JPH0583152B2 - - Google Patents

Info

Publication number
JPH0583152B2
JPH0583152B2 JP62068946A JP6894687A JPH0583152B2 JP H0583152 B2 JPH0583152 B2 JP H0583152B2 JP 62068946 A JP62068946 A JP 62068946A JP 6894687 A JP6894687 A JP 6894687A JP H0583152 B2 JPH0583152 B2 JP H0583152B2
Authority
JP
Japan
Prior art keywords
pressure
water
rock
borehole
hydraulic fracturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62068946A
Other languages
Japanese (ja)
Other versions
JPS63235863A (en
Inventor
Yoshinao Hori
Koichi Shin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP62068946A priority Critical patent/JPS63235863A/en
Publication of JPS63235863A publication Critical patent/JPS63235863A/en
Publication of JPH0583152B2 publication Critical patent/JPH0583152B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、原位置における岩盤の地山初期応力
を測定する方法に関する。更に詳細に説明すると
本発明は岩盤中に掘削したボーリング孔を利用し
て地山初期応力を簡易に測定する水圧破砕による
地圧計測方法(Hydrofracturing法)の改良に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for measuring the initial rock mass stress in situ. More specifically, the present invention relates to an improvement in a method for measuring ground pressure using hydraulic fracturing (Hydrofracturing method), which simply measures the initial stress of a rock using a borehole drilled into a bedrock.

(従来の技術) 岩盤の力学的性質は他の材料と異なり、全体か
ら素片を抽出し試験することによつて全体の性質
とすることは通常できない。よつて調査の最終過
程として構造物をつくる原位置において実際に作
用する荷重に類似した荷重をかけて試験を行ない
その性質を把握することは欠かせない。この原位
置試験としては、一般に岩盤の変形特性の把握と
強度の決定が挙げられるが、地下に構造物をつく
る場合とか、大規模な掘削を行なう等の場合には
地山初期応力の測定が加えられ、その簡易な試験
法としてHydrofracturing法(以下水圧破砕法と
いう)がある。
(Prior Art) The mechanical properties of rock are different from those of other materials, and it is usually not possible to determine the properties of the whole by extracting and testing elementary pieces from the whole. Therefore, as a final step in the investigation, it is essential to conduct a test by applying a load similar to the load that actually acts on the structure in its original location, and to understand its properties. This in-situ test generally involves understanding the deformation characteristics of the rock and determining its strength, but when building underground structures or conducting large-scale excavations, it is necessary to measure the initial stress of the rock. In addition, there is a simple test method called Hydrofracturing method (hereinafter referred to as hydraulic fracturing method).

水圧破砕法は、ボーリング孔周囲の岩盤を水圧
により破壊させ、その圧力から初期地圧を測定す
る方法である。従来は、第2図に示すように、ボ
ーリング孔105の円筒形状をなす孔壁をそのま
ま利用し、遮水パツカー104で密閉された試験
箇所106に送水パイプ103を通して水圧を加
えて岩盤に亀裂を入れ、その亀裂107の方向、
圧力等から地圧を求めている(昭和60年5月25日
株式会社オーム社発行の土木における実用岩盤力
学第73〜76頁)。尚、図中符号101は水圧破砕
用ポンプ、102は水圧・流量計測機、108は
水圧のかかる方向である。
Hydraulic fracturing is a method in which the rock around a borehole is destroyed by water pressure, and the initial ground pressure is measured from that pressure. Conventionally, as shown in FIG. 2, the cylindrical hole wall of the borehole 105 is used as is, and water pressure is applied to the test area 106 sealed with a water-blocking packer 104 through a water pipe 103 to create cracks in the rock. Insert the direction of the crack 107,
Earth pressure is determined from pressure, etc. (Practical Rock Mechanics in Civil Engineering, pages 73-76, published by Ohm Co., Ltd., May 25, 1985). In the figure, reference numeral 101 is a hydraulic fracturing pump, 102 is a water pressure/flow rate measuring device, and 108 is a direction in which water pressure is applied.

