JPH0583304B2 - - Google Patents

Info

Publication number
JPH0583304B2
JPH0583304B2 JP61024156A JP2415686A JPH0583304B2 JP H0583304 B2 JPH0583304 B2 JP H0583304B2 JP 61024156 A JP61024156 A JP 61024156A JP 2415686 A JP2415686 A JP 2415686A JP H0583304 B2 JPH0583304 B2 JP H0583304B2
Authority
JP
Japan
Prior art keywords
iron
catalyst
carbon monoxide
catalysts
monoxide conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61024156A
Other languages
Japanese (ja)
Other versions
JPS62183853A (en
Inventor
Seiji Ito
Atsushi Kitagawa
Muneaki Kanamaru
Koichi Harada
Nobuhiro Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo CCI KK
Original Assignee
Toyo CCI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo CCI KK filed Critical Toyo CCI KK
Priority to JP61024156A priority Critical patent/JPS62183853A/en
Publication of JPS62183853A publication Critical patent/JPS62183853A/en
Publication of JPH0583304B2 publication Critical patent/JPH0583304B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は一酸化炭素転化触媒、特に活性、強度
及び耐久性に優れた鉄系一酸化炭素転化触媒に関
するものである。 (従来の技術) 一酸化炭素転化反応は次式で示され、古くから
鉄系触媒、特に酸化鉄及び酸化クロムよりなる組
織物を適当な形に成形した触媒が工業的に広く使
用されている。 CO+H2OH2+CO2 同触媒は通常300〜400℃の温度範囲で使用され
ているが、使用時間と共に成形した触媒の強度が
低下し、時として粉化をきたし、その結果反応器
の圧力損失が増大し操業の継続が困難となり、触
媒の取替を余儀なくされる重大な欠点があつた。 この為、鉄系一酸化炭素触媒の耐久性の向上は
業界の永年に亘る課題であり、多くの改良が行な
われてきている。即ち、特公昭28−2471号では鉄
クロム触媒に活性及び耐久性向上の為、鉄、銅、
亜鉛、ニツケル、マンガン、アルミニウム、マグ
ネシウム等の塩を加えており、特公昭30−1571号
では鉄系沈殿触媒に鉄粉を加えて強度の向上を計
つている。さらに特公昭42−17194号では鉄クロ
ム触媒中の酸化クロム含有量を大巾に増加するこ
とで活性及び耐久性の向上を果している。 (発明が解決しようとする問題点) 本発明は前述の欠点を解消したもので、活性及
び強度が従来触媒と少なくとも同等以上に良く、
しかも耐久性に優れた酸化鉄−酸化クロムなどの
鉄系一酸化炭素転化触媒を提供する。 (問題点を解決するための手段) 本発明者等は前述の欠点を解決すべく、鉄クロ
ム系触媒の改良に鋭意研究を重ねた結果、触媒中
にFe3O4の形で存在する鉄を少くすることが、特
に触媒強度の保持即ち耐久性に資することが大で
あり、且つ触媒活性も損われることなくむしろ向
上することを見出し、本発明に到達した。 本発明の触媒を製造するための原料は、通常の
鉄系一酸化炭素転化触媒の製造に使用可能な原料
であり、硫酸鉄、塩化鉄、硝酸鉄等の水溶性の鉄
塩、重クロム酸塩、クロム酸塩、硝酸クロム、無
水クロム酸などのクロム化合物等が使用できる。
鉄源としては安価な硫酸第一鉄が好適な原料であ
るが、第二鉄塩の混入はFe3O4の生成を惹らすの
で極力避けなければならない。鉄又は鉄−クロム
の沈殿生成は、適当なアルカリ性物質を用いる中
和反応によつて行なう。この際共沈殿法、正中和
法、逆中和法、連続法、バツチ法等のすべての沈
殿法が、Fe3O4生成防止の配慮がなされる限り採
用できる。Fe3O4生成の条件については、木山雅
雄「水酸化鉄()()の化学」(粉体及び粉末
冶金第23巻第3号)等に詳しく記されているの
で、これによりFe3O4生成防止の方策は容易にな
し得る。例えば、Fe3O4を減少させる方法として
は、 イ 反応液中の鉄分含有量を小さくする、 ロ phを9〜10より大とする又は小とする、 ハ 反応温度を50℃以下の比較的低温とする、 ニ 空気の吹込量を大としその分散を良くする、 等があり、これらの条件を適当に組合せる。かく
して得られる沈殿は、通常、乾燥−粉砕−成形−
乾燥等の処理を経て仕上り製品とするが、本発明
者等は成形前及び/又は成形後、特に成形前に水
酸化鉄の持つ結晶水が実質的に完全に脱水される
迄焼成することが耐久性の付与に極めて効果的で
あることを見出した。この為の焼成温度としては
約300〜700℃の範囲の温度、好ましくは400〜600
℃の範囲の温度が必要である。結晶水の除去が充
分に行なわれていることの確認は、灼熱減量を測
定することにより行なえるが、焼成品の灼熱減量
は2重量%以下とすることが望ましい。この焼成
操作によるFe3O4量の増加は実質的に零である。
従つて、焼成後のFe3O4又は仕上り製品中のFe3
O4含有量は、焼成前の沈殿に含まれるFe3O4と同
等以上に大きいと考えられる。因みに、Fe2O3
に含まれるFe3O4の定量分析は一酸化炭素転化触
媒に於ては酸化クロム(CrO3)の存在の為特に
難しく、現時点では信頼のおける定量分析法が確
立されていない。従つて、X線回折によるFe2O3
とFe3O4回折線の強度の比較によつてもFe3O4
の多少を判断している。成形方法としては打錠、
押出し、球形化等通常行なわれる成形法の何れも
採用できる。 (作用) 本発明の一酸化炭素転化触媒は、通常の酸化鉄
−酸化クロム触媒に比べても高活性且つ高強度で
ある為、従来の高温転化触媒と同様の使用条件に
於て使用されるが、通常考え得るあらゆる反応条
件の下での強度の低下が著しく小さく、活性の低
下も少ないので、長時間の安定した操業を可能と
する。 (実施例) 以下本発明を実施例につきさらに詳細に説明す
る。実施例中の部は特記しない限り重量部を示
す。また、Fe3O4/Fe2O3比は各触媒間のFe3O4
量の相対的な大小を示す値であつて、絶対的な値
ではない。 実施例 1 硫酸第一鉄FeSO4・7H2O675部と重クロム酸ソ
ーダNa2Cr2O7・H2O33部を1370部の水に溶解し
て得た混合水溶液を、苛性ソーダ195部を含む25
%苛性ソーダ水溶液を用いて中和した。中和反応
中及び反応後に充分量の空気を吹き込みながら攪
拌を行なうなど、生成沈殿物中に含まれるFe3O4
を極力少なくするようにした。かくして得られた
沈殿物を理学電機(株)製普及型X線回折装置ミ
ニフレツクスNo.2005で分析した(ターゲツトは
Cu、フイルターはモノクロ用グラフアイト単結
晶、電圧40KV、電流35mA)ところ、Fe3O4
Fe2O3の回折強度(ピーク高さ)の比は、0.1であ
つた。また、CrO3を熱水で洗滌除去した後行な
つた定量分析によつて得たFe3O4/Fe2O3モル比
は0.0015であつた。これらの数値は第2表に示し
た他の触媒の分析値と比較しても小さなもので、
Fe3O4含有量が著しく低いものであつた。 この沈殿物を濾過し、乾燥し、400℃で焼成し
た後粉砕し、顆粒状としたものを打錠機を用いて
9.5mmφ×6.4mmLのタブレツトに成形した。最後
にこの成形品を250℃で焼成して触媒Aを得た。 また、成形前の400℃での焼成を省いた他は触
媒Aと全く同一の操作に依り、触媒Bを得た。 これら触媒A及びBの灼熱減量は夫々1.2重量
%及び10.5重量%であつた。触媒Bの灼熱減量
10.5重量%の大部分は水酸化鉄の結晶水に相当す
るものである。 次に触媒A及びBを用い、次の試験条件により
触媒の耐久試験を行なつた。 反応条件 反 応 器:内径50mmステンレス製管型反応器 触媒充填量:100ml 供給ガス組成:H275容量%,CO25容量% 空間速度:5000 1/時(乾きガス基準) 反応 温度:400℃ 試験 時間:720時間(30日) 試験終了後、反応器より触媒を取り出し、その
強度(触媒粒子の直径方向よりの圧壊強度)を測
定した。結果を次の第1表に示す。
(Industrial Application Field) The present invention relates to a carbon monoxide conversion catalyst, particularly an iron-based carbon monoxide conversion catalyst having excellent activity, strength and durability. (Prior art) The carbon monoxide conversion reaction is shown by the following equation, and iron-based catalysts, especially catalysts made of iron oxide and chromium oxide structures formed into appropriate shapes, have been widely used industrially for a long time. . CO + H 2 OH 2 + CO 2 The catalyst is normally used in a temperature range of 300 to 400°C, but the strength of the molded catalyst decreases with time of use, sometimes causing powdering, resulting in pressure loss in the reactor. There was a serious drawback in that the amount increased, making it difficult to continue operation and forcing the catalyst to be replaced. For this reason, improving the durability of iron-based carbon monoxide catalysts has been a long-standing challenge in the industry, and many improvements have been made. In other words, in Special Publication No. 28-2471, iron, copper,
Salts such as zinc, nickel, manganese, aluminum, and magnesium are added, and in Special Publication No. 1571 (1971), iron powder was added to an iron-based precipitation catalyst to improve its strength. Further, in Japanese Patent Publication No. 42-17194, activity and durability were improved by greatly increasing the chromium oxide content in the iron-chromium catalyst. (Problems to be Solved by the Invention) The present invention solves the above-mentioned drawbacks, and has an activity and strength that is at least as good as or better than conventional catalysts.
Furthermore, the present invention provides an iron-based carbon monoxide conversion catalyst such as iron oxide-chromium oxide that has excellent durability. (Means for Solving the Problems) In order to solve the above-mentioned drawbacks, the inventors of the present invention conducted extensive research into improving iron-chromium catalysts, and found that iron present in the form of Fe 3 O 4 in the catalyst The inventors have discovered that reducing the catalytic strength greatly contributes to maintaining the catalyst strength, that is, durability, and that the catalytic activity is improved rather than impaired, and the present invention was achieved based on these findings. The raw materials for producing the catalyst of the present invention are those that can be used for producing ordinary iron-based carbon monoxide conversion catalysts, including water-soluble iron salts such as iron sulfate, iron chloride, and iron nitrate, and dichromate. Chromium compounds such as salts, chromates, chromium nitrate, and chromic anhydride can be used.
