JPH0583236B2 - - Google Patents

Info

Publication number
JPH0583236B2
JPH0583236B2 JP7773385A JP7773385A JPH0583236B2 JP H0583236 B2 JPH0583236 B2 JP H0583236B2 JP 7773385 A JP7773385 A JP 7773385A JP 7773385 A JP7773385 A JP 7773385A JP H0583236 B2 JPH0583236 B2 JP H0583236B2
Authority
JP
Japan
Prior art keywords
enzyme
aqueous solution
gel
metal ions
polyvalent metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7773385A
Other languages
Japanese (ja)
Other versions
JPS61234782A (en
Inventor
Nobumasa Tanaka
Kazuo Sasaoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Starch Chemical Co Ltd
Original Assignee
Nippon Starch Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Starch Chemical Co Ltd filed Critical Nippon Starch Chemical Co Ltd
Priority to JP7773385A priority Critical patent/JPS61234782A/en
Publication of JPS61234782A publication Critical patent/JPS61234782A/en
Publication of JPH0583236B2 publication Critical patent/JPH0583236B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 酵素および/または菌体を利用して、有用な反
応を行わしめ、医薬、食品その他の生産を目的と
する酵素工業は近年、ますますその重要性を増
し、発展を遂げつつある。本発明は、酵素およ
び/または菌体の固定化方法に関するものであ
る。
[Detailed Description of the Invention] (Field of Industrial Application) In recent years, the enzyme industry, which uses enzymes and/or bacterial cells to carry out useful reactions and to produce medicines, foods, and other products, has become increasingly popular. It is gaining importance and developing. The present invention relates to a method for immobilizing enzymes and/or bacterial cells.

(従来の技術) 従来の酵素利用は一般に反応液中に酵素を溶解
するため、酵素の利用効率は極めて低かつた。こ
の欠点を解決するため近年、酵素および/または
菌体を固定化する方法が種々提案されている。こ
のような従来の方法を概括的に示しても次の通り
各種のものがある。(イ)担体結合法、これは水不溶
性の担体に酵素を結合させる方法である。(ロ)架橋
法、これは官能基を2個有する試薬を作用させて
酵素分子同士を架橋することにより不溶化させる
方法である。(ハ)包括法、これはポリアクリルアミ
ドゲルのようなゲル中の酵素を包み込むか酵素を
微孔性フイルムで被覆し、マイクロカプセル化す
る方法である。(例えば、千畑一郎「ライフサイ
エンスをになう増補最近の微生物工業」(昭
57.6.1)(株)化学工業社、P68〜P91) (発明が解決しようとする問題点) 上記の種々の固定化方法には、下記するような
欠点を有することが多く、現在のところ、すべて
の酵素の固定化に適用できる理想的な方法はな
い。即ち、(イ)担体結合法においては、吸着や、イ
オン結合では、担体への酵素の結合力が弱く、酵
素反応時に酵素が担体から脱離する。共有結合で
は、反応条件の設定が難しく、反応時に酵素タン
パクの活性点の破壊が生じ易い。(ロ)架橋法におい
ては、先に述べた共有結合の場合と同様に、反応
条件の設定が難しく、反応時に酵素タンパクの活
性点の破壊が生じ易い。(ハ)包括法においては、ゲ
ルを形成するポリマーの選択が難しく、ポリマー
の種類によつては、安定で適当な強度を有するゲ
ルが得られず、また、酵素が酵素反応時にゲルか
ら流出したり、酵素反応に関与できない状態でゲ
ル中に封じ込められたりする。また、マイクロカ
プセル化の技術が複雑で、微孔性フイルムの材質
や孔径によつては、酵素が酵素反応時に微孔性フ
イルムから流出したり、酵素反応に関与できない
状態で微孔性フイルム中に封じ込められたりす
る。
(Prior Art) Conventional enzyme utilization generally involves dissolving the enzyme in the reaction solution, resulting in extremely low enzyme utilization efficiency. In order to solve this drawback, various methods for immobilizing enzymes and/or bacterial cells have been proposed in recent years. Broadly speaking, there are various types of conventional methods as follows. (a) Carrier binding method: This is a method in which an enzyme is bound to a water-insoluble carrier. (b) Crosslinking method: This is a method of insolubilizing enzyme molecules by crosslinking them with each other using a reagent having two functional groups. (c) Encapsulation method: This is a method in which the enzyme is encapsulated in a gel such as polyacrylamide gel, or the enzyme is coated with a microporous film to form microcapsules. (For example, Ichiro Chibata, ``Recent Microbial Industry to Expand Life Science'' (Sho)
57.6.1) Kagaku Kogyo Co., Ltd., P68-P91) (Problems to be solved by the invention) The various immobilization methods described above often have the following drawbacks, and at present, There is no ideal method that can be applied to the immobilization of all enzymes. That is, in (a) the carrier binding method, the binding force of the enzyme to the carrier is weak due to adsorption or ionic bonding, and the enzyme is detached from the carrier during the enzymatic reaction. With covalent bonds, it is difficult to set reaction conditions, and the active site of the enzyme protein is likely to be destroyed during the reaction. (b) In the cross-linking method, as in the case of the covalent bond described above, it is difficult to set the reaction conditions, and the active site of the enzyme protein is likely to be destroyed during the reaction. (c) In the inclusion method, it is difficult to select the polymer that forms the gel, and depending on the type of polymer, it may not be possible to obtain a gel that is stable and has appropriate strength, and the enzyme may flow out of the gel during the enzymatic reaction. Or, it is sealed in a gel so that it cannot participate in enzymatic reactions. In addition, the microencapsulation technology is complicated, and depending on the material and pore size of the microporous film, the enzyme may flow out of the microporous film during the enzyme reaction, or it may remain in the microporous film in a state where it cannot participate in the enzyme reaction. It may be confined to.