(発明が解決しようとする問題点) しかしながら、従来の方法ではボーリング孔1
05の円孔周壁面を利用して水圧を加えるため、
ボーリング孔の軸と初期地圧の一主応力軸が一致
する場合には適合するが、そうでないときは主応
力の測定は概略値であることは免れない。このた
め、かかる事態を回避するため方向の異なる3本
のボーリング孔を開けてそれぞれにおいて水圧破
砕を実施し、それらの3つの結果を総合すること
によつて地下深層の初期地圧の主応力の方向、大
きさ等を計算で求めるようにしている。このた
め、正確に初期地圧を求めるために多大な労力、
費用を必要としている。
(Problem to be solved by the invention) However, in the conventional method, the borehole 1
In order to apply water pressure using the circumferential wall of the circular hole of 05,
It is compatible if the axis of the borehole and one principal stress axis of the initial ground pressure coincide, but if this is not the case, the measurement of principal stress is inevitably an approximate value. Therefore, in order to avoid such a situation, three boreholes were drilled in different directions and hydraulic fracturing was carried out in each, and by integrating the three results, it was possible to calculate the principal stress of the initial ground pressure deep underground. The direction, size, etc. are calculated. For this reason, it takes a lot of effort and effort to accurately determine the initial ground pressure.
costs are required.

本発明は、1本のボーリング孔を使用して正確
な初期地圧測定を可能とする計測方法を提供する
ことを目的とする。
An object of the present invention is to provide a measurement method that enables accurate initial ground pressure measurement using one borehole.

(問題点を解決するための手段) かかる目的を達成するため、本発明の初期地圧
計測方法は、地下深部まで掘削したボーリング孔
の所定箇所を球形に整形し、その前後に止水処理
を施してから前記球形の試験部に水圧をかけて岩
盤に亀裂を入れ、その圧力及び亀裂の方向からそ
の地点における岩盤の初期地圧を求めるようにし
ている。
(Means for Solving the Problems) In order to achieve the above object, the initial ground pressure measurement method of the present invention involves shaping a predetermined part of a borehole drilled deep underground into a spherical shape, and applying water stop treatment before and after the shaping. After this, water pressure is applied to the spherical test section to create cracks in the rock, and the initial ground pressure of the rock at that point is determined from the pressure and the direction of the crack.

(作用) したがつて、水圧はボーリング孔の試験箇所の
球壁面に対して垂直方向に働くため、あらゆる方
向に水圧がかかり、ボーリング孔の軸方向に関係
無く、最大地圧応力と中間地圧応力を含む面で岩
盤に亀裂が入る。このため簡単に最小地圧応力の
方向を知ることができる。
(Function) Therefore, since water pressure acts perpendicularly to the spherical wall surface at the test location of the borehole, water pressure is applied in all directions, and the maximum ground pressure stress and intermediate ground pressure are Cracks appear in the rock on surfaces that contain stress. Therefore, the direction of the minimum ground pressure stress can be easily determined.

(実施例) 以下、本発明の構成を図面に示す実施例に基づ
いて詳細に説明する。
(Example) Hereinafter, the configuration of the present invention will be described in detail based on an example shown in the drawings.

第1図に本発明の水圧破砕法による初期地圧計
測方法を原理図で示す。該図において、符号1は
水圧破砕用ポンプ、2は水圧・流量計測機、3は
送水パイプ、4は遮水パツカー、5はボーリング
孔、6は水圧破砕試験箇所、7は水圧破砕により
できた亀裂、8は水圧がかかる方向である。
FIG. 1 shows a principle diagram of the initial ground pressure measurement method using the hydraulic fracturing method of the present invention. In the figure, numeral 1 is a hydraulic fracturing pump, 2 is a water pressure/flow meter, 3 is a water pipe, 4 is a water shield packer, 5 is a borehole, 6 is a hydraulic fracturing test location, and 7 is a hydraulic fracturing test site. The crack 8 is the direction in which water pressure is applied.

この初期地圧計測方法にあつては、計測に先立
つて、まず掘削したボーリング孔5の計測したい
箇所を選定し、そこを球形に整形する。この試験
箇所6の形成は、ボーリング孔5内において径方
向へ突出する半円形のボーリングビツトを備える
特殊な工具例えばケーシングカツターあるいはケ
ーシングリーマー等を改良したもの等を使つて行
なう。
In this initial ground pressure measurement method, prior to measurement, a location in the bored hole 5 to be measured is first selected and shaped into a spherical shape. This test point 6 is formed using a special tool, such as a modified casing cutter or casing reamer, which is equipped with a semicircular boring bit that projects radially within the borehole 5.