As a source of iron, ferrous sulfate is a suitable raw material because it is inexpensive, but the contamination of ferric salts must be avoided as much as possible since it attracts the formation of Fe 3 O 4 . The precipitation of iron or iron-chromium is carried out by a neutralization reaction using a suitable alkaline substance. At this time, all precipitation methods such as coprecipitation method, positive neutralization method, reverse neutralization method, continuous method, and batch method can be employed as long as consideration is given to preventing Fe 3 O 4 formation. The conditions for Fe 3 O 4 production are described in detail in Masao Kiyama's ``Chemistry of iron hydroxide () ()'' (Powder and Powder Metallurgy Vol. 23, No. 3 ). 4 Measures to prevent generation can be easily taken. For example, methods for reducing Fe 3 O 4 include: (a) reducing the iron content in the reaction solution; (b) increasing the pH to a value greater than or equal to 9 to 10; and (c) lowering the reaction temperature to a relatively low level of 50°C or lower. (2) Increase the amount of air blown to improve its dispersion, etc., and combine these conditions appropriately. The precipitate thus obtained is usually dried, crushed, molded,
The finished product is obtained through processes such as drying, but the present inventors believe that before and/or after molding, especially before molding, the iron hydroxide can be fired until the crystal water contained in the iron hydroxide is substantially completely dehydrated. It has been found that it is extremely effective in imparting durability. The firing temperature for this purpose is approximately 300 to 700℃, preferably 400 to 600℃.
Temperatures in the range of °C are required. It can be confirmed that the crystal water has been removed sufficiently by measuring the loss on ignition, but it is desirable that the loss on ignition of the fired product is 2% by weight or less. The increase in the amount of Fe 3 O 4 due to this firing operation is substantially zero.
Therefore, Fe 3 O 4 after firing or Fe 3 in the finished product
The O 4 content is considered to be equal to or higher than Fe 3 O 4 contained in the precipitate before firing. Incidentally, quantitative analysis of Fe 3 O 4 contained in Fe 2 O 3 is particularly difficult due to the presence of chromium oxide (CrO 3 ) in carbon monoxide conversion catalysts, and at present no reliable quantitative analysis method has been established. It has not been. Therefore, Fe 2 O 3 by X-ray diffraction
The amount of Fe 3 O 4 can also be determined by comparing the intensity of the and Fe 3 O 4 diffraction lines. Molding methods include tableting,
Any conventional molding method such as extrusion or spheroidization can be used. (Function) The carbon monoxide conversion catalyst of the present invention has higher activity and strength than ordinary iron oxide-chromium oxide catalysts, so it can be used under the same conditions as conventional high-temperature conversion catalysts. However, the decrease in strength and activity under all normally conceivable reaction conditions is extremely small, making stable operation possible for long periods of time. (Example) The present invention will now be described in more detail with reference to Examples. Parts in the examples indicate parts by weight unless otherwise specified. In addition, the Fe 3 O 4 /Fe 2 O 3 ratio is the Fe 3 O 4 between each catalyst.
It is a value that indicates the relative size of a quantity, not an absolute value. Example 1 A mixed aqueous solution obtained by dissolving 675 parts of ferrous sulfate FeSO 4.7H 2 O and 33 parts of sodium dichromate Na 2 Cr 2 O 7.H 2 O in 1370 parts of water was prepared by dissolving 195 parts of caustic soda. twenty five
% caustic soda aqueous solution. Fe 3 O 4 contained in the produced precipitate can be removed by stirring while blowing in a sufficient amount of air during and after the neutralization reaction.
I tried to minimize it. The precipitate thus obtained was analyzed using a popular X-ray diffraction device Miniflex No. 2005 manufactured by Rigaku Denki Co., Ltd. (the target was
(Cu, filter is graphite single crystal for monochrome, voltage 40KV, current 35mA) However, Fe 3 O 4 and
The ratio of the diffraction intensities (peak heights) of Fe 2 O 3 was 0.1. Furthermore, the Fe 3 O 4 /Fe 2 O 3 molar ratio obtained by quantitative analysis after washing away CrO 3 with hot water was 0.0015. These values are small compared to the analytical values of other catalysts shown in Table 2.
The Fe 3 O 4 content was extremely low. This precipitate is filtered, dried, calcined at 400℃, and then crushed to form granules using a tablet machine.
It was molded into a 9.5 mmφ x 6.4 mmL tablet. Finally, this molded article was calcined at 250°C to obtain catalyst A. Further, Catalyst B was obtained by the same procedure as Catalyst A except that the calcination at 400° C. before molding was omitted. The loss on ignition of these catalysts A and B was 1.2% and 10.5% by weight, respectively. Ignition loss of catalyst B
Most of the 10.5% by weight corresponds to water of crystallization of iron hydroxide. Next, using Catalysts A and B, a catalyst durability test was conducted under the following test conditions. Reaction conditions Reactor: Stainless steel tubular reactor with inner diameter of 50 mm Catalyst loading: 100 ml Supply gas composition: 75% by volume of H2 , 5% by volume of CO2 Space velocity: 5000 1 /hour (dry gas standard) Reaction temperature: 400℃ Test Time: 720 hours (30 days) After the test, the catalyst was taken out from the reactor and its strength (crushing strength in the diametrical direction of the catalyst particles) was measured. The results are shown in Table 1 below.

