber 29 decreases, the first piston 19 and the second piston 2 are
0 begins to move back to the right. The pressure in the auxiliary pressure chamber 27 tends to become negative due to the backward movement of the first piston 19, but this is compensated by the inflow of hydraulic fluid from the pressure chamber 29 and the reservoir 57. On the other hand, the first
The hydraulic pressure generation chamber 40 also tries to become negative pressure, but the hydraulic fluid that has flowed into the auxiliary pressure chamber 27 is partially
The liquid passes through the through hole 30 of the small diameter portion 23 of the piston 19, bends the outer edge of the cup seal 26, and flows into the first hydraulic pressure generating chamber 40. This compensates for negative pressure. The second hydraulic pressure generation chamber 41 also tries to become a negative pressure, but this chamber 41 passes through a supply hole 49 and a through hole 42 in the large diameter portion 35 of the second piston 20, and bends the outer edge of the cup seal 37. Then, hydraulic fluid flows in from the reservoir side. This compensates for negative pressure. After the pressure in the pressure chamber 29 becomes zero and the second valve part 73 closes, the hydraulic fluid gradually flows into the auxiliary pressure chamber 27 through the throttle groove 74d, and thus the auxiliary pressure chamber 27, the first The pressure in the hydraulic pressure generating chamber 40 and the second hydraulic pressure generating chamber 41 becomes zero, and each part reaches the state shown in the figure. Note that the aperture groove 74
d also functions to compensate for changes in volume of the hydraulic fluid in the auxiliary pressure chamber 27 due to temperature changes when the first valve portion 72 and the second valve portion 73 are closed.

以上は車両が通常の摩擦係数の道路を走行して
おり、ブレーキペダルを適度に踏み込んだ場合で
あるが、摩擦係数が小さい道路、例えばアイスバ
ーン上を走行していて急ブレーキをかけ、車輪の
ロツクが生ずる恐れがある場合には、本実施例で
はアンチスキツド制御を行うようになつている。
すなわち、ブレーキペダルを踏み込んで液圧発生
室40,41の液圧が入力Fに応じた一定値に達
する前に、ブレーキをゆるめ、一定保持、ブレー
キの込めが何回となく繰り返される。
The above is a case where the vehicle is driving on a road with a normal coefficient of friction and the brake pedal is depressed moderately, but if the vehicle is driving on a road with a small coefficient of friction, such as an ice slope, and the brakes are applied suddenly, the wheels In this embodiment, anti-skid control is performed if there is a risk of locking up.
That is, before the brake pedal is depressed and the hydraulic pressure in the hydraulic pressure generating chambers 40, 41 reaches a constant value according to the input F, the brake is released, maintained at a constant level, and the brake is applied several times.

図示しないアンチスキツド制御回路がブレーキ
の込め過ぎであると判断すると第1電磁弁11
0,112及び第2電磁弁111,113のソレ
ノイド110a〜113aを励磁する。なお、4
輪を個々にアンチスキツド制御してもよいが、説
明をわかりやすくするために全輪45,46のス
キツド状態は同一で、同様にアンチスキツド制御
するものとする。
When the anti-skid control circuit (not shown) determines that the brake is applied too much, the first solenoid valve 11
0, 112 and the solenoids 110a to 113a of the second solenoid valves 111, 113 are excited. In addition, 4
Although anti-skid control may be applied to each wheel individually, in order to make the explanation easier to understand, it is assumed that all wheels 45 and 46 are in the same skid state and are subjected to anti-skid control in the same way.

第1電磁弁110,112及び第2電磁弁11
1,113は今やB及びDの状態をとる。他の電
磁弁114,115,117のソレノイド114
a,115a,117aは励磁されないので図示
のA及びEの状態のまゝである。車輪45,46
のホイールシリンダ45a,46aはリザーバ5
7側と連通されるが、マスタシリンダ部3の液圧
発生室40,41側とは非連通とされる。ホイー
ルシリンダ45a,46aの圧液はリザーバ57
へと流出する。これによりブレーキはゆるめられ
る。
First solenoid valve 110, 112 and second solenoid valve 11
1,113 now assumes states B and D. Solenoids 114 of other solenoid valves 114, 115, 117
Since a, 115a, and 117a are not excited, they remain in the states of A and E shown in the figure. Wheels 45, 46
The wheel cylinders 45a and 46a of the reservoir 5
7 side, but is not communicated with the hydraulic pressure generating chambers 40, 41 side of the master cylinder section 3. The pressure fluid in the wheel cylinders 45a and 46a is stored in a reservoir 57.
flows out to. This releases the brakes.

