JPH0583198A - Two-way optical communication system - Google Patents

Two-way optical communication system

Info

Publication number
JPH0583198A
JPH0583198A JP3239892A JP23989291A JPH0583198A JP H0583198 A JPH0583198 A JP H0583198A JP 3239892 A JP3239892 A JP 3239892A JP 23989291 A JP23989291 A JP 23989291A JP H0583198 A JPH0583198 A JP H0583198A
Authority
JP
Japan
Prior art keywords
optical communication
communication device
main body
emitting element
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3239892A
Other languages
Japanese (ja)
Inventor
Makoto Hashimoto
誠 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3239892A priority Critical patent/JPH0583198A/en
Publication of JPH0583198A publication Critical patent/JPH0583198A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To extend the service life of a light emitting element by setting a required minimum luminous intensity to the light emitting element for optical communication in response to its transmission distance. CONSTITUTION:A signal from a signal transmission circuit 7 at an optical communication equipment main body 4 is received by a signal reception circuit 8 via a loopback circuit 6 at an optical communication equipment main body 5 and a check circuit 13 checks with the original signal and a luminous intensity of a light emitting element 1 is set to a required minimum intensity based on the result in response to the distance and a reception sensitivity of an opposite light receiving element 2' to reduce the power consumption and then the deteriorating speed of the light emitting element 1 itself by heat reduction is suppressed and the service life is extended.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、相対向する光通信装置
本体間で双方向に光信号による通信が行われる双方向光
通信方式に係わり、特に光通信が行われる際に、光信号
送信用発光素子での発光強度レベルが必要最小限に設定
され得るようにした双方向光通信方式に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bidirectional optical communication system in which optical signals are bidirectionally communicated between opposite optical communication apparatus bodies, and in particular, optical signal transmission is performed when optical communication is performed. The present invention relates to a two-way optical communication system in which a light emission intensity level in a credit light emitting element can be set to a necessary minimum level.

【0002】[0002]

【従来の技術】光ファイバ通信における伝送距離の設定
に関しては、例えば「新版・光ファイバ通信」(昭和5
8年6月12日、株式会社 電気通信技術ニュース社発
行、頁357)に記載されているように、以下の式で求
められるものとなっている。◎
2. Description of the Related Art Regarding the setting of transmission distance in optical fiber communication, for example, "new edition optical fiber communication" (Showa 5)
As described in June 12, 1996, published by Telecommunications Technology News Co., Ltd., page 357), it is obtained by the following formula. ◎

【0003】[0003]

【数1】 但し、l:中継距離 Ps:送出パワー Pr:受光パワー PI:光コネクタ等の局内損失 Pm:システムマージン Pc:線路マージン L:線路損失(dB/km、接続損失を含む) である。Where: l: relay distance P s : transmitted power P r : received light power P I : internal loss of optical connector, etc. P m : system margin P c : line margin L: line loss (dB / km, connection loss) Is included).

【0004】さて、上記式における受光パワーPr は所
要の符号誤り率(エラーレート)により定まるSNR劣
化分を考慮して決定される一方、また、送出パワーPs
に直接係わる発光素子の発光強度については、長距離を
光信号が無中継で伝送される場合にはその強度が大きい
程望ましいが、発光強度を常時一定に維持する必要があ
るものとなっている。その発光強度の詳細については、
上記著書の頁224、225に示されているが、発光強
度は図5に示されているように、直流電流(発光強度設
定電流)に依存する一方では、経時的に劣化されること
は否めないものとなっている。したがって、現実的には
発光強度は想定伝送距離とシステム寿命とを考慮しつつ
設定され、しかも一般的には背光を利用したフィードバ
ック制御により実際の発光強度が設定発光強度に常時一
致すべく、発光強度の劣化に応じて発光強度設定電流が
増加せしめられるようになっている。
The received light power P r in the above equation is determined in consideration of the SNR deterioration amount determined by the required code error rate (error rate), while the transmitted power P s is also determined.
Regarding the light emission intensity of the light emitting element directly related to the above, the larger the light intensity is, the more preferable it is when the optical signal is transmitted without a repeater over a long distance, but it is necessary to keep the light emission intensity constant at all times. .. For details of the emission intensity,
As shown in pages 224 and 225 of the above-mentioned book, the emission intensity depends on the direct current (emission intensity setting current) as shown in FIG. It is not there. Therefore, in reality, the emission intensity is set in consideration of the assumed transmission distance and the system life, and in general, the feedback control using the back light is used so that the actual emission intensity always matches the set emission intensity. The emission intensity setting current can be increased according to the deterioration of intensity.