(問題点を解決するための手段) 本発明者らは、上記問題点を解決すべく種々研
究の結果、グルコース、マンノースおよびマンニ
ユロン酸で構成され、そのモル比がグルコース:
マンノース:マンニユロン酸=1:0.4〜0.7:4
〜17でアセチル化度約0〜1.0でアセチル化され
ており、3.5−ジニトロサリチル酸法による分子
量が103〜105である多糖類(以下、本発明の多糖
類と称す)の水溶液を多価金属イオンと接触させ
ることにより得られるゲル化物中に、酵素を保持
させたときは、ゲル化物中の酵素が効率よく酵素
反応に関与するだけでなく、ゲル化物中への酵素
の保持も温和な条件で容易且つ確実になしうるこ
とを見い出し、本発明を完成するに至つた。本発
明の多糖類は、例えば、特公昭58−39441号公報
に示されているように、次のような方法によつて
製造することができる。
(Means for Solving the Problems) As a result of various studies to solve the above problems, the present inventors found that glucose, mannose, and mannuronic acid are used in a molar ratio of glucose:
Mannose: Mannyuronic acid = 1:0.4-0.7:4
An aqueous solution of a polysaccharide (hereinafter referred to as the polysaccharide of the present invention) that has been acetylated with a degree of acetylation of about 0 to 1.0 and has a molecular weight of 10 3 to 10 5 by the 3.5-dinitrosalicylic acid method. When an enzyme is retained in a gel obtained by contacting with metal ions, the enzyme in the gel not only efficiently participates in the enzymatic reaction, but also retains the enzyme in the gel in a gentle manner. We have found that this can be done easily and reliably under certain conditions, and have completed the present invention. The polysaccharide of the present invention can be produced by the following method, for example, as disclosed in Japanese Patent Publication No. 58-39441.