ブレーキの込め過ぎが解除されたと判断すると
第4電磁弁114,115のソレノイド114
a,115aが励磁される。AからBの状態をと
る。第1、第2電磁弁110〜113は励磁され
たまゝである。これによりホイールシリンダ45
a,46a内にその時の液圧が封じ込まれる。す
なわち、ブレーキ力は一定に保持される。
When it is determined that the overpressure of the brake is released, the solenoid 114 of the fourth solenoid valve 114, 115
a, 115a is excited. Take the state from A to B. The first and second solenoid valves 110 to 113 remain energized. As a result, the wheel cylinder 45
The hydraulic pressure at that time is contained within a and 46a. That is, the braking force is held constant.

車輪速度が充分に回復したと判断すると、第3
電磁弁117のソレノイド117aが励磁され、
EからFの状態をとる。第1電磁弁110,11
2のソレノイド110a,112aは励磁された
まゝであるが、第2電磁弁111,113のソレ
ノイド111a,113a及び第4電磁弁11
4,115のソレノイド114a,115aは消
磁される。これにより、ホイールシリンダ45
a,46aはリザーバ57側及びマスタシリンダ
部3の液圧発生室40,41側とは非連通である
が、第3電磁弁117、逆止弁118,119及
び第2電磁弁111,113を介して倍力装置部
4の圧力室29と連通状態となる。これにより圧
力室29から圧液がホイールシリンダ45a,4
6a内に流入し、再びブレーキ力が上昇する。
When it is determined that the wheel speed has sufficiently recovered, the third
Solenoid 117a of electromagnetic valve 117 is energized,
Take the state from E to F. First solenoid valve 110, 11
The second solenoid 110a, 112a remains excited, but the second solenoid valve 111, 113 solenoid 111a, 113a and the fourth solenoid valve 11
No. 4,115 solenoids 114a and 115a are demagnetized. As a result, the wheel cylinder 45
a, 46a are not in communication with the reservoir 57 side and the hydraulic pressure generating chambers 40, 41 side of the master cylinder section 3, but are connected to the third solenoid valve 117, the check valves 118, 119, and the second solenoid valves 111, 113. It is in communication with the pressure chamber 29 of the booster section 4 via the booster section 4. This causes pressure fluid to flow from the pressure chamber 29 to the wheel cylinders 45a, 4.
6a, and the braking force increases again.

アンチスキツド制御回路がブレーキの込め過ぎ
であると判断すると、第3電磁弁117のソレノ
イド117は消磁され、第2電磁弁111,11
3のソレノイド111a,113aは励磁され
る。第1電磁弁110,112のソレノイド11
0a,112aは励磁されたまゝである。ホイー
ルシリンダ45a,46aは第4電磁弁114,
115を介してリザーバ57と連通し、ホイール
シリンダ45a,46aから圧液はリザーバ57
へと排出される。これによりブレーキがゆるめら
れる。
When the anti-skid control circuit determines that the brake is applied too much, the solenoid 117 of the third solenoid valve 117 is demagnetized, and the second solenoid valve 111,
No. 3 solenoids 111a and 113a are excited. Solenoid 11 of first solenoid valve 110, 112
0a and 112a remain excited. The wheel cylinders 45a, 46a are connected to the fourth solenoid valve 114,
115 to communicate with the reservoir 57, and the pressurized fluid from the wheel cylinders 45a, 46a flows into the reservoir 57.
is discharged to. This releases the brakes.