【0005】[0005]

【発明が解決しようとする課題】以上のように、上記従
来技術では、設定された最大伝送距離を満足させること
を前提として、しかもそのシステム寿命を考慮しつつ、
発光強度としての送出パワーPs が設定されるようにな
っている。しかしながら、実際には使用伝送距離として
は、設定最大伝送距離よりも短い距離で使用しなければ
ならず、長/中/短距離等に分類された上、その距離に
応じて送信側、受信側、双方を対にして、発光強度を設
定せざるを得なく、これがために使い勝手を悪くしてい
るのが実状である。また、既述の式からも判るように、
使用伝送距離に対しては必要以上の発光強度が設定され
るものとなっている。ところで、発光素子の劣化と寿命
については、「光通信素子工学」(昭和59年12月1
5日、工学図書株式会社発行、頁155〜159(LE
D),頁281〜298(LD)」に詳細に記述されて
いるが、発光強度が強い程に早期に劣化が開始されるも
のとなっている。また、発光強度を大きくするためには
発光強度設定電流を多く流す必要があるが、その温度上
昇により更に劣化は加速されるばかりか、必要以上に電
力が徒に消費されるものとなっている。
As described above, in the above-mentioned prior art, it is premised that the set maximum transmission distance is satisfied, and the system life is taken into consideration.
The transmission power P s as the light emission intensity is set. However, actually, the transmission distance to be used must be shorter than the set maximum transmission distance, and it is classified into long / medium / short distances, etc. However, it is unavoidable that the emission intensity is set by pairing the two, which makes usability worse. Also, as can be seen from the above formula,
The emission intensity more than necessary is set for the transmission distance used. By the way, regarding the deterioration and life of the light emitting element, "Optical Communication Element Engineering" (December 1, 1984)
Published by Engineering Books Co., Ltd., pages 155-159 (LE
D), pp. 281-298 (LD) ", the higher the emission intensity, the earlier the deterioration starts. Further, in order to increase the emission intensity, it is necessary to flow a large amount of emission intensity setting current, but the temperature rise not only accelerates the deterioration, but also consumes more power than necessary. ..

【0006】本発明の第1の目的は、伝送距離に応じた
必要最低限の発光強度の設定が行われることによって、
発光素子の長寿命化・低消費電力化を図りつつ、光通信
装置本体間で双方向に光信号による通信を行い得る双方
向光通信方式を供するにある。本発明の第2の目的は、
その第1の目的に加え、対向光通信装置本体における受
光素子での受光閾値をも考慮の上、光通信装置本体間で
双方向に光信号による通信を行い得る双方向光通信方式
を供するにある。
The first object of the present invention is to set the minimum required light emission intensity according to the transmission distance.
There is a bidirectional optical communication system that enables bidirectional communication of optical signals between optical communication device bodies while achieving a long life and low power consumption of the light emitting element. The second object of the present invention is to
In addition to the first purpose, in consideration of the light receiving threshold value of the light receiving element in the main body of the opposite optical communication device, to provide a bidirectional optical communication system capable of bidirectional optical signal communication between the main bodies of the optical communication devices. is there.

【0007】[0007]

【課題を解決するための手段】上記第1の目的は、基本
的には、発光素子および受光素子を具備してなる、相対
向してなる光通信装置本体各々が光伝送路を介し双方向
に光通信を行うに際して、少なくとも一方の光通信装置
本体では、他方の光通信装置本体への送信信号送信時点
から、その他方の光通信装置本体で折返しされたその送
信信号が受信されるまでに要される時間に応じて、発光
素子に対する発光強度レベルを最適に設定することで達
成される。上記第2の目的は、また、基本的には、発光
素子および受光素子を具備してなる、相対向してなる光
通信装置本体各々が光伝送路を介し双方向に光通信を行
うに際しては、少なくとも一方の光通信装置本体では、
他方の光通信装置本体への送信信号と、その他方の光通
信装置本体からの折返し受信された該送信信号との間で
のチェック結果に応じて、発光素子に対する発光強度レ
ベルを最適に設定することで達成される。
The first object of the present invention is basically that the optical communication device main bodies, which are equipped with a light emitting element and a light receiving element and face each other, are bidirectional via an optical transmission line. At the time of performing optical communication with the optical communication device main body, at least one optical communication device main body from the transmission signal transmission time to the other optical communication device main body until the transmission signal folded back by the other optical communication device main body is received. This is achieved by optimally setting the light emission intensity level for the light emitting element according to the time required. The above-mentioned second purpose is basically, when the optical communication device main bodies each including a light emitting element and a light receiving element and facing each other perform bidirectional optical communication via an optical transmission line. , At least one optical communication device body,
The emission intensity level for the light emitting element is optimally set according to the check result between the transmission signal to the other optical communication device main body and the transmission signal received back from the other optical communication device main body. Can be achieved.