【表】 400℃焼成を行なつて水酸化鉄の結晶水を無く
し、灼熱減量を1.2重量%とした触媒Aは、長時
間の試験後も殆んど強度が低下することなく、粉
化も全く見られなかつた。300℃を越える温度で
の焼成を行なわず、結晶水を残した触媒Bは、試
験後多少の強度低下が見られたが、粉化は全く生
じておらず、充分な強度を維持していた。 実施例 2 触媒Aと全く同一操作により4種の触媒を調製
したが、反応温度、吹き込み空気量などを変えた
ことにより、Fe3O4含有量の異なる触媒C,D,
E及びFを得た。 これら触媒及び市販触媒につき、X線回折及び
定量分析によりFe3O4量を測定した。結果を次の
第2表に示した。また、これらの触媒について実
施例1と同様な試験を行なつた。結果を第2表に
併せて示した。
[Table] Catalyst A, which was calcined at 400°C to eliminate the crystallization water of iron hydroxide and had a loss on ignition of 1.2% by weight, showed almost no decrease in strength even after a long test, and did not turn into powder. I couldn't see it at all. Catalyst B, which was not calcined at a temperature exceeding 300°C and left crystal water, showed some decrease in strength after the test, but no powdering occurred and maintained sufficient strength. . Example 2 Four types of catalysts were prepared in exactly the same manner as catalyst A, but by changing the reaction temperature, amount of blown air, etc., catalysts C, D, and D with different Fe 3 O 4 contents were prepared.
E and F were obtained. For these catalysts and commercially available catalysts, the amount of Fe 3 O 4 was measured by X-ray diffraction and quantitative analysis. The results are shown in Table 2 below. Further, tests similar to those in Example 1 were conducted on these catalysts. The results are also shown in Table 2.

