JPH0583162B2 - - Google Patents

Info

Publication number
JPH0583162B2
JPH0583162B2 JP62235324A JP23532487A JPH0583162B2 JP H0583162 B2 JPH0583162 B2 JP H0583162B2 JP 62235324 A JP62235324 A JP 62235324A JP 23532487 A JP23532487 A JP 23532487A JP H0583162 B2 JPH0583162 B2 JP H0583162B2
Authority
JP
Japan
Prior art keywords
liquid nitrogen
superconductor
temperature
current lead
thermal anchor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62235324A
Other languages
Japanese (ja)
Other versions
JPS6476707A (en
Inventor
Katsuyoshi Toyoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP23532487A priority Critical patent/JPS6476707A/en
Publication of JPS6476707A publication Critical patent/JPS6476707A/en
Publication of JPH0583162B2 publication Critical patent/JPH0583162B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は超電導機器の省エネルギー化に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to energy saving of superconducting equipment.

〔従来の技術〕[Conventional technology]

第2図は例えば実開昭62−91463号公報に示さ
れた従来の電流リードを示す正面図である。図に
おいて、1は銅基幹部、2は電源えの接続端子、
3は超電動機えの接続端子、4はNbTiによる超
電導体からなるグレーデイング層、5はNb3So
よる超電導体からなるグレーデイング層を示して
いる。
FIG. 2 is a front view of a conventional current lead disclosed in, for example, Japanese Utility Model Application Publication No. 62-91463. In the figure, 1 is the copper main body, 2 is the connection terminal for the power supply,
Reference numeral 3 indicates a connection terminal of a superelectric motor, 4 a grading layer made of a superconductor made of NbTi, and 5 a grading layer made of a superconductor made of Nb 3 So.

次に動作について説明する。超電導機器は一般
に液体ヘリウム中に浸漬冷却されている。液体ヘ
リウムは極低温流体であり、熱力学の法則により
その生成には大きな電力を必要とする。通常液体
ヘリウムを1/hの液化速度で液化するために
例えば350〜700ωの冷凍機入力を必要とする。一
方、液体ヘリウムの潜熱は非常に小さく0.7ωの
入熱で1/hのヘリウムが蒸発する。
Next, the operation will be explained. Superconducting equipment is generally immersed and cooled in liquid helium. Liquid helium is a cryogenic fluid, and due to the laws of thermodynamics, its production requires large amounts of electrical power. Normally, in order to liquefy liquid helium at a liquefaction rate of 1/h, a refrigerator input of, for example, 350 to 700 ohms is required. On the other hand, the latent heat of liquid helium is very small, and a heat input of 0.7ω evaporates 1/h of helium.

従つて、電流リードからの熱伝導による入熱、
あるいはジユール発熱による入熱を極力減ずるよ
うな努力が必要である。従来例ではこのために電
流リード低温端部にNbTiによる超電導体からな
るグレーデイング層4、Nb3Soによる超電導体か
らなるグレーデイング層5を使用している。超電
導体は電気抵抗が零であるのでジユール発熱がな
く、かつ一般に超電導体は熱伝導率が小さいた
め、液体ヘリウムへの入熱は減少する。
Therefore, the heat input due to conduction from the current leads,
Alternatively, efforts must be made to reduce the heat input due to the heat generated by the unit as much as possible. For this purpose, in the conventional example, a grading layer 4 made of a superconductor of NbTi and a grading layer 5 made of a superconductor of Nb 3 So are used at the low-temperature end of the current lead. Since superconductors have zero electrical resistance, there is no Joule heat generation, and superconductors generally have low thermal conductivity, so the heat input to liquid helium is reduced.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の電流リードは以上のように構成されてい
る。ところが、NbTiの臨界温度は約9Kであり、
Nb3Soの臨界温度は約18.2Kであるため、例えば
Nb3Soの上端温度が18.2Kより上昇すると超電導
破壊が生じる。超電導体が超電導破壊するとその
電気抵抗は銅などにくらべて非常に高いためジユ
ール発熱が大きく、そのためなだれ現象的に超電
導破壊が生じ、電流リードが焼損するという事故
が起るという問題点があつた。
A conventional current lead is constructed as described above. However, the critical temperature of NbTi is about 9K,
The critical temperature of Nb 3 So is about 18.2 K, so for example
When the top temperature of Nb 3 So rises above 18.2K, superconducting breakdown occurs. When a superconductor breaks down, its electrical resistance is much higher than that of copper, etc., so it generates a large amount of heat, which causes an avalanche of superconducting breakdown, which can lead to accidents such as burnout of current leads. .