【0008】[0008]

【作用】少なくとも一方の光通信装置本体では、他方の
光通信装置本体への送信信号送信時点から、その他方の
光通信装置本体で折返しされたその送信信号が受信され
るまでに要される時間から伝送距離が知れることから、
その伝送距離に応じて発光素子に対する最適な発光強度
レベル、即ち、必要最小限な発光強度設定電流が設定さ
れ得るものである。また、対向光通信装置本体における
受光素子での受光閾値をも考慮しつつ発光素子に対する
発光強度レベルを設定するには、少なくとも一方の光通
信装置本体では、他方の光通信装置本体への送信信号
と、その他方の光通信装置本体からの折返し受信された
該送信信号との間でのチェック結果に応じて発光素子に
対する発光強度レベルを必要最小限に設定すればよいも
のである。
In at least one optical communication device main body, the time required from the time when the transmission signal is transmitted to the other optical communication device main body until the transmission signal returned by the other optical communication device main body is received. Since the transmission distance is known from
The optimum emission intensity level for the light emitting element, that is, the minimum required emission intensity setting current can be set according to the transmission distance. Further, in order to set the emission intensity level for the light emitting element while also considering the light receiving threshold value of the light receiving element in the opposite optical communication device main body, at least one optical communication device main body transmits the transmission signal to the other optical communication device main body. The light emission intensity level for the light emitting element may be set to a necessary minimum according to the check result between the transmission signal received back from the other optical communication device main body.

【0009】[0009]

【実施例】以下、本発明を図1から図4により説明す
る。先ず光通信装置本体間の伝送距離に応じて発光素子
に対する発光強度が設定される場合について説明すれ
ば、図1はそのような発光強度設定が考慮された双方向
光通信システムの一例でのシステム構成を示したもので
ある。これによる場合、基本的には、光通信装置本体4
からの光信号は発光素子1、光伝送路3、受光素子2′
を介し光通信装置本体5で受信される一方、光通信装置
本体5からの光信号はまた、発光素子1′、光伝送路
3、受光素子2を介し光通信装置本体4で受信されるこ
とで、双方向に光通信が可能となっている。本例では、
図示のように、光通信装置本体4側の所定位置には伝送
路引込み回路10が、また、光通信装置本体5側の所定
位置には折返し回路6が設けられることで、発光素子1
での発光強度が必要最小限に設定され得るものとなって
いる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to FIGS. First, the case where the light emission intensity for the light emitting element is set according to the transmission distance between the optical communication device bodies will be described. FIG. 1 shows a system as an example of a bidirectional optical communication system in which such light emission intensity setting is taken into consideration. It shows the configuration. In this case, basically, the optical communication device main body 4
The optical signal from the light emitting element 1, the optical transmission line 3, the light receiving element 2 '
While being received by the optical communication device body 5 via the optical communication device body 5, the optical signal from the optical communication device body 5 is also received by the optical communication device body 4 via the light emitting element 1 ′, the optical transmission line 3, and the light receiving element 2. Thus, bidirectional optical communication is possible. In this example,
As shown in the figure, the transmission line pull-in circuit 10 is provided at a predetermined position on the optical communication device main body 4 side, and the folding circuit 6 is provided at a predetermined position on the optical communication device main body 5 side.
It is possible to set the light emission intensity at the minimum required level.