アゾトバクター・ビネランジー(Azotobacter
vinelandii)IFO12018(財団法人醗酵研究所(大
阪市淀川区)より入手)を一般に使用されている
炭素源(例えば、グルコース、澱粉分解物、シヨ
糖等)のほか、無機塩類(リン酸1カリ、リン酸
2カリ、塩化ナトリウム、硫酸カルシウム、硫酸
マグネシウム、酢酸ナトリウム等)微量金属(モ
リブデン酸ナトリウム、硫酸第1鉄等)を水道水
に加えてなる培地に接種し、常法により好気的条
件下で窒素または窒素を含むガスを通気しなが
ら、培養することによつて多糖類を蓄積する培養
終了後、培養液中の菌体等の固形分は、使用目的
に不都合な場合には、遠心分離、ろ過等の操作に
より培養液より除去し、蓄積された多糖類は、硫
酸等を培養液に添加し、酸性とし、沈澱させ、メ
タノール、エタノール、イソプロピルアルコール
等の水溶性溶媒中でカセイソーダ等で中和し、乾
燥させる。
Azotobacter vinelangii
vinelandii) IFO12018 (obtained from Fermentation Research Institute (Yodogawa-ku, Osaka)) in addition to commonly used carbon sources (e.g., glucose, starch decomposition products, sucrose, etc.), as well as inorganic salts (monopotassium phosphate, monopotassium phosphate, Dipotassium phosphate, sodium chloride, calcium sulfate, magnesium sulfate, sodium acetate, etc.) trace metals (sodium molybdate, ferrous sulfate, etc.) are inoculated into a culture medium prepared by adding tap water, and cultured under aerobic conditions using a conventional method. Polysaccharides are accumulated by culturing while aerating nitrogen or nitrogen-containing gas under the atmosphere. After the cultivation is complete, solids such as bacterial bodies in the culture solution may be removed by centrifugation if it is inconvenient for the purpose of use. The accumulated polysaccharides are removed from the culture solution by separation, filtration, etc., by adding sulfuric acid, etc. to the culture solution to make it acidic, precipitate it, and inject it with caustic soda, etc. in a water-soluble solvent such as methanol, ethanol, isopropyl alcohol, etc. Neutralize and dry.

本発明の多糖類を、適当な固形分濃度の水溶液
とし、次いでこの水溶液に多価金属イオンを含む
水溶液を噴霧するか、多価金属イオンを含む水溶
液中に本発明の多糖類の水溶液を浸漬することに
よつてゲル化物を生成できる。上記ゲル化物に酵
素および/または菌体を保持させるには、次の方
法により、行なえる。本発明の多糖類の水溶液と
酵素の水溶液および/または菌体の水中分散液を
混合した混合液に、多価金属イオンを含む水溶液
を噴霧するか、多価金属イオンを含む水溶液中に
上記混合液を浸漬することによつて酵素および/
または菌体を保持するゲル化物を形成できる。上
記混合液を多価金属イオンを含む水溶液中に滴下
することによつてビーズ状のゲル化物を形成でき
る。また、フイルム状、繊維状等の任意形態に本
発明の多糖類の水溶液をロール成型、押し出し成
型し、その後、ゲル化することにより、各種形状
のゲル化物を形成できる。本発明に使用できる多
価金属イオンとしては、カルシウムイオン、マグ
ネシウムイオン、アルミニウムイオン、鉄イオン
等が挙げられる。多価金属イオンを含む水溶液
は、水溶性の多価金属塩、例えば塩化カルシウ
ム、塩化マグネシウム、塩化アルミニウム、塩化
鉄、酢酸マグネシウム等または水酸化カルシウム
等のアルカリを水に溶解させ得られる。また形成
されたゲル化物は適当量のグリタルアルデヒドま
たはタンニンを加えることによつて更に硬化させ
ることができる。また上記混合液にパルプ、綿な
どのセルロース質繊維を混合することによつてゲ
ル化物の強度を向上させることもできる。
The polysaccharide of the present invention is made into an aqueous solution with an appropriate solid content concentration, and then an aqueous solution containing polyvalent metal ions is sprayed onto this aqueous solution, or the aqueous solution of the polysaccharide of the present invention is immersed in an aqueous solution containing polyvalent metal ions. By doing so, a gelled product can be produced. Enzymes and/or microbial cells can be retained in the gel by the following method. An aqueous solution containing polyvalent metal ions is sprayed onto a mixture of an aqueous solution of the polysaccharide of the present invention, an aqueous enzyme solution, and/or a dispersion of bacterial cells in water, or the above mixture is mixed into an aqueous solution containing polyvalent metal ions. Enzymes and/or
Alternatively, a gelatinous material that retains bacterial cells can be formed. By dropping the above-mentioned mixed solution into an aqueous solution containing polyvalent metal ions, a bead-shaped gelled product can be formed. Furthermore, gelled products of various shapes can be formed by roll-molding or extrusion-molding the aqueous solution of the polysaccharide of the present invention into any form such as a film or fiber, and then gelling it. Polyvalent metal ions that can be used in the present invention include calcium ions, magnesium ions, aluminum ions, iron ions, and the like. The aqueous solution containing polyvalent metal ions can be obtained by dissolving a water-soluble polyvalent metal salt such as calcium chloride, magnesium chloride, aluminum chloride, iron chloride, magnesium acetate, etc. or an alkali such as calcium hydroxide in water. The gelled product formed can also be further hardened by adding an appropriate amount of glitaraldehyde or tannin. Further, the strength of the gelled product can be improved by mixing cellulose fibers such as pulp and cotton with the above-mentioned mixed solution.