【表】 Fe3O4量の低い触媒C及びDは、何れも強度低
下が少なく、粉化も全く見られず、充分な強度を
保つていた。Fe3O4量がやや多い触媒E及びF
は、多少の強度低下が見られたものの、粉化は殆
どなく、なおも充分な強度を保つていた。これら
の触媒の数倍のFe3O4を含む市販触媒は、著しい
強度低下を示し、多少の粉化剥離も見られ、全く
脆かつた。 これらの試験結果より、Fe3O4含有量を小さく
なる程強度低下も小さくなることが判つた。な
お、本試験に於いては各種の分析法を採用した
が、これは触媒中のクロムの存在が定量分析方法
の確立を困難にしている為であり、相対的なFe3
O4量については理学電機(株)製RAD−B
[Table] Catalysts C and D with a low amount of Fe 3 O 4 both showed little decrease in strength, no powdering was observed, and maintained sufficient strength. Catalysts E and F with a slightly higher amount of Fe 3 O 4
Although some decrease in strength was observed, there was almost no powdering and still sufficient strength was maintained. Commercially available catalysts containing several times more Fe 3 O 4 than these catalysts showed significant strength loss, some flaking, and were quite brittle. From these test results, it was found that the lower the Fe 3 O 4 content, the smaller the decrease in strength. Although various analytical methods were adopted in this test, this is because the presence of chromium in the catalyst makes it difficult to establish a quantitative analysis method, and the relative Fe 3
For O 4 amount, RAD-B manufactured by Rigaku Denki Co., Ltd.