【0010】通常の双方向光通信では以上の如くにして
光通信が行われるが、発光素子1に対し発光強度が設定
されるに際しては、光通信装置本体4による制御下に、
光伝送路3は伝送路引込み回路10に引き込まれる一
方、折返し回路6では伝送路引込み回路10側からの光
信号は光通信装置本体5側に送出されることなく、その
まま光伝送路3を介し伝送路引込み回路10側に返送さ
れるものとなっている。即ち、図2にはその発光素子に
対する発光強度設定の際での動作フローが示されている
が、これを参照しつつ発光強度設定動作を説明すれば、
発光強度設定に際しては、光通信装置本体4による制御
下に、光通信装置本体5側には事前にその旨が通知され
た後に、伝送路引込み回路10が伝送路引込み状態(実
線表示状態)におかれるとともに、発光強度制御部9内
の制御回路12が起動されるものとなっている。光通信
装置本体5側ではその事前通知により折返し回路6が折
返し状態(実線表示状態)におかれるものである。さ
て、制御回路12が起動された場合にはその制御下に、
信号送信回路7からは発光強度調整用信号が送出される
が、その信号は伝送路引込み回路10を介し発光素子1
で光信号に変換された上、光伝送路3、受光素子2′、
折返し回路6、発光素子1′、光伝送路3、受光素子
2、伝送路引込み回路10を介し信号受信回路8によっ
て受信されるようになっているが、その信号の送出から
受信に要されるまでの時間はタイミング回路11によっ
てカウントされるものとなっている。その送出から受信
に要されるまでの時間は一応伝送距離に依存すると考え
られることから、制御回路12ではその時間から伝送距
離を判断した上、その伝送距離に応じた発光強度を発光
素子1に対し最適に、即ち、必要最小限なものとして設
定し得るものである。その際での発光強度の設定は、勿
論発光強度設定電流によって行えるものである。このよ
うにして、発光素子1に対する発光強度の設定が終了す
れば、その旨は制御回路12より光通信装置本体4に通
知されることで、伝送路引込み回路10での伝送路引込
み状態は解除されるものである。一方、折返し回路6側
でも折返し状態が解除される必要があるが、この解除は
光通信装置本体5による制御下に自動的に行われるもの
となっている。折返し回路6が折返し状態におかれてか
ら、一定時間後にその折返し状態が解除されればよいも
のである。
In the ordinary bidirectional optical communication, the optical communication is performed as described above, but when the light emission intensity is set for the light emitting element 1, under the control of the optical communication device body 4,
While the optical transmission line 3 is pulled into the transmission line pull-in circuit 10, in the folding circuit 6, the optical signal from the transmission line pull-in circuit 10 side is not sent to the optical communication device main body 5 side but is directly passed through the optical transmission line 3. It is to be returned to the transmission line pull-in circuit 10 side. That is, FIG. 2 shows an operation flow when setting the emission intensity for the light emitting element. The emission intensity setting operation will be described with reference to this flow chart.
When setting the emission intensity, the transmission line pull-in circuit 10 is set to the transmission line pull-in state (solid line display state) under the control of the optical communication device main body 4 after the optical communication device main body 5 side is notified in advance. At the same time, the control circuit 12 in the emission intensity control section 9 is activated. On the optical communication device main body 5 side, the loopback circuit 6 is placed in the loopback state (solid line display state) due to the advance notice. Now, when the control circuit 12 is activated, under its control,
A signal for adjusting light emission intensity is sent from the signal transmitting circuit 7, and the signal is transmitted through the transmission line pull-in circuit 10 to the light emitting element 1.
Is converted into an optical signal by the optical transmission line 3, the light receiving element 2 ',
The signal is received by the signal receiving circuit 8 via the folding circuit 6, the light emitting element 1 ′, the optical transmission line 3, the light receiving element 2, and the transmission line pull-in circuit 10. The time until is counted by the timing circuit 11. Since the time from transmission to reception is considered to depend on the transmission distance, the control circuit 12 determines the transmission distance from the time and determines the light emission intensity corresponding to the transmission distance to the light emitting element 1. On the other hand, it can be set optimally, that is, as a necessary minimum. The emission intensity at that time can be set by the emission intensity setting current. In this way, when the setting of the emission intensity for the light emitting element 1 is completed, the control circuit 12 notifies the optical communication device main body 4 of that fact, and the transmission line pull-in state in the transmission line pull-in circuit 10 is released. Is done. On the other hand, the folded-back circuit 6 side also needs to cancel the folded-back state, but this cancellation is automatically performed under the control of the optical communication device main body 5. It suffices that the folded state is released after a certain period of time after the folded circuit 6 is placed in the folded state.