上記混合液中の本発明の多糖類の濃度は1〜20
%が適当であり、この濃度より低いとゲル化物の
強度が弱くなり、この濃度よりも高いと粘度が高
くなり、取扱いが難しくなる。
The concentration of the polysaccharide of the present invention in the above mixed solution is 1 to 20
% is appropriate; if the concentration is lower than this, the strength of the gelled product will be weakened, and if the concentration is higher than this, the viscosity will be high, making it difficult to handle.

多価金属イオンの水溶液の濃度は0.05M〜10M
が適当であり、この濃度が低すぎると、ゲル化速
度が小さくなりすぎ、この濃度よりも高いとゲル
化が局所的に起こる。
The concentration of aqueous solution of polyvalent metal ions is 0.05M to 10M
is suitable; if this concentration is too low, the gelation rate will be too low, and if this concentration is higher, gelation will occur locally.

本発明により種々の酵素および/または菌体を
固定化することができるが、本発明を適用するに
好適な酵素の例としては、ウレアーゼ、アルコー
ル脱水素酵素、乳酸脱水素酵素、リンゴ酸脱水素
酵素、チアーゼ酵母、グルコースオキシダーゼ、
グルコースオキサダーゼカタラーゼ、O−アミノ
酸オキシダーゼ、ウレアーゼ、ジアミソオキシダ
ーゼ、カタラーゼ、D−アミノ酸オキシダーゼ、
リボキシゲナーゼ、ウリカーゼ、リボヌクレアー
ゼ、ヘキソキナーゼ、リパーゼ、アルカリ性ホス
フアターゼ、酸性ホスフアターゼ、ヌクレオエダ
ーゼ、デオキシリボヌクレアーゼ、αアミラー
ゼ、βアミラーゼ、グリコアミラーゼ、グリコー
スイソメラーゼ、セルラーゼ、ヘミセルラーゼ、
β−グリコシダーゼ、インペルターゼ、アントミ
アナーゼ、ナリンジナーゼ、ヘスペリジナーゼ、
β−グルクロニターゼ、ヒアルロニダーゼ、アル
カリ性プロテアーゼ、セミアルカリプロテアー
ゼ、酸性プロテアーゼ、サーモライシン、コラゲ
ナーゼ、ペプシン−ペプシノーゲン、アミノペプ
チダーゼ、レニン、トリプシン、トリプシン−ト
リプシノーゲン、キモトリプシノーゲン、エラス
ターゼ、エンテロキナーゼ、アシラーゼ、アルギ
ナーゼ、L−グルタミン酸脱炭酸酵素、L−リジ
ン脱炭酸酵素、パパイン、また本発明に用いられ
る好適な菌体の例として上記各酵素の菌体、アエ
ロバクターアエロゲネス、バチルスズブチリス、
エツシエリチアコリ、ストレプトマイセス・フエ
オクロモゲネスなどの細菌菌体等を挙げることが
できる。
Various enzymes and/or bacterial cells can be immobilized according to the present invention, and examples of suitable enzymes to which the present invention is applied include urease, alcohol dehydrogenase, lactate dehydrogenase, and malate dehydrogenase. enzyme, thiase yeast, glucose oxidase,
Glucose oxadase catalase, O-amino acid oxidase, urease, diamisoxidase, catalase, D-amino acid oxidase,
Riboxygenase, uricase, ribonuclease, hexokinase, lipase, alkaline phosphatase, acid phosphatase, nucleoedase, deoxyribonuclease, α-amylase, β-amylase, glycoamylase, glycose isomerase, cellulase, hemicellulase,
β-glycosidase, impeltase, anthomyanase, naringinase, hesperidinase,
β-glucuronidase, hyaluronidase, alkaline protease, semi-alkaline protease, acidic protease, thermolysin, collagenase, pepsin-pepsinogen, aminopeptidase, renin, trypsin, trypsin-trypsinogen, chymotrypsinogen, elastase, enterokinase, acylase, arginase, L-glutamic acid Decarboxylase, L-lysine decarboxylase, papain, and examples of suitable bacterial cells used in the present invention include bacterial cells of the above-mentioned enzymes, Aerobacter aerogenes, Bacillus subtilis,
Bacterial cells such as E. tschierrichiacoli and Streptomyces phaeochromogenes can be mentioned.