その後、球形の測定箇所6の前後を止水処理す
る。止水処理は従来の地圧計測方法と同様に遮水
パツカー4を用いて行う。この遮水パツカー4は
ボーリング孔5を塞ぎ、球形の試験箇所6を実質
的な密閉空間とするためのもので、通常ゴムリン
グなどを採用している。該パツカー4のうち上方
のものは送水パイプ3を貫通させ、下方のものは
送水パイプ3の先端を塞ぐ形状とされている。
尚、送水パイプ3は上下の遮水パツカー4の間で
密閉される球形試験箇所6内に開口する吐止口を
途中に有する。
Thereafter, water is cut off before and after the spherical measurement point 6. Water cutoff processing is performed using the water cutoff packer 4 in the same way as in the conventional ground pressure measurement method. This waterproof packer 4 is used to close the borehole 5 and make the spherical test location 6 a substantially sealed space, and usually uses a rubber ring or the like. The upper one of the packers 4 is shaped to penetrate the water pipe 3, and the lower one is shaped to close the tip of the water pipe 3.
Note that the water pipe 3 has a discharge stop in the middle that opens into a spherical test area 6 that is sealed between the upper and lower water-blocking packers 4.

止水処理の後、前記パツカー4を貫通して測定
箇所6内に導入されている送水パイプ3を通して
水圧破砕用の高圧水を供給する。そして、球形の
試験箇所6にのみ高圧を働かせ岩盤に亀裂7を発
生させる。水圧8は壁面に対し垂直に働くので、
球壁面に対してはあらゆる方向に作用する。この
水圧が岩盤の最小圧縮応力と引張強度に打勝つた
とき、岩盤は破壊し割れ目が発生する。このとき
の水圧をPcとする。次いで、高圧水の供給を停
止すると、亀裂7を通じて水が逃げるため割れ目
が閉じるまで水圧は減少する。この割れ目が閉じ
たときの水圧即ち発生した割れ目の開口を維持す
るに必要な最小圧をPsとする。これら水圧Pc及
びPsから、公知の水圧破壊法によつて最小圧縮
応力、最小圧縮主応力及び最大圧縮応力等を読み
取ることができる。一方亀裂7の有無及び方向は
図示していないがボアホールテレビジヨン装置等
を用いて、あるいはインプレツシヨンパツカー
(impression packer)と磁気装置の併用にて観
察し、これから上述の各応力の方向を知ることが
できる。
After the water stop treatment, high-pressure water for hydraulic fracturing is supplied through the water pipe 3 that penetrates the packer 4 and is introduced into the measurement location 6. Then, high pressure is applied only to the spherical test location 6 to generate cracks 7 in the rock. Since water pressure 8 acts perpendicular to the wall surface,
It acts in all directions on the spherical wall surface. When this water pressure overcomes the rock mass's minimum compressive stress and tensile strength, the rock mass fractures and cracks occur. Let the water pressure at this time be Pc. Next, when the supply of high-pressure water is stopped, the water escapes through the crack 7 and the water pressure decreases until the crack closes. Let Ps be the water pressure when this crack closes, that is, the minimum pressure necessary to keep the crack open. From these hydraulic pressures Pc and Ps, the minimum compressive stress, minimum principal compressive stress, maximum compressive stress, etc. can be read by a known hydraulic fracture method. On the other hand, the presence or absence and direction of the cracks 7 are observed using a borehole television device (not shown) or using a combination of an impression packer and a magnetic device, and from this the direction of each stress mentioned above is determined. You can know.

(発明の効果) 以上の説明より明らかなように、本発明の初期
地圧計測方法は、ボーリング孔に球形の試験部を
設け、該試験部に水圧をかけて亀裂を入れるよう
にしたので、ボーリングの掘削方向に関係無く地
圧計測が可能であり、しかも1本のボーリング孔
で最大地圧応力と中間応力面及び最小地圧圧力の
方向、バランス時の水圧より最小地圧応力の値等
の各種地圧力を求めることができる。
(Effects of the Invention) As is clear from the above explanation, the initial ground pressure measurement method of the present invention provides a spherical test section in a borehole, and applies water pressure to the test section to create a crack. It is possible to measure ground pressure regardless of the drilling direction of the borehole, and in addition, it is possible to measure the maximum ground pressure stress, intermediate stress surface, direction of minimum ground pressure pressure, and the value of the minimum ground pressure stress from the water pressure at balance in one borehole. Various ground pressures can be determined.

したがつて、従来の方法より費用、計測時間及
び労力の面で格段に優れている。
Therefore, it is significantly superior to conventional methods in terms of cost, measurement time, and labor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の球形水圧破砕法による地圧計
測方法を説明する原理図、第2図は従来の地圧計
測方法を説明する原理図である。 1……水圧破砕用ポンプ、2……水圧・流量計
測機、3……送水パイプ、4……遮水パツカー、
5……ボーリング孔、6……水圧破砕試験箇所、
7……水圧破砕によりできた亀裂、8……水圧の
かかる方向。
FIG. 1 is a principle diagram illustrating the earth pressure measuring method using the spherical hydraulic fracturing method of the present invention, and FIG. 2 is a principle diagram illustrating the conventional earth pressure measuring method. 1...Hydraulic fracturing pump, 2...Water pressure/flow measuring device, 3...Water pipe, 4...Water shielding packer,
5...Borehole, 6...Hydraulic fracturing test location,
7... Cracks created by hydraulic fracturing, 8... Direction where water pressure is applied.