【0011】なお、以上の例では、発光素子1に対する
発光強度の設定開始制御は光通信装置5によって、ま
た、その設定終了制御は制御回路12によっているが、
これ以外の方法によっても発光強度は設定可能となって
いる。発光強度の設定シーケンスは予め知れていること
から、例えば制御回路12を含むようにして、光通信装
置本体4,5間での事前通信により発光強度の設定開始
制御と設定終了制御を自動的に行い得るものである。ま
た、以上の例では、光通信装置本体4側の発光素子1に
対する発光強度の設定のみが行われているが、光通信装
置本体5側の発光素子1´に対しても制御回路12相当
の発光強度設定機能を持たせるようにすれば、光通信装
置本体4側での伝送距離結果を伝送路3を介し光通信装
置本体5側に通知することによって、光通信装置本体5
側の発光素子1´にその伝送距離に応じた発光強度を設
定することも可能である。尤も、光通信装置本体4,5
が同格である場合には、これら光通信装置本体4,5を
対称型に構成するようにして、即ち、光通信装置4側に
折返し回路を、光通信装置5側には伝送路引込み回路や
発光強度制御回路等を持たせるようにして、発光素子
1′に対し発光強度を設定することも可能となってい
る。
In the above example, the light emission intensity setting start control for the light emitting element 1 is performed by the optical communication device 5, and the setting end control is performed by the control circuit 12.
The emission intensity can be set by a method other than this. Since the setting sequence of the emission intensity is known in advance, for example, by including the control circuit 12, it is possible to automatically perform the setting start control and the setting end control of the emission intensity by the prior communication between the optical communication device bodies 4 and 5. It is a thing. Further, in the above example, only the light emission intensity is set for the light emitting element 1 on the optical communication device main body 4 side, but the light emitting element 1 ′ on the optical communication device main body 5 side is equivalent to the control circuit 12. By providing a light emission intensity setting function, the optical communication device main body 5 side is notified of the transmission distance result on the optical communication device main body 4 side via the transmission line 3.
It is also possible to set the light emission intensity according to the transmission distance of the light emitting element 1'on the side. However, the optical communication device bodies 4, 5
, The optical communication device main bodies 4 and 5 are configured symmetrically, that is, the folding circuit is provided on the optical communication device 4 side and the transmission line lead-in circuit is provided on the optical communication device 5 side. It is also possible to set a light emission intensity for the light emitting element 1'by providing a light emission intensity control circuit or the like.

【0012】以上のようにして、一旦発光素子に対する
発光強度の設定が行われた後は、その背光を利用したフ
ィードバック制御によりその発光強度を一定に制御する
ことが可能となるが、このようなフィードバック制御を
採用することなく、随時、あるいは定期的に発光素子に
対し発光強度が設定されるようにしても、発光素子の劣
化に容易に対処し得るものである。
As described above, after the light emission intensity for the light emitting element is once set, it is possible to control the light emission intensity constant by feedback control using the back light. Even if the light emission intensity is set to the light emitting element at any time or periodically without adopting the feedback control, the deterioration of the light emitting element can be easily dealt with.

【0013】以上、伝送距離に応じて発光強度を設定す
る場合について説明したが、一方の光通信装置側で折返
された信号を元の信号との間で比較照合することによっ
ても、発光素子に対し発光強度を設定し得るものとなっ
ている。図3はそのような発光強度設定が考慮された双
方向光通信システムの一例でのシステム構成を、また、
図4はその場合での発光素子に対する発光強度設定の際
での動作フローを示したものである。図3に示すよう
に、図1に示すものとの実質的な相違はタイミング回路
11がチェック回路13に置換され、チェック回路13
では信号送信回路7から送信された信号と、信号受信回
路8で受信された信号のチェックが行われた上、そのチ
ェック結果が制御回路12へ通知されるが、制御回路1
2ではそのチェック結果如何によって発光素子1に対し
発光強度が設定されるものとなっている。図4に示すよ
うに、送信回路7から送信された信号が正しく戻ってく
る、即ち、光通信装置本体5側での受信素子2´で正し
く受信し得る発光強度閾値レベルが検出されており、既
述の式に示すシステムマージンPmや線路マージンPc
使用期間中での劣化等のマージンが考慮された上、発光
素子1に対し最適な発光強度が設定されるようにしたも
のである。発光強度の設定開始制御やその終了制御、更
には光通信装置本体5側での発光素子1´に対する発光
強度設定についても事情は先の場合に同様となってい
る。特に、図3に示す例では、対向光通信装置本体側で
の受光素子の特性を見込んだ発光強度の設定を行えるの
で、先の場合に比しより細かな設定が行えるものとなっ
ている。また、使用時間により随時、あるいは周期的
(例えば1年毎等)に発光強度の設定を行うようにすれ
ば、発光素子自体の劣化に対応して、より細かな設定を
行う(即ち、設定周期期間中の劣化分を見込むだけでよ
い)ことも可能である。
The case where the light emission intensity is set according to the transmission distance has been described above. However, by comparing and collating the signal returned by one of the optical communication devices with the original signal, the light emitting element can be obtained. On the other hand, the emission intensity can be set. FIG. 3 shows a system configuration of an example of a bidirectional optical communication system in which such emission intensity setting is taken into consideration.
FIG. 4 shows an operation flow in setting the emission intensity for the light emitting element in that case. As shown in FIG. 3, the substantial difference from that shown in FIG. 1 is that the timing circuit 11 is replaced with a check circuit 13,
Then, the signal transmitted from the signal transmission circuit 7 and the signal received by the signal reception circuit 8 are checked, and the check result is notified to the control circuit 12.
In 2, the light emission intensity is set for the light emitting element 1 depending on the check result. As shown in FIG. 4, the signal transmitted from the transmission circuit 7 is correctly returned, that is, the emission intensity threshold level that can be correctly received by the receiving element 2'on the optical communication device main body 5 side is detected, The system margin P m and the line margin P c shown in the above equations,
In consideration of a margin such as deterioration during the use period, an optimum light emission intensity is set for the light emitting element 1. The situation is similar to the previous case regarding the setting start control and the ending control of the light emission intensity, and the light emission intensity setting for the light emitting element 1'on the optical communication device main body 5 side. In particular, in the example shown in FIG. 3, since the emission intensity can be set in consideration of the characteristics of the light receiving element on the main body of the opposed optical communication device, finer setting can be performed as compared with the above case. Further, if the light emission intensity is set at any time or periodically (for example, every year) according to the usage time, more detailed setting is performed in response to the deterioration of the light emitting element itself (that is, the set period). It is also possible to estimate the deterioration amount during the period).