(作用) 本発明は以上のように構成されているので固定
化の方法が簡単で、かつあらゆる種類の酵素およ
び/または菌体の固定化に適用できる。固定化の
反応がおだやかな条件のため、酵素タンパクの活
性点の破壊が生じず、かつ酵素および/または菌
体が酵素反応時に流出せず、固定化の効率が高
い。ゲル化物の形状をビーズ状、フイルム状、繊
維状等に容易に形成できる。
(Function) Since the present invention is constructed as described above, the immobilization method is simple and can be applied to the immobilization of all kinds of enzymes and/or bacterial cells. Since the immobilization reaction is carried out under mild conditions, the active site of the enzyme protein is not destroyed, and the enzyme and/or bacterial cells do not flow out during the enzyme reaction, resulting in high immobilization efficiency. The shape of the gelled product can be easily formed into beads, films, fibers, etc.

(実施例) 実施例 1 0.067Nリン酸ナトリウム緩衝液(PH7.2)20ml
にウレアーゼ(フアルマシア・ジヤパン株式会社
製、ナタ豆製)400mgを溶解した液と本発明の多
糖類(グルコース:マンノース:マンニユロン酸
=1:0.5:14、アセチル化度0.8分子量3×104
5%の水溶液40mlを混合する。この混合液を
0.1M塩化カルシウム水溶液に滴下し、ビーズ状
のゲルを得る。このゲル化物を0.1M塩化カルシ
ウム水溶液で洗浄し、ウレアーゼを包含固定化し
たゲル化物50g(湿重量)が得られる。上記ゲル
3gを30%尿素を含む0.05M塩化カルシウム水溶
液100mlに入れ、スターラーで攪拌しながら20℃
15分間保持したのち、その酵素活性を試験し、ウ
レアーゼ標品と比較した。添加酵素の53%に相当
する活性を有しており、活性維持力の極めて高い
ことが認められた。
(Example) Example 1 0.067N sodium phosphate buffer (PH7.2) 20ml
A solution in which 400 mg of urease (manufactured by Pharmacia Japan Co., Ltd., Nata Bean) was dissolved in a solution and the polysaccharide of the present invention (glucose:mannose:mannuronic acid = 1:0.5:14, degree of acetylation 0.8, molecular weight 3 × 10 4 )
Mix 40 ml of 5% aqueous solution. This mixture
Add dropwise to 0.1M calcium chloride aqueous solution to obtain bead-shaped gel. This gelled product is washed with a 0.1M calcium chloride aqueous solution to obtain 50 g (wet weight) of a gelled product containing and immobilizing urease. Add 3 g of the above gel to 100 ml of 0.05 M calcium chloride aqueous solution containing 30% urea, and heat at 20°C while stirring with a stirrer.
After holding for 15 minutes, the enzyme activity was tested and compared to the urease standard. It had an activity equivalent to 53% of that of the added enzyme, and was found to have an extremely high ability to maintain activity.

(発明の効果) 本発明は以上のように構成されているので、簡
単に酵素および/または菌体を固定化できる。ま
たあらゆる種類の酵素および/または菌体の固定
化に適用でき、固定化される酵素および/または
菌体の活性維持が非常に高い。このため、酵素反
応と酵素の分離操作を容易にし、酵素反応の連続
化を可能にでき、酵素を利用効率を高め、酵素反
応の経済コストを非常に低くすることができる。
(Effects of the Invention) Since the present invention is configured as described above, enzymes and/or bacterial cells can be easily immobilized. Furthermore, it can be applied to the immobilization of all kinds of enzymes and/or microbial cells, and the activity of the immobilized enzymes and/or microbial cells is extremely maintained. Therefore, the enzyme reaction and the separation operation of the enzyme can be facilitated, the enzyme reaction can be made continuous, the enzyme utilization efficiency can be increased, and the economic cost of the enzyme reaction can be extremely reduced.