この発明は上記のような問題点を解消するため
になされたもので、安定して超電導状態を維持可
能な電流リードを供することを目的としている。
This invention was made to solve the above-mentioned problems, and aims to provide a current lead that can stably maintain a superconducting state.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る電流リードは電流リード中間部
を液体窒素温度にサーマルアンカを取るとともに
このサーマルアンカ以下の部分に臨界温度が液体
窒素沸点以上である超電導体を用いたものであ
る。
The current lead according to the present invention has a thermal anchor at the middle part of the current lead at the temperature of liquid nitrogen, and uses a superconductor whose critical temperature is higher than the boiling point of liquid nitrogen in the part below the thermal anchor.

〔作用〕[Effect]

この発明における電流リードは、超電導体部分
の温度が必ずその臨界温度以下に維持されるの
で、超電導破壊を起すことがない。
In the current lead of the present invention, the temperature of the superconductor portion is always maintained below its critical temperature, so superconductor breakdown does not occur.

〔発明の実施例〕[Embodiments of the invention]

以下この発明の一実施例を図について説明す
る。第1図において1〜3は第2図と同じもので
あり、6は臨界温度が液体窒素の沸点より高い超
電導体である。7はサーマルアンカとしての熱交
換器であり銅基幹部1に例えば半田付されてい
る。8は液体窒素導入口、9は液体窒素導出口、
10a,10bは絶縁継手である。
An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, 1 to 3 are the same as in FIG. 2, and 6 is a superconductor whose critical temperature is higher than the boiling point of liquid nitrogen. Reference numeral 7 denotes a heat exchanger as a thermal anchor, which is soldered to the copper main body 1, for example. 8 is a liquid nitrogen inlet, 9 is a liquid nitrogen outlet,
10a and 10b are insulating joints.

次に動作について説明する。液体窒素熱交換器
7により超電導体6の高温端部は液体窒素沸点以
下に維持されているため超電導破壊を起すことは
ない。超電導体6としては例えばY−Ba−Cu−
O系酸化物を使用する。
Next, the operation will be explained. Since the high temperature end of the superconductor 6 is maintained at a temperature below the boiling point of liquid nitrogen by the liquid nitrogen heat exchanger 7, superconductivity does not break down. As the superconductor 6, for example, Y-Ba-Cu-
Use O-based oxide.

この物質は臨界温度が80K以上であることが実
験的に確認されており、液体窒素の沸点78Kより
臨界温度が高い物質である。
It has been experimentally confirmed that this substance has a critical temperature of 80K or higher, which is higher than the boiling point of liquid nitrogen, which is 78K.

上記実施例としては、サーマルアンカを液体窒
素温度、超電導体をY−Ba−Cu−O系酸化物の
場合について説明したが、より高い臨界温度を持
つ超電導体であれば、その臨界温度に従つて、よ
り高い沸点を有する冷媒によるサーマルアンカと
してもよい。
In the above embodiment, the thermal anchor is at liquid nitrogen temperature and the superconductor is Y-Ba-Cu-O based oxide. However, if the superconductor has a higher critical temperature, the Therefore, a thermal anchor using a refrigerant having a higher boiling point may be used.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、電流リード中間
部に液体窒素温度にサーマルアンカをとり、サー
マルアンカ以下の部分に臨界温度が液体窒素以上
である超電導体としたので、超電導体部分の温度
が必ず臨界温度以下に維持され、安定した動作特
性が得られる。
As described above, according to the present invention, a thermal anchor is provided in the middle part of the current lead at a temperature of liquid nitrogen, and a superconductor whose critical temperature is higher than liquid nitrogen is provided in the part below the thermal anchor, so that the temperature of the superconductor part is reduced. The temperature is always maintained below the critical temperature, resulting in stable operating characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による電流リード
を示す正面図、第2図は従来の電流リードを示す
正面図である。 図において、7は熱交換器サーマルアンカ、8
は液体窒素導入口、9は液体窒素導出口、であ
る。尚、図中同一符号は同一又は相当部分を示
す。
FIG. 1 is a front view showing a current lead according to an embodiment of the present invention, and FIG. 2 is a front view showing a conventional current lead. In the figure, 7 is a heat exchanger thermal anchor, 8
9 is a liquid nitrogen inlet, and 9 is a liquid nitrogen outlet. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 1 液体ヘリウム中の超電導機器に電流を供給す
る電流リードにおいて、該電流リード中間部を液
体窒素温度にサーマルアンカとし、上記電流リー
ドの液体窒素によるサーマルアンカをとつた部分
以下のリード部分を臨界温度が液体窒素の沸点以
上である超電導体を使用したことを特徴とする電
流リード。
1. In a current lead that supplies current to a superconducting device in liquid helium, the middle part of the current lead is a thermal anchor at the temperature of liquid nitrogen, and the part of the lead below the part of the current lead where the thermal anchor is taken from the liquid nitrogen is kept at the critical temperature. A current lead characterized by using a superconductor whose temperature is higher than the boiling point of liquid nitrogen.
JP23532487A 1987-09-17 1987-09-17 Current lead Granted JPS6476707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23532487A JPS6476707A (en) 1987-09-17 1987-09-17 Current lead