【0014】以上のように、本発明によれば、発光素子
の発光強度を伝送距離に応じて、あるいはまたその伝送
距離ばかりか、対向光通信装置側での受光素子の受光閾
値をも考慮して、発光素子に必要最最小限の発光強度を
設定し得ることから、発光素子の劣化速度を遅くし得る
ばかりか、発光素子自体の長寿命化が図れるものとなっ
ている。また、対向光通信装置側での受信感度に応じて
発光強度の設定が行われる場合は、伝送距離による使い
分けも不要となっている。従って、設備時の使い勝手が
よくなるだけでなく、例えば一般家庭をも対象とする、
きたるべきケーブル通信網「Fiber to the
Home」時代の光通信網においては、発光素子の数は
その規模が数千万個を超えると予想されるが、そのラン
ニングコストを併せ低減させる効果も同時に得られるも
のとなっている。更に、発光強度設定電流も必要最低限
を抑えられるので、低消費電力化にも大きな効果があ
り、この低消費電力化により発熱も抑えられるので、発
光素子の長寿命化に関しては相乗効果が得られるものと
なっている。更にまた、サービスの継続性が強く要求さ
れる通信装置においては、発光素子の長寿命化によりそ
のサービス性、保守性が向上される、といった効果があ
る。
As described above, according to the present invention, the light emission intensity of the light emitting element depends on the transmission distance, or in addition to the transmission distance, the light receiving threshold value of the light receiving element on the side of the opposite optical communication device is also taken into consideration. Since the minimum required light emission intensity can be set for the light emitting element, not only can the deterioration rate of the light emitting element be slowed, but the life of the light emitting element itself can be extended. Further, when the light emission intensity is set according to the reception sensitivity on the side of the opposite optical communication device, it is not necessary to properly use it depending on the transmission distance. Therefore, not only the usability at the time of equipment is improved, but also for general households, for example.
Coming Cable Communication Network "Fiber to the"
In the optical communication network in the "Home" era, the number of light emitting elements is expected to exceed tens of millions, but the effect of reducing the running cost is also obtained at the same time. Furthermore, since the emission intensity setting current can be suppressed to the minimum necessary, it also has a great effect on low power consumption, and this low power consumption also suppresses heat generation, so that a synergistic effect can be obtained in terms of extending the life of the light emitting element. It is supposed to be. Furthermore, in a communication device in which continuity of service is strongly required, there is an effect that service life and maintainability are improved by extending the life of the light emitting element.

【0015】[0015]

【発明の効果】以上、請求項1,2によれば、伝送距離
に応じた必要最低限の発光強度の設定が行われることに
よって、発光素子の長寿命化・低消費電力化を図りつ
つ、光通信装置本体間で双方向に光信号による通信を行
い得、また、請求項3,4による場合には、そのような
効果に加え、対向光通信装置本体における受光素子での
受光閾値をも考慮の上、光通信装置本体間で双方向に光
信号による通信を行い得るものとなっている。
As described above, according to the first and second aspects of the present invention, by setting the minimum required light emission intensity according to the transmission distance, the life and the power consumption of the light emitting element can be extended, Optical signal communication can be performed bidirectionally between the optical communication device bodies, and in addition to the above effects, the light receiving threshold value in the light receiving element in the counter optical communication device body can also be achieved in addition to such effects. In consideration of this, bidirectional optical signal communication can be performed between the optical communication device bodies.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、光通信装置本体間の伝送距離に応じて
発光素子に対する発光強度が設定可とされた双方向光通
信システムの一例でのシステム構成を示す図
FIG. 1 is a diagram showing a system configuration of an example of a bidirectional optical communication system in which a light emission intensity with respect to a light emitting element can be set according to a transmission distance between optical communication device bodies.