ブレーキの込め過ぎは解除されたと判断される
と、第4電磁弁114,115のソレノイド11
4a,115aが励磁され、ホイールシリンダ4
5a,46aはリザーバ57側とも遮断され、ブ
レーキ力は一定に保持される。
When it is determined that the over-applied brake has been released, the solenoid 11 of the fourth solenoid valve 114, 115
4a and 115a are excited, and the wheel cylinder 4
5a and 46a are also cut off from the reservoir 57 side, and the braking force is kept constant.

車輪速度が充分に回復したと判断すると、第3
電磁弁117のソレノイド117aが励磁され、
倍力装置部4の圧力室29から圧液がホイールシ
リンダ45a,46aに供給され、再びブレーキ
力は上昇する。
When it is determined that the wheel speed has sufficiently recovered, the third
Solenoid 117a of electromagnetic valve 117 is energized,
Pressure fluid is supplied from the pressure chamber 29 of the booster section 4 to the wheel cylinders 45a, 46a, and the braking force increases again.

以上のようにして短時間のうちに何回となく、
ブレーキ力の低下、一定保持、上昇が繰り返さ
れ、車輪がロツクするのを防止するのであるが、
車両が所望の走行速度に達すると、または停止す
るとブレーキペダルへの踏力は解除され、アンチ
スキツド制御回路によりそのとき励磁されていた
電磁弁のソレノイドへの通電も断たれる。すなわ
ち、各電磁弁110〜115,117は図示の状
態をとる。ホイールシリンダ45a,46a内の
圧液は第2電磁弁111,113、第1電磁弁1
10,112を通つてマスタシリンダ部3の液圧
発生室40,41へと還流し、余分な圧液は戻し
孔50,61を通つてリザーバ57へと戻され
る。他方、倍力装置部4の圧力室29は上述のア
ンチスキツド制御を行わない場合と同様に、可動
弁体97の通孔97cを通つてリザーバ57側へ
と排出される。かくしてブレーキ力は零となる。
In the above way, many times in a short period of time,
This prevents the wheels from locking up due to repeated reductions in braking force, holding it at a constant level, and increasing it.
When the vehicle reaches a desired speed or comes to a stop, the pressure on the brake pedal is released, and the anti-skid control circuit also cuts off the current to the solenoid of the electromagnetic valve that was energized at that time. That is, each electromagnetic valve 110 to 115, 117 assumes the illustrated state. The pressure fluid in the wheel cylinders 45a, 46a is supplied to the second solenoid valves 111, 113 and the first solenoid valve 1.
10 and 112 to the hydraulic pressure generating chambers 40 and 41 of the master cylinder section 3, and excess pressure liquid is returned to the reservoir 57 through the return holes 50 and 61. On the other hand, the pressure chamber 29 of the booster section 4 is discharged to the reservoir 57 side through the through hole 97c of the movable valve body 97, as in the case where the anti-skid control described above is not performed. Thus, the braking force becomes zero.