Claims (1)

【特許請求の範囲】[Claims] 1 地下深部まで掘削したボーリング孔の所定箇
所を球形に整形し、その前後に止水処理を施して
から前記球形の試験部に水圧をかけて岩盤に亀裂
を入れ、その水圧及び亀裂の方向からその地点に
おける岩盤の初期地圧を求めることを特徴とする
水圧破砕による初期地圧計測方法。
1. Shape a predetermined part of a borehole drilled deep underground into a spherical shape, apply water stop treatment before and after that, apply water pressure to the spherical test part to create a crack in the rock, and measure the water pressure and the direction of the crack. A method of measuring initial ground pressure using hydraulic fracturing, which is characterized by determining the initial ground pressure of the rock at that point.
JP62068946A 1987-03-25 1987-03-25 Initial rock pressure measurement by hydraulic crushing Granted JPS63235863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62068946A JPS63235863A (en) 1987-03-25 1987-03-25 Initial rock pressure measurement by hydraulic crushing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62068946A JPS63235863A (en) 1987-03-25 1987-03-25 Initial rock pressure measurement by hydraulic crushing

Publications (2)

Publication Number Publication Date
JPS63235863A JPS63235863A (en) 1988-09-30
JPH0583152B2 true JPH0583152B2 (en) 1993-11-24

Family

ID=13388337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62068946A Granted JPS63235863A (en) 1987-03-25 1987-03-25 Initial rock pressure measurement by hydraulic crushing

Country Status (1)

Country Link
JP (1) JPS63235863A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100924149B1 (en) * 2006-10-31 2009-10-28 한국지질자원연구원 Method for measuring in-situ stress of rock using thermal crack
CN102980987B (en) * 2012-10-31 2014-12-17 山东科技大学 Simulation test stand for plugging of two ends of drill hole
CN104374637B (en) * 2014-11-03 2017-01-11 中国矿业大学 Water sealing device applied to hydraulic fracture experiment under high-temperature and high-pressure condition

Also Published As

Publication number Publication date
JPS63235863A (en) 1988-09-30

Similar Documents

Publication Publication Date Title
CN110907086B (en) Three-dimensional ground stress determination method based on borehole wall surface displacement measurement
Ljunggren et al. An overview of rock stress measurement methods
Mair et al. Pressuremeter testing: methods and interpretation
US5576485A (en) Single fracture method and apparatus for simultaneous measurement of in-situ earthen stress state and material properties
US5381690A (en) Method and apparatus for measuring three dimensional stress in rock surrounding a borehole
CN103344493A (en) Measuring method and testing device for stress of primary rock based on sound emission principle
CA2062542C (en) Method and apparatus for measuring three dimensional stress in rock surrounding a borehole
CN106761804A (en) One kind is equipped on TBM advanced hydraulic pressure detection device and method in real time
CN108132186B (en) Method for determining ground stress direction based on conventional single triaxial compression test
JPH0583152B2 (en)
Farkas et al. Effect of foliation and fluid viscosity on hydraulic fracturing tests in mica schists investigated using distinct element modeling and field data
CN115597991A (en) Test method for simulating fracture and damage behaviors of hard rock plate
CN105928853B (en) It is a kind of examine tunnel broken surrounding rock grouting after block-water effect test method
Yabe et al. In-situ stress around source faults of seismic events in and beneath South African deep gold mines
JP2001241289A (en) Method and faciliteis for testing tunnel stability
Chandler et al. In situ stress measurement for nuclear fuel waste repository design
Howat Completely weathered granite—soil or rock?
JP2784361B2 (en) Measuring method of ground stress by borehole
Mills In situ stress measurement using the ANZI stress cell
Erer et al. A review of in situ stress measurement techniques with reference to coal measures rocks
Rocha New techniques in deformability testing of in situ rock masses
JPH08246781A (en) Stability control method of rock bed during excavation
TUNBRIDGE CM COOLING
Andersson et al. Variability of hydraulic fracturing rock stress measurements and comparisons to triaxial overcoring results made in the same borehole
Pathak et al. A first order quantification of effects of uncertainties in hydro-fracturing parameters on tunnel ovalization estimates