【図2】図2は、その発光素子に対する発光強度設定の
際での動作フローを示す図
FIG. 2 is a diagram showing an operation flow when setting a light emission intensity for the light emitting element.

【図3】図3は、光通信装置本体間の伝送距離以外に、
対向光通信装置本体側での受光素子の受光特性を考慮し
て、発光素子に対する発光強度が設定可とされた双方向
光通信システムの一例でのシステム構成を示す図
FIG. 3 is a diagram showing the transmission distance between the optical communication device bodies,
The figure which shows the system configuration in an example of the bidirectional optical communication system in which the light emission intensity for the light emitting element can be set in consideration of the light receiving characteristics of the light receiving element on the opposite optical communication device main body side.

【図4】図4は、その場合での発光素子に対する発光強
度設定の際での動作フローを示す図
FIG. 4 is a diagram showing an operation flow at the time of setting the light emission intensity for the light emitting element in that case.

【図5】図5は、発光強度の劣化と発光強度設定電流と
の関係を示す図
FIG. 5 is a diagram showing a relationship between deterioration of emission intensity and emission intensity setting current.

【符号の説明】[Explanation of symbols]

1,1′…発光素子、2,2′…受光素子、3…光伝送
路、4,5…光通信装置本体、6…折返し回路、7…信
号送信回路、8…信号受信回路、9…発光強度制御部、
10…伝送路引込み回路、11…タイミング回路、12
…制御回路、13…チェック回路
1, 1 '... Light emitting element, 2, 2' ... Light receiving element, 3 ... Optical transmission line, 4, 5 ... Optical communication device main body, 6 ... Folding circuit, 7 ... Signal transmitting circuit, 8 ... Signal receiving circuit, 9 ... Emission intensity control unit,
10 ... Transmission line pull-in circuit, 11 ... Timing circuit, 12
… Control circuit, 13… Check circuit

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 発光素子および受光素子を具備してな
る、相対向してなる光通信装置本体各々が光伝送路を介
し双方向に光通信を行う双方向光通信方式であって、少
なくとも一方の光通信装置本体では、他方の光通信装置
本体への送信信号送信時点から、該他方の光通信装置本
体で折返しされた該送信信号が受信されるまでに要され
る時間に応じて、発光素子に対する発光強度レベルが最
適に設定されるようにした双方向光通信方式。
1. A two-way optical communication system in which light-emitting elements and light-receiving elements are provided, and the opposed optical communication apparatus main bodies perform bidirectional optical communication via an optical transmission line, and at least one In the optical communication device main body of, the light is emitted according to the time required from the time when the transmission signal is transmitted to the other optical communication device main body until the transmission signal returned by the other optical communication device main body is received. A two-way optical communication system in which the emission intensity level for the device is set optimally.
【請求項2】 発光素子および受光素子を具備してな
る、相対向してなる光通信装置本体各々が光伝送路を介
し双方向に光通信を行う双方向光通信方式であって、少
なくとも一方の光通信装置本体では、随時、あるいは定
期的に他方の光通信装置本体への送信信号送信時点か
ら、該他方の光通信装置本体で折返しされた該送信信号
が受信されるまでに要される時間に応じて、発光素子に
対する発光強度レベルが最適に設定されるようにした双
方向光通信方式。
2. A two-way optical communication system, in which light-emitting elements and light-receiving elements are provided, and the optical communication apparatus main bodies facing each other perform bi-directional optical communication through an optical transmission line, and at least one of them. In the optical communication device main body of No. 1, it is required from the time when the transmission signal is transmitted to the other optical communication device main body to the reception of the transmission signal returned by the other optical communication device main body at any time or periodically. A bidirectional optical communication system in which the emission intensity level for the light emitting element is set optimally according to the time.
【請求項3】 発光素子および受光素子を具備してな
る、相対向してなる光通信装置本体各々が光伝送路を介
し双方向に光通信を行う双方向光通信方式であって、少
なくとも一方の光通信装置本体では、他方の光通信装置
本体への送信信号と、該他方の光通信装置本体からの折
返し受信された該送信信号との間でのチェック結果に応
じて、発光素子に対する発光強度レベルが最適に設定さ
れるようにした双方向光通信方式。
3. A two-way optical communication system in which optical communication apparatus main bodies, which are equipped with a light emitting element and a light receiving element, face each other and which perform bidirectional optical communication via an optical transmission line, and at least one of them. In the main body of the optical communication device, the light emitting element emits light according to the check result between the transmission signal to the other main body of the optical communication device and the transmission signal received back from the other main body of the optical communication device. A two-way optical communication system in which the intensity level is optimally set.
【請求項4】 発光素子および受光素子を具備してな
る、相対向してなる光通信装置本体各々が光伝送路を介
し双方向に光通信を行う双方向光通信方式であって、少
なくとも一方の光通信装置本体では、随時、あるいは定
期的に他方の光通信装置本体への送信信号と、該他方の
光通信装置本体からの折返し受信された該送信信号との
間でのチェック結果に応じて、発光素子に対する発光強
度レベルが最適に設定されるようにした双方向光通信方
式。
4. A two-way optical communication system, comprising a light emitting element and a light receiving element, wherein the optical communication apparatus main bodies, which are opposed to each other, perform bidirectional optical communication via an optical transmission line, and at least one of them. Of the optical communication device main body of the other optical communication device main body depending on the check result between the transmission signal to the other optical communication device main body and the transmission signal received back from the other optical communication device main body. A two-way optical communication system in which the emission intensity level for the light emitting element is optimally set.
JP3239892A 1991-09-19 1991-09-19 Two-way optical communication system Pending JPH0583198A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3239892A JPH0583198A (en) 1991-09-19 1991-09-19 Two-way optical communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3239892A JPH0583198A (en) 1991-09-19 1991-09-19 Two-way optical communication system