Claims (1)

【特許請求の範囲】[Claims] 1 グルコース、マンノースおよびマンニユロン
酸で構成され、そのモル比がグルコース:マンノ
ース:マンニユロン酸=1:0.4〜0.7:4〜17で
アセチル化度約0〜1.0でアセチル化されており、
3.5−ジニトロサリチル酸法による分子量が103
105の多糖類の水溶液と酵素の水溶液および/ま
たは菌体の水中分散液を混合した混合液を、多価
金属イオンを含む水溶液と接触させゲル化させる
ことを特徴とする酵素および/または菌体の固定
化方法。
1 It is composed of glucose, mannose and mannuronic acid, and is acetylated with a molar ratio of glucose: mannose: mannuronic acid = 1:0.4 to 0.7:4 to 17 and a degree of acetylation of about 0 to 1.0,
The molecular weight by the 3.5-dinitrosalicylic acid method is 10 3 ~
10 An enzyme and/or fungi characterized by contacting an aqueous solution containing polyvalent metal ions with an aqueous solution containing polyvalent metal ions to gel a mixture of an aqueous solution of the polysaccharide of 5 , an aqueous enzyme solution, and/or an aqueous dispersion of fungal cells. Body immobilization method.
JP7773385A 1985-04-12 1985-04-12 Method of immobilizing enzyme and/or mold Granted JPS61234782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7773385A JPS61234782A (en) 1985-04-12 1985-04-12 Method of immobilizing enzyme and/or mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7773385A JPS61234782A (en) 1985-04-12 1985-04-12 Method of immobilizing enzyme and/or mold

Publications (2)

Publication Number Publication Date
JPS61234782A JPS61234782A (en) 1986-10-20
JPH0583236B2 true JPH0583236B2 (en) 1993-11-25

Family

ID=13642104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7773385A Granted JPS61234782A (en) 1985-04-12 1985-04-12 Method of immobilizing enzyme and/or mold

Country Status (1)

Country Link
JP (1) JPS61234782A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2714955B2 (en) * 1988-07-16 1998-02-16 日澱化學株式会社 Method for producing gel food
JP2709480B2 (en) * 1988-08-26 1998-02-04 日澱化學株式会社 Gel base material for air freshener

Also Published As

Publication number Publication date
JPS61234782A (en) 1986-10-20

Similar Documents

Publication Publication Date Title
US3959080A (en) Carrier matrix for the fixation of biochemically effective substances and process for the preparation thereof
US3802997A (en) Method of stabilizing enzymes
GB1573181A (en) Catalytically active substances
US4438196A (en) Immobilization of biocatalysts on granular carbon
JPH01503677A (en) Immobilization method
US3730841A (en) Encapsulated carrier bound enzymes
JP2683524B2 (en) Immobilization carrier
Kennedy et al. Immobilisation of biocatalysts by metal-link/chelation processes
US4601981A (en) Enzymatically active protein-enzyme complex membranes
JPH0583236B2 (en)
US4764467A (en) Preparation of an insoluble biocatalyst
Roy et al. Immobilization of β-glucosidase from Myceliophthora thermophila D-14
JPS5974984A (en) Preparation of immobilized enzyme or microorganism
JPH0257919B2 (en)
Anita et al. Immobilization of urease using Amberlite MB-1
Lee et al. Immobilization of aminoacylase by encapsulation in poly‐l‐lysine‐stabilized calcium alginate beads
US5846762A (en) Structurally stable gel bead containing entrapped enzyme and method for manufacture thereof
CA1319632C (en) Method for microbial immobilization
Svensson et al. Entrapment of chemical derivatives of glycoamylase in calcium alginate gels
JPS6239998B2 (en)
JPS59109173A (en) Preparation of immobilized biocatalyst
Liu et al. Immobilization of isoamylase on carboxymethyl-cellulose and chitin
JPH0517835B2 (en)
JPH0650982B2 (en) Biocatalyst immobilization method
JPS63160586A (en) Production of immobilized enzyme