Claims (1)

【特許請求の範囲】 1 一酸化炭素と水蒸気から水素と二酸化炭素を
生成する一酸化炭素転化反応用鉄クロム系触媒に
於て、酸化鉄及び酸化クロムを主成分とし、触媒
中のFe3O4含有量がX線回折によるFe3O4のピー
ク積分値で表して1500以下と低いことを特徴とす
る一酸化炭素転化触媒。 2 触媒成分としての鉄分が、Fe3O4・nH2O含
有量の少ないFe2O3・nH2O及び/又はFeOOH
である沈殿を焼成したものである特許請求の範囲
1記載の一酸化炭素転化触媒。 3 鉄分が沈殿を300〜700℃で焼成したものであ
る特許請求の範囲2記載の一酸化炭素転化触媒。 4 鉄分が沈殿を灼熱減量2重量%以下迄焼成し
たものである特許請求の範囲2又は3記載の一酸
化炭素転化触媒。
[Claims] 1. An iron-chromium catalyst for a carbon monoxide conversion reaction that produces hydrogen and carbon dioxide from carbon monoxide and water vapor, which contains iron oxide and chromium oxide as main components, and contains Fe 3 O in the catalyst. A carbon monoxide conversion catalyst characterized in that the Fe 3 O 4 content is as low as 1500 or less expressed as a peak integral value of Fe 3 O 4 by X-ray diffraction. 2 The iron content as a catalyst component is Fe 2 O 3 · nH 2 O and/or FeOOH with low Fe 3 O 4 · nH 2 O content.
The carbon monoxide conversion catalyst according to claim 1, which is obtained by calcining a precipitate. 3. The carbon monoxide conversion catalyst according to claim 2, wherein the iron content is obtained by calcining a precipitate at 300 to 700°C. 4. The carbon monoxide conversion catalyst according to claim 2 or 3, wherein the iron content is obtained by sintering a precipitate until the weight loss on ignition is 2% by weight or less.
JP61024156A 1986-02-07 1986-02-07 Carbon monoxide converting catalyst Granted JPS62183853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61024156A JPS62183853A (en) 1986-02-07 1986-02-07 Carbon monoxide converting catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61024156A JPS62183853A (en) 1986-02-07 1986-02-07 Carbon monoxide converting catalyst