上述したようにアンチスキツド制御を行う場合
には、何回となくホイールシリンダ45a,46
aから圧液が部分的にリザーバ57へと排出され
るのであるが、ブレーキ力の再上昇は倍力装置部
4の圧力室29からの圧液供給により行われ、マ
スタシリンダ部3の液圧発生室40,41から供
給されるのではないから、液圧発生室40,41
内に作動液が不足してピストン19,20を過ス
トロークさせることはない。倍力装置部4の圧力
室29内へは液圧ポンプ91またはアキユムレー
タ88から開いた供給弁を通つて圧液が供給され
るので液圧が低下することはない。すなわち、ブ
レーキ作動中で可動弁体97の環状突起部97b
がスリーブ104の内方フランジ部104aに当
接しているときには、圧力室29から圧液がホイ
ールシリンダ45a,46aへと排出することに
より圧力室29の液圧が低下するが、第1ピスト
ン19がこれにより右方へと移動して可動弁体9
7の環状突起部97bがスリーブ104の内方フ
ランジ部104aから離座させられ、入力室aか
ら圧液が圧力室29内へと流入し補給される。す
なわち入力部材9への入力Fと倍力装置部4の第
1ピストン19に対する移動力との和とマスタシ
リンダ部3の液圧発生室40,41のこのときの
液圧力が第1ピストン19に及ぼす反力とのバラ
ンス状態は保持される。
When performing anti-skid control as described above, the wheel cylinders 45a and 46 are
Pressure fluid is partially discharged from a to the reservoir 57, but the braking force is increased again by supplying pressure fluid from the pressure chamber 29 of the booster section 4, and the hydraulic pressure of the master cylinder section 3 increases. Since the fluid is not supplied from the generation chambers 40, 41, the hydraulic pressure generation chambers 40, 41
There is no possibility that the pistons 19, 20 will be overstroked due to insufficient hydraulic fluid. Since pressurized liquid is supplied into the pressure chamber 29 of the booster section 4 from the hydraulic pump 91 or the accumulator 88 through the open supply valve, the hydraulic pressure does not decrease. That is, during brake operation, the annular protrusion 97b of the movable valve body 97
When the first piston 19 is in contact with the inner flange portion 104a of the sleeve 104, the pressure fluid is discharged from the pressure chamber 29 to the wheel cylinders 45a and 46a, thereby reducing the fluid pressure in the pressure chamber 29. This causes the movable valve body 9 to move to the right.
The annular projection 97b of No. 7 is separated from the inner flange 104a of the sleeve 104, and pressurized fluid flows into the pressure chamber 29 from the input chamber a and is replenished. That is, the sum of the input F to the input member 9, the moving force of the booster section 4 with respect to the first piston 19, and the hydraulic pressure at this time in the hydraulic pressure generating chambers 40, 41 of the master cylinder section 3 are applied to the first piston 19. The state of balance with the reaction force exerted is maintained.

本発明の実施例は以上のような作用を行うので
あるが、更に以下のような効果を奏するものであ
る。
The embodiments of the present invention perform the above-mentioned functions, but also have the following effects.

(1) 可動弁体97はほゞ柱状であつて、その前方
端側はシールリング99を介して第1ピストン
19の段付孔94の中径孔部95に嵌合してい
る。従つて、入力室aの液圧が可動弁体97の
環状突起部97aをスリーブ104の内方フラ
ンジ部104aに押圧させる力を極力小さくす
ることができる。すなわち、可動弁体97の柱
状部97aである前方端側の断面積をS5、可動
弁体97の環状突起部97aのスリーブ104
の内方フランジ部104a上の着座面積をS6
入力室aの液圧をPi、弁ばね100のばね力と
ゴムリング102の弾性力との和をfとすれ
ば、可動弁体97の環状突起部97aがスリー
ブ104の内方フランジ部104aを押圧する
力F′は(S6−S5)×Pi+fとなり、S6をS5に近
付けることにより極力小さくすることができ
る。すなわち、S6とS5をほぼ同じにすること
で、F′≒fとすることができる。従つて、この
ように構成される供給弁を入力部材9により開
弁させる力を極力小さくすることができ作動を
迅速化することができる。従来は、柱状の可動
弁体97の代わりに鋼球が用いられており、開
弁に要する力は鋼球の着座面積×Pi+弁ばねの
ばね力に等しく、大きな鋼球着座面積全体で入
力室aの液圧を受圧していた。従つて開弁に要
する力が大きく作動の迅速性に難点があつた。
然しながら、本実施例によれば、開弁に要する
力をほとんど弁ばねのばね力とゴムリング10
2の弾性力との和に等しい力とすることができ
るので迅速性を大巾に向上することができる。
(1) The movable valve body 97 is substantially columnar, and its front end is fitted into the medium diameter hole 95 of the stepped hole 94 of the first piston 19 via a seal ring 99. Therefore, the force with which the hydraulic pressure in the input chamber a presses the annular projection 97a of the movable valve body 97 against the inner flange 104a of the sleeve 104 can be minimized. That is, the cross-sectional area of the front end side which is the columnar part 97a of the movable valve body 97 is S5 , and the sleeve 104 of the annular protrusion 97a of the movable valve body 97 is
The seating area on the inner flange portion 104a of S 6 ,
If the hydraulic pressure in the input chamber a is Pi, and the sum of the spring force of the valve spring 100 and the elastic force of the rubber ring 102 is f, then the annular protrusion 97a of the movable valve body 97 presses against the inner flange 104a of the sleeve 104. The pressing force F' is (S 6 −S 5 )×Pi+f, and can be made as small as possible by bringing S 6 close to S 5 . That is, by making S 6 and S 5 almost the same, F'≈f can be satisfied. Therefore, the force for opening the supply valve configured in this manner by the input member 9 can be minimized, and the operation can be speeded up. Conventionally, a steel ball is used instead of the columnar movable valve body 97, and the force required to open the valve is equal to the seating area of the steel ball x Pi + the spring force of the valve spring, and the entire large steel ball seating area is used to close the input chamber. It was receiving the hydraulic pressure of a. Therefore, the force required to open the valve was large, making it difficult to operate quickly.
However, according to this embodiment, the force required to open the valve is almost entirely generated by the spring force of the valve spring and the rubber ring 10.
Since the force can be made equal to the sum of the two elastic forces, the speed can be greatly improved.

また、本実施例のようにアンチスキツド制御
を行う場合には、圧力室29から圧液がホイー
ルシリンダ45a,46aに供給されても、供
給弁の開弁圧が小さいので直ちに入力室a側か
ら圧液が補充されることができる。これによ
り、短時間内におけるブレーキ力の低下、一定
保持、上昇の繰り返し中の上昇に対処すること
ができる。
In addition, when performing anti-skid control as in this embodiment, even if pressure fluid is supplied from the pressure chamber 29 to the wheel cylinders 45a, 46a, the opening pressure of the supply valve is small, so pressure immediately flows from the input chamber a side. Fluid can be replenished. As a result, it is possible to cope with an increase in braking force during repeated decreases, constant maintenance, and increases within a short period of time.

(2) 可動弁体97の環状突起部97aをスリーブ
104の内方フランジ部104から離座させる
ときに、すなわち供給弁を開くのに抗するばね
力は弁ばね100(コイルスプリング)とゴム
リング102のばね力であり、コイルスプリン
グの粘性係数もしくは減衰係数は小さいが、ゴ
ムリング102のそれは大きい。開弁に抗する
ばね力がコイルスプリングだけで得られる場合
は入力部材9で可動弁体97を急激に押動させ
ると、コイルスプリング従つて可動弁体97が
必要以上に往動し、ハンチングが生じ制御が不
安定となることがある。然しながら、本実施例
では更にゴムリング102のばね力も抗するの
で、上記のような必要以上の往動を抑制するこ
とができ、入力部材9に急激な力を加えたよう
な場合でも安定な制御を行うことができる。ま
た、溝97bが絞り溝として働らくので、入力
室aから急激に作動液が流入することが防止さ
れ、これによつてもハンチング防止を行うこと
ができる。
(2) When the annular protrusion 97a of the movable valve body 97 is separated from the inner flange 104 of the sleeve 104, the spring force that resists opening the supply valve is generated by the valve spring 100 (coil spring) and the rubber ring. The viscosity coefficient or damping coefficient of the coil spring is small, but that of the rubber ring 102 is large. If the spring force for resisting valve opening is obtained only by the coil spring, if the input member 9 suddenly pushes the movable valve body 97, the coil spring and therefore the movable valve body 97 will move forward more than necessary, and hunting will occur. This may result in unstable control. However, in this embodiment, since the spring force of the rubber ring 102 is also resisted, it is possible to suppress the above-mentioned forward movement more than necessary, and stable control can be achieved even when a sudden force is applied to the input member 9. It can be performed. Further, since the groove 97b functions as a throttle groove, sudden inflow of the working fluid from the input chamber a is prevented, and hunting can also be prevented by this.

(3) 排出弁を開いたとき、すなわち、入力部材9
の先端の環状突起107が可動弁体97のゴム
シート106から離座したときには、圧力室2
9の圧液は可動弁体97の通孔97c及び第1
ピストン19の小径孔部121、補助液圧室2
7を通つてリザーバ57に還流される。圧力室
29の圧液をリザーバ57に還流するのにシリ
ンダ本体2に特別なドレイン構造を設けていな
い。従つて、このための構成を簡素化してい
る。
(3) When the discharge valve is opened, that is, the input member 9
When the annular projection 107 at the tip of the movable valve body 97 is separated from the rubber sheet 106, the pressure chamber 2
9 is supplied to the through hole 97c of the movable valve body 97 and the first
Small diameter hole 121 of piston 19, auxiliary hydraulic pressure chamber 2
7 to the reservoir 57. No special drain structure is provided in the cylinder body 2 to return the pressure liquid in the pressure chamber 29 to the reservoir 57. Therefore, the configuration for this purpose is simplified.

(4) 第1電磁弁110,112と第2電磁弁11
1,113とを結ぶ管路と、倍力装置部4の圧
力室29との間に第3電磁弁117を配設して
いるので、アンチスキツド制御中においてマス
タシリンダ部3の液圧発生室40,41からの
みホイールシリンダのブレーキ力再上昇のため
の圧液供給をする必要がなくなり、液圧発生室
40,41の液量不足を防止することができ
る。
(4) First solenoid valve 110, 112 and second solenoid valve 11
1, 113 and the pressure chamber 29 of the booster section 4, the third solenoid valve 117 is disposed between the pressure chamber 29 of the booster section 4 and the hydraulic pressure generating chamber 40 of the master cylinder section 3 during anti-skid control. , 41 to increase the braking force of the wheel cylinders again, and it is possible to prevent a shortage of fluid in the hydraulic pressure generating chambers 40, 41.

以上、本発明の実施例について説明したが、勿
論、本発明はこれに限定されることなく、本発明
の技術的思想に基づいて種々の変形が可能であ
る。
The embodiments of the present invention have been described above, but of course the present invention is not limited thereto, and various modifications can be made based on the technical idea of the present invention.

例えば、以上の実施例ではアンチスキツド配管
部130を設けて、アンチスキツド制御可能とし
たが、これを省略して通常のブレーキ装置として
用いてもよい。
For example, in the above embodiment, the anti-skid piping section 130 was provided to enable anti-skid control, but this may be omitted and used as a normal brake device.

また以上の実施例ではブレーキ用のマスタシリ
ンダの作動を助勢する液圧式倍力装置を説明した
が、これに限ることなく例えばクラツチ用に用い
てもよい。
Further, in the above embodiments, a hydraulic booster for assisting the operation of a brake master cylinder has been described, but the present invention is not limited to this and may be used for a clutch, for example.

また以上の実施例では供給弁の弁座としてスリ
ーブ104の内方フランジ部104aが用いられ
たが、第1ピストン19の内孔に段部を形成し、
これを弁座としてもよい。あるいは第1ピストン
の内孔の形状を変更してスリーブ104を省略す
るようにしてもよい。
Further, in the above embodiments, the inner flange portion 104a of the sleeve 104 was used as the valve seat of the supply valve, but a step portion is formed in the inner hole of the first piston 19,
This can also be used as a valve seat. Alternatively, the sleeve 104 may be omitted by changing the shape of the inner hole of the first piston.

また、上述の実施例では、可動弁体97の前方
端側の断面積S5=柱状部97dに対するシールリ
ング99のシール面積、及び、排出弁の着座面積
=入力部材9の環状突起107のゴムシート10
6に対する着座面積を、供給弁の着座面積S6=ス
リーブ104の内方フランジ部104aに対する
環状突起部97aの着座面積よりも小としたがこ
れらが等しくなるように可動弁体97及び入力部
材9を構成するようにしてもよい。この場合には
供給弁を開くのに要する力は弁ばね100のばね
力に相当する力となり、極めて操作性の迅速なも
のとすることができる。
Further, in the above embodiment, the cross-sectional area S 5 on the front end side of the movable valve body 97 = the sealing area of the seal ring 99 with respect to the columnar portion 97d, and the seating area of the discharge valve = the rubber of the annular protrusion 107 of the input member 9. sheet 10
The seating area for the supply valve 6 is smaller than the seating area S 6 of the supply valve = the seating area of the annular protrusion 97a for the inner flange 104a of the sleeve 104, but the movable valve body 97 and the input member 9 are adjusted so that these are equal. may be configured. In this case, the force required to open the supply valve is equivalent to the spring force of the valve spring 100, making it possible to achieve extremely quick operability.

以上述べたように本発明の液圧式倍力装置によ
れば、ピストンの凹所に密封部材を介してほゞ柱
状の可動弁体を嵌合するようにしたので、開弁に
要する操作力を極力小さくすることができ、よつ
て作動をより迅速化し、効率を向上させることが
できる。
As described above, according to the hydraulic booster of the present invention, the substantially columnar movable valve body is fitted into the recess of the piston via the sealing member, so that the operating force required to open the valve is reduced. It can be made as small as possible, thus allowing faster operation and improved efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例によるブレーキ用液圧
式倍力装置付マスタシリンダをアンチスキツド配
管部と共に示す側断面図、及び第2図は第1図に
おける複弁装置の詳細を示す拡大側断面図であ
る。 なお図において、1……ブレーキ用液圧式倍力
装置付マスタシリンダ、4……倍力装置部、9…
…入力軸、19……第1ピストン、29……倍力
用圧力室、94……段付孔、97……可動弁体、
97a……環状突起部、97d……柱状部、97
e……減径部、99……シールリング、104a
……スリーブ104の内方フランジ部。
FIG. 1 is a side sectional view showing a master cylinder with a brake hydraulic booster according to an embodiment of the present invention together with an anti-skid piping section, and FIG. 2 is an enlarged side sectional view showing details of the multiple valve device in FIG. 1. It is. In the figure, 1... Master cylinder with brake hydraulic booster, 4... Booster section, 9...
...Input shaft, 19...First piston, 29...Boosting pressure chamber, 94...Stepped hole, 97...Movable valve body,
97a... Annular protrusion, 97d... Column-shaped part, 97
e...Reduced diameter part, 99...Seal ring, 104a
...Inner flange portion of the sleeve 104.

Claims (1)

【特許請求の範囲】[Claims] 1 シリンダ孔を形成した本体と、前記シリンダ
孔に摺動自在に挿入され非作動時に後方に付勢さ
れるピストンと、該ピストンの側部に形成され圧
液を供給する圧力源に接続されるアキユムレータ
圧室と、前記ピストンの後方に形成される圧力室
と、前記アキユムレータ圧室及び圧力室に連絡し
て前記ピストンの後方側に設けた凹所と、該凹所
に設けた弁装置と、該弁装置を作動可能に配設し
た入力軸とを備え、前記弁装置は、前記凹所に挿
入され前記ピストンの軸線方向に移動自在な可動
弁体と、これに対向して前記凹所の後方側壁部に
形成した弁座と、該弁座に着座するよう前記可動
弁体を後方に付勢する弁ばねとを有し、前記弁座
の前方側を前記アキユムレータ圧室に後方側を前
記圧力室に各々連絡し、前記入力軸の非作動時に
は、前記圧力室をリザーバに接続し、前記入力軸
の前方への作動時には、前記可動弁体を前記弁座
から離座させて圧液を前記圧力室に導入し前記ピ
ストンを前方へ移動するようにした構成した液圧
式倍力装置において、前記可動弁体には、前記ピ
ストンの前方側に延びて前記凹所に密封部材を介
して嵌合される柱状部と、この柱状部から後方端
側に延び当該柱状部よりも小径の減径部と、前記
柱状部と前記減径部との間に位置し前記弁座に着
座可能な段部とを各々形成し、前記弁座を当該弁
座に対する前記段部の着座面積と前記柱状部の前
記密封部材による密封面積とが相等しくなるよう
に、前記凹所の径内方側に膨出させて形成した液
圧式倍力装置。
1 A main body formed with a cylinder hole, a piston that is slidably inserted into the cylinder hole and is biased backward when inactive, and connected to a pressure source formed on the side of the piston that supplies pressurized fluid. an accumulator pressure chamber, a pressure chamber formed at the rear of the piston, a recess provided at the rear side of the piston in communication with the accumulator pressure chamber and the pressure chamber, and a valve device provided in the recess; an input shaft on which the valve device is operable, and the valve device includes a movable valve body inserted into the recess and movable in the axial direction of the piston; It has a valve seat formed on the rear side wall, and a valve spring that biases the movable valve body rearward so as to be seated on the valve seat, and the front side of the valve seat is connected to the accumulator pressure chamber, and the rear side is connected to the accumulator pressure chamber. each communicates with a pressure chamber, and when the input shaft is not operated, the pressure chamber is connected to a reservoir, and when the input shaft is operated forward, the movable valve body is separated from the valve seat to drain the pressure fluid. In the hydraulic booster configured to be introduced into the pressure chamber and move the piston forward, the movable valve body includes a hydraulic booster that extends toward the front side of the piston and fits into the recess through a sealing member. A columnar portion to be fitted together, a reduced diameter portion extending from the columnar portion toward the rear end side and having a smaller diameter than the columnar portion, and a step located between the columnar portion and the reduced diameter portion and capable of being seated on the valve seat. and the valve seat expands radially inward of the recess so that the seating area of the step part with respect to the valve seat and the sealing area of the columnar part by the sealing member are equal to each other. A hydraulic booster made by letting it out.
JP59033041A 1984-02-23 1984-02-23 Hydraulic booster Granted JPS60176859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59033041A JPS60176859A (en) 1984-02-23 1984-02-23 Hydraulic booster

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59033041A JPS60176859A (en) 1984-02-23 1984-02-23 Hydraulic booster

Publications (2)

Publication Number Publication Date
JPS60176859A JPS60176859A (en) 1985-09-10
JPH0583427B2 true JPH0583427B2 (en) 1993-11-26

Family

ID=12375699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59033041A Granted JPS60176859A (en) 1984-02-23 1984-02-23 Hydraulic booster

Country Status (1)

Country Link
JP (1) JPS60176859A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11388082B2 (en) 2013-11-27 2022-07-12 Oracle International Corporation Methods, systems, and computer readable media for diameter routing using software defined network (SDN) functionality

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6347522B2 (en) 2015-12-24 2018-06-27 ヴィオニア日信ブレーキシステムジャパン株式会社 Input device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5124665A (en) * 1974-08-26 1976-02-28 Hitachi Ltd SHINKUCHUKE ISOCHI

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5124665A (en) * 1974-08-26 1976-02-28 Hitachi Ltd SHINKUCHUKE ISOCHI

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11388082B2 (en) 2013-11-27 2022-07-12 Oracle International Corporation Methods, systems, and computer readable media for diameter routing using software defined network (SDN) functionality

Also Published As

Publication number Publication date
JPS60176859A (en) 1985-09-10

Similar Documents

Publication Publication Date Title
US8807668B2 (en) Vehicle braking system and master cylinder
US6183049B1 (en) Brake boosting system
US6478385B2 (en) Hydraulic brake apparatus for a vehicle
JP4563931B2 (en) Tandem type master cylinder device
US9683584B2 (en) Brake device for vehicle
US4643488A (en) Hydraulic vehicle servo brake
US20020017820A1 (en) Hydraulic brake apparatus for a vehicle
US3971595A (en) Anti-skid brake control system
US5330259A (en) Electrohydraulic braking system with remote booster
US6434933B1 (en) Hydraulic pressure brake device for vehicles
JPH0583427B2 (en)
US4781026A (en) Fluid pressure brake booster for motor vehicles
US6491356B2 (en) Brake system
US6386648B1 (en) Master cylinder and brake booster for a brake system
JPH0534184B2 (en)
US6196642B1 (en) Four-piston brake fluid pressure controller with diaphragm
US6213569B1 (en) Pressure generator
EP0200387B1 (en) Power booster
JP3932153B2 (en) Brake system
JPH10147233A (en) Brake fluid pressure generator
JPH0331652Y2 (en)
JP2001097207A (en) Brake system
JPH05254422A (en) Braking device for vehicle
JP3026715U (en) Hydraulic pressure control device
JP3399647B2 (en) Throttle valve device