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23532487A JPS6476707A (en) 1987-09-17 1987-09-17 Current lead

Publications (2)

Publication Number Publication Date
JPS6476707A JPS6476707A (en) 1989-03-22
JPH0583162B2 true JPH0583162B2 (en) 1993-11-25

Family

ID=16984419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23532487A Granted JPS6476707A (en) 1987-09-17 1987-09-17 Current lead

Country Status (1)

Country Link
JP (1) JPS6476707A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6032374A (en) * 1983-08-02 1985-02-19 Toshiba Corp Superconductive electromagnet device
JPS61193491A (en) * 1985-02-21 1986-08-27 Japanese National Railways<Jnr> Current lead for superconducting apparatus
JPS63292610A (en) * 1987-05-26 1988-11-29 Toshiba Corp Current supply lead for superconducting device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6291463U (en) * 1985-11-27 1987-06-11

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6032374A (en) * 1983-08-02 1985-02-19 Toshiba Corp Superconductive electromagnet device
JPS61193491A (en) * 1985-02-21 1986-08-27 Japanese National Railways<Jnr> Current lead for superconducting apparatus
JPS63292610A (en) * 1987-05-26 1988-11-29 Toshiba Corp Current supply lead for superconducting device

Also Published As

Publication number Publication date
JPS6476707A (en) 1989-03-22

Similar Documents

Publication Publication Date Title
EP0350268B1 (en) Two stage cryocooler with superconductive current lead
Hull High-temperature superconducting current leads
NO20061651L (en) Procedure for operating a superconductor cable in cable system
JPH11144938A (en) Current lead device and refrigerator-cooled superconducting magnet
Yeom et al. Study of cryogenic conduction cooling systems for an HTS SMES
JP3007956B2 (en) Current lead for superconducting coil using functionally graded material
JPH0583162B2 (en)
JP2929622B2 (en) How to use oxide superconductor
JP3082397B2 (en) Superconducting device
Bi et al. Development of 12 kA HTS current lead for accelerator magnet test application
JP2002064014A (en) Superconductive current lead
Kar et al. Electrothermal behavior of the joint of binary current lead of conduction-cooled magnet
US6389685B1 (en) Method for current sharing in a superconducting current lead
JP3127705B2 (en) Current lead using oxide superconductor
Kim et al. Characteristics of conduction-cooled binary current leads used in cryogen-free probe station
Fuchs et al. Development of binary superconducting current leads with a gas cooled normal part
JPH01286729A (en) Superconducting device
Yamaguchi et al. Peltier current lead experiments with a thermoelectric semiconductor near 77 K [and HTSC]
RU71033U1 (en) HIGH-TEMPERATURE SUPERCONDUCTING MATERIAL
Iida Introduction to Section E5: Superconductor Contacts
Cha et al. Flux-flow resistivity of three high-temperature superconductors
Martini et al. Multilayered Bi-2223 conductors for current-lead applications
Chyu et al. Influence of operating temperature and contact thermal resistance on normal zone propagation in a metal-sheathed high-Tc superconductor tape
Wang et al. Design of Bi-based superconducting current lead for SMES
Tomita et al. Mechanical persistent current switch made of RE–Ba–Cu–O bulk with resin impregnation

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term