Publications (1)

Publication Number Publication Date
JPH0583198A true JPH0583198A (en) 1993-04-02

Family

ID=17051418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3239892A Pending JPH0583198A (en) 1991-09-19 1991-09-19 Two-way optical communication system

Country Status (1)

Country Link
JP (1) JPH0583198A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09172409A (en) * 1995-12-20 1997-06-30 Nec Niigata Ltd Infrared communication equipment
JP2007019858A (en) * 2005-07-07 2007-01-25 Nippon Telegr & Teleph Corp <Ntt> Optical wavelength multiple signal transmitter/receiver
US7620317B2 (en) 2004-12-30 2009-11-17 Finisar Corporation Programmable loss of signal detect hardware and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09172409A (en) * 1995-12-20 1997-06-30 Nec Niigata Ltd Infrared communication equipment
US7620317B2 (en) 2004-12-30 2009-11-17 Finisar Corporation Programmable loss of signal detect hardware and method
JP2007019858A (en) * 2005-07-07 2007-01-25 Nippon Telegr & Teleph Corp <Ntt> Optical wavelength multiple signal transmitter/receiver
JP4598615B2 (en) * 2005-07-07 2010-12-15 日本電信電話株式会社 Optical wavelength division multiplexing signal transmitter / receiver

Similar Documents

Publication Publication Date Title
JP4213218B2 (en) Monitoring system using optical sidetone as test signal
JP3148240B2 (en) Fault location in optical systems
GB2060875A (en) Optical fibre transmission system
US7269355B2 (en) Optical space communications device and control method thereof
JPH0583198A (en) Two-way optical communication system
DE69119763T2 (en) ERROR SIGNALING IN AN OPTICAL TRANSMISSION CONNECTION
JPH11136192A (en) Optical communication system in pds system and its communication method
US4859015A (en) Optical receiver having optical gain medium and mode selector
EP3855123A3 (en) Map generation system
US10615867B1 (en) Optical amplifier signaling systems and methods for shutoff coordination and topology discovery
CN102227878B (en) Transmission method taking echo into account
US5146357A (en) Data communications system that prevents undesired coupling between data stations
WO2009093304A1 (en) Optical transmission system and repeater
CN108781113A (en) Method and apparatus for providing pilot tone
JPH0456431A (en) Feedback control optical communication equipment
JPWO2004010612A1 (en) Optical transmission method and system
JPH09116502A (en) High output optical amplifier repeater with monitoring loopback circuit
JPH08274719A (en) Optical output control circuit of optical communication system
JP4569761B2 (en) Optical transmitter, optical transmission system, and optical repeater
US6002821A (en) Optical data transmission apparatus
JP3018501B2 (en) Optical transceiver
JPS62288Y2 (en)
JPH03216030A (en) Optical transmission system
JPH10221205A (en) Relay for soliton signal type optical fiber transmission system
JP2003264484A (en) Communications system