Publications (2)

Publication Number Publication Date
JPS62183853A JPS62183853A (en) 1987-08-12
JPH0583304B2 true JPH0583304B2 (en) 1993-11-25

Family

ID=12130477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61024156A Granted JPS62183853A (en) 1986-02-07 1986-02-07 Carbon monoxide converting catalyst

Country Status (1)

Country Link
JP (1) JPS62183853A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7287901B1 (en) 2006-04-07 2007-10-30 ETA SA Manufacture Horlogėre Suisse Reverser mechanism for uni-directional rotational driving of a wheel set

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52143989A (en) * 1976-05-26 1977-11-30 Nissan Girdler Catalyst Manufacture of lowwsulfur highhtemperature carbon monoxide conversion catalysts

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52143989A (en) * 1976-05-26 1977-11-30 Nissan Girdler Catalyst Manufacture of lowwsulfur highhtemperature carbon monoxide conversion catalysts

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7287901B1 (en) 2006-04-07 2007-10-30 ETA SA Manufacture Horlogėre Suisse Reverser mechanism for uni-directional rotational driving of a wheel set

Also Published As

Publication number Publication date
JPS62183853A (en) 1987-08-12

Similar Documents

Publication Publication Date Title
US3923694A (en) Methanol synthesis catalyst
US3850850A (en) Method of making a methanol synthesis catalyst
US5656566A (en) Catalysts
US4305842A (en) Preparation of improved catalyst composition
US20090152500A1 (en) Iron-Based Water Gas Shift Catalyst
JPS5911339B2 (en) dehydrogenation catalyst
US4305846A (en) Solution preparation
CN104039452A (en) Process for producing methanation catalyst and process for methanation of synthesis gas
US4386017A (en) Preparation of improved catalyst composition
US4107089A (en) Catalyst for the synthesis of methanol and method for preparing same
Prasad et al. Synthesis of ultrafine cobalt ferrite by thermal decomposition of citrate precursor
JPH05245376A (en) Copper oxide-aluminum oxide-magnesium oxide catalyst for conversion of carbon monoxide
EP1423192B1 (en) Method of producing spinel based high temperature shift catalysts
JPH0583304B2 (en)
US20070034053A1 (en) Production of active nickel powder and transformation thereof into nickel carbonyl
US3794682A (en) Hydration of nitriles
US2968636A (en) Method of producing an iron oxidechromium oxide complex
JP2833907B2 (en) Ethylbenzene dehydrogenation catalyst and method for producing the same
RU2320409C2 (en) Method of preparing iron oxide containing catalysts
JP2017124366A (en) Catalyst for ammonia decomposition and manufacturing method of hydrogen using catalyst
JPH01107848A (en) Carbon monoxide conversion catalyst
US4482645A (en) Method of making an iron oxidechromium oxide catalyst
JPS59189937A (en) Preparation of steam reforming catalyst of methanol
GB2288341A (en) Catalysts for the shift reaction
JP7039817B2 (en) Manufacturing method of metal composite catalyst and metal composite catalyst manufactured by this method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees