JPH0582906A - Ld light source unit - Google Patents

Ld light source unit

Info

Publication number
JPH0582906A
JPH0582906A JP3239704A JP23970491A JPH0582906A JP H0582906 A JPH0582906 A JP H0582906A JP 3239704 A JP3239704 A JP 3239704A JP 23970491 A JP23970491 A JP 23970491A JP H0582906 A JPH0582906 A JP H0582906A
Authority
JP
Japan
Prior art keywords
light source
light
lds
collimating
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3239704A
Other languages
Japanese (ja)
Other versions
JP3193742B2 (en
Inventor
Kenichi Takanashi
健一 高梨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP23970491A priority Critical patent/JP3193742B2/en
Publication of JPH0582906A publication Critical patent/JPH0582906A/en
Application granted granted Critical
Publication of JP3193742B2 publication Critical patent/JP3193742B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item

Landscapes

  • Dot-Matrix Printers And Others (AREA)
  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To provide an LD light source unit for realizing high density, high speed optical scanning with high optical efficiency. CONSTITUTION:Semiconductor lasers 11A, 11B are mounted, respectively, on the surface and the rear of a planar support 12 so that the junction face thereof will be substantially in parallel with the surface and the rear of the support 12, and the semiconductor lasers 11A, 11B are contained in one package (comprising a stem 16 and a cap (not shown)) and can be driven independently.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明はLD光源およびLD光
源装置、詳しくはLDを2個有するLD光源と、このL
D光源を用いるLD光源装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an LD light source and an LD light source device, and more particularly to an LD light source having two LDs and the L light source.
The present invention relates to an LD light source device that uses a D light source.

【0002】[0002]

【従来の技術】「LD」即ち半導体レーザーを走査用光
源として用いる光走査装置は良く知られている。このよ
うな光走査装置の一種として、光源に複数のLDを用い
複数ラインを同時に光走査する方式のものが提案されて
いる(例えば、特開昭64−10805号公報、同64
−10806号公報等)。このような光走査方式を「複
数光源方式」と呼ぶことにすると、複数光源方式には以
下の如き利点がある。
2. Description of the Related Art An optical scanning device using an "LD" or a semiconductor laser as a scanning light source is well known. As a kind of such an optical scanning device, a system in which a plurality of LDs are used as a light source to optically scan a plurality of lines at the same time has been proposed (for example, Japanese Patent Laid-Open Nos. 64-10805 and 64-10805).
-10806 publication). When such an optical scanning system is referred to as a "multiple light source system", the multiple light source system has the following advantages.

【0003】即ち、1度に複数ラインを走査できるの
で、回転多面鏡等の光偏向器による光偏向の速度を大き
くすることなく光走査を能率的に行なうことができる。
このため、光走査を比較的ゆっくり行なうことができ、
光走査に必要なLD発光強度をさほど大きくする必要が
なく、従って光源の寿命を長期化することができる。
That is, since a plurality of lines can be scanned at one time, the optical scanning can be efficiently performed without increasing the speed of the optical deflection by the optical deflector such as the rotating polygon mirror.
Therefore, the optical scanning can be performed relatively slowly,
It is not necessary to increase the LD emission intensity required for optical scanning so much, and therefore the life of the light source can be extended.

【0004】しかし反面、複数光源方式には以下の如き
問題がある。即ち、複数のLDを配列した光源を用いて
複数ラインを1度に光走査する場合、走査線のピッチ幅
即ち「走査線間隔」は、光源におけるLDの副走査対応
方向の配列ピッチ:dに、光源と被走査面との間にある
光学系の副走査対応方向の結像倍率:βsを乗じたもの
となる。一般の光走装置では上記倍率はβs>1であ
る。
On the other hand, however, the multiple light source system has the following problems. That is, when a plurality of lines are optically scanned at one time by using a light source in which a plurality of LDs are arranged, the pitch width of the scanning lines, that is, the "scanning line interval" is set to the arrangement pitch of the LDs in the sub scanning corresponding direction: d. , And the imaging magnification in the sub-scanning corresponding direction of the optical system between the light source and the surface to be scanned: βs. In a general optical apparatus, the magnification is βs> 1.

【0005】一方、複数のLDを高密度に配列する方法
としては全体をモノリシックに形成する方法が良く知ら
れているが、この場合でも、隣接するLDの間隔は10
0μm程度が限度であり、これより細かいピッチでLD
を配列するのは難しい。このように、複数のLDを最近
接させて配列した場合でも、上記結像倍率βsが1より
大きいことを考えると、走査線のピッチは100μm以
上となり、400dpiというような高密度の光走査を
実現できない。
On the other hand, as a method of arranging a plurality of LDs at a high density, a method of forming a monolithic whole is well known, but in this case, the interval between adjacent LDs is 10 as well.
The limit is about 0 μm, and LDs with a finer pitch
Is difficult to arrange. Thus, even when a plurality of LDs are arranged closest to each other, considering that the imaging magnification βs is larger than 1, the scanning line pitch is 100 μm or more, and high-density optical scanning such as 400 dpi is performed. It cannot be realized.

【0006】この問題を有効に解決する方向として「光
源を主走査対応方向に対して有限の角:θだけ傾ける」
方法が知られている。上述の如く、光源におけるLDの
配列ピッチを:dとすると、LD配列方向を主走査対応
方向に対して角:θだけ傾ければ、副走査対応方向にお
けるLDの配列間隔は(d・sinθ)となるから、
角:θを小さくとれば副走査対応方向におけるLD配列
間隔を小さくでき、高密度の光走査が可能となる。しか
し、この場合には以下の如き問題が生じる。
As a direction for effectively solving this problem, "the light source is tilted by a finite angle: θ with respect to the main scanning corresponding direction".
The method is known. As described above, assuming that the LD array pitch in the light source is: d, if the LD array direction is tilted by an angle of θ with respect to the main scanning corresponding direction, the LD array interval in the sub scanning corresponding direction is (d · sin θ). Therefore,
If the angle: θ is made small, the LD array interval in the sub-scanning corresponding direction can be made small, and high-density optical scanning becomes possible. However, in this case, the following problems occur.

【0007】即ち一般に、LDを光源として用いる光走
査装置では、被走査面上に形成される光スポットの形状
を所望の形状とするために、主走査対応方向に長い矩形
状開口を持つアパーチュアによる光束制限(ビーム整
形)を行なっている。一方、周知の如く、LDからの放
射光束のファーフィールドパターンは楕円形状であり、
光源からの光のエネルギーをなるべく有効に光走査に利
用するには、上記ファーフィールドパターンにおける長
軸の方向を上記アパーチュアにおける矩形状開口の長手
方向(主走査対応方向)に対応させるのが望ましい。し
かるに複数のLDをモノリシックに配列した場合、個々
のLDのファーフィールドパターンにおける長軸方向は
LD配列方向に直交する方向となるため、上述のように
LD配列方向を主走査対応方向に対して微小角傾けて高
密度光走査を実現しようとすると、個々のLDからの放
射光束のファーフィールドパターンの長軸方向は副走査
対応方向(アパーチュアの矩形状開口の短手方向)に略
平行となり、光走査に対する個々のLDの光利用効率が
低下してしまうのである。このような光利用効率の低下
があると「光走査に必要なLD発光強度をさ程大きくす
る必要がなく、光源の寿命を長期化することができる」
という複数光源方式の利点を有効に活かすことができな
い。
That is, generally, in an optical scanning device using an LD as a light source, in order to make the shape of a light spot formed on a surface to be scanned into a desired shape, an aperture having a long rectangular opening in the main scanning corresponding direction is used. The light flux is limited (beam shaping). On the other hand, as is well known, the far field pattern of the light flux emitted from the LD is elliptical,
In order to utilize the energy of light from the light source as effectively as possible for optical scanning, it is desirable that the direction of the long axis in the far field pattern corresponds to the longitudinal direction of the rectangular opening in the aperture (corresponding to the main scanning direction). However, when a plurality of LDs are arranged monolithically, the long axis direction in the far-field pattern of each LD is a direction orthogonal to the LD arrangement direction. When an attempt is made to achieve high-density optical scanning by tilting at an angle, the long-axis direction of the far-field pattern of the radiated light flux from each LD becomes substantially parallel to the sub-scanning corresponding direction (the lateral direction of the rectangular aperture of the aperture). The light utilization efficiency of each LD for scanning is reduced. If such a decrease in light utilization efficiency occurs, "the LD light emission intensity required for optical scanning does not need to be increased so much, and the life of the light source can be extended."
That is, the advantage of the multiple light source method cannot be effectively utilized.

【0008】[0008]

【発明が解決しようとする課題】この発明は上述した事
情に鑑みてなされたものであって、複数光源方式の利点
を活かしつつ、高密度光走査を可能ならしめる新規なL
D光源およびLD光源装置の提供を目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and is a novel L which enables high-density optical scanning while taking advantage of the multiple light source system.
An object is to provide a D light source and an LD light source device.

【0009】[0009]

【課題を解決するための手段】請求項1のLD光源は
「平板状の支持体の表・裏面に各1個ずつ、LDを、そ
の接合面が上記支持体の表・裏面に略平行となるように
配設して設け、同一パッケージ内に装備し、各LDを独
立に駆動可能とした」点を特徴とする。
According to a first aspect of the present invention, there is provided an LD light source, wherein "one LD is provided on each of the front and back surfaces of a flat plate-shaped support, and the bonding surface thereof is substantially parallel to the front and back surfaces of the support. It is arranged and provided so that each LD can be independently driven ”.

【0010】請求項1のLD光源のパッケージ内には
「LDから後方に放射される光束を、各LDごとに個別
的に受光する2個のフォトダイオード」を設けることが
でき(請求項2)、あるいは「LDから後方に放射され
る光束を、2個のLDに共通して受光する単一のフォト
ダイオード」を設けることができる(請求項3)。
In the package of the LD light source according to claim 1, "two photodiodes for individually receiving the light flux emitted backward from the LD for each LD" can be provided (claim 2). Alternatively, it is possible to provide a "single photodiode that receives the light beam emitted backward from the LD in common to the two LDs" (claim 3).

【0011】これら、請求項1ないし3のLD光源はま
た、これらLD光源からの光束をコリメートするコリメ
ート光学系と組み合わせてLD光源装置を構成すること
ができる(請求項4,5)。
The LD light source according to any one of claims 1 to 3 can be combined with a collimating optical system for collimating the luminous flux from these LD light sources to form an LD light source device (claims 4 and 5).

【0012】請求項4のLD光源装置は、「LD光源
と、このLD光源からの光をコリメートするコリメート
光学系とを一体化して」なる。LD光源は請求項1また
は2または3のLD光源であり、LD光源装置の配設態
位がコリメート光学系の光軸の回りに調整可能である。
According to a fourth aspect of the LD light source device, "the LD light source and a collimating optical system for collimating the light from the LD light source are integrated with each other". The LD light source is the LD light source according to claim 1, 2 or 3, and the arrangement position of the LD light source device can be adjusted around the optical axis of the collimating optical system.

【0013】請求項5のLD光源装置は、「LD光源
と、このLD光源からの光をコリメートするコリメート
光学系と」を有し、LD光源装置は請求項1または2ま
たは3のLD光源装置である。この請求項5のLD光源
装置では、LD光源はコリメート光学系に嵌合可能で、
コリメート光学系に対し、その光軸の回りに回転可能で
ある。
An LD light source device according to a fifth aspect has an "LD light source and a collimating optical system for collimating light from the LD light source", and the LD light source device is the LD light source device according to the first, second or third aspect. Is. In the LD light source device according to claim 5, the LD light source can be fitted into the collimating optical system,
It is rotatable about its optical axis with respect to the collimating optical system.

【0014】[0014]

【作用】上記のように、この発明のLD光源では、2つ
のLDが平板状の支持体の表裏に1つずつ配備され、且
つ、各LDの接合面は、支持体の表面・裏面に略平行で
あるから、接合面同士も略平行である。従って、2つの
LDの配列方向を主走査対応方向に対して微小角:θだ
け傾けて副走査対応方向のLD配列間隔を小さくした場
合、各LDの接合面は副走査対応方向に略平行になり、
各放射光束のファーフィールドパターンの長軸方向は主
走査対応方向に略平行になる。
As described above, in the LD light source of the present invention, two LDs are provided one on each of the front and back sides of the flat plate-like support, and the bonding surface of each LD is substantially on the front and back surfaces of the support. Since they are parallel, the joint surfaces are also substantially parallel. Therefore, when the array direction of the two LDs is tilted by a small angle θ with respect to the main scanning corresponding direction to reduce the LD array interval in the sub scanning corresponding direction, the bonding surface of each LD becomes substantially parallel to the sub scanning corresponding direction. Becomes
The long-axis direction of the far-field pattern of each emitted light beam is substantially parallel to the main scanning corresponding direction.

【0015】[0015]

【実施例】図1に示す実施例において、符号10AはL
Dの本体部、符号10Bはサブマウント部を示す。これ
ら本体部10Aとサブマウント部10Bとが一方のLD
11Aを構成する。LD11Aは平板状の支持体12の
表面側に装荷されている。支持体12はステム16と一
体であってステム16の表面から直立している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the embodiment shown in FIG.
Reference numeral 10B denotes a main body portion of D, and a submount portion. The main body portion 10A and the submount portion 10B have one LD
11A. The LD 11A is loaded on the surface side of the flat plate-shaped support 12. The support 12 is integral with the stem 16 and stands upright from the surface of the stem 16.

【0016】支持体12の裏面側には、本体部10Cと
サブマウント部10Dとにより構成される他方のLD1
1Bが装荷されている。本体部10Aとサブマウント部
10Bとの境界部、本体部10Cとサブマウント部10
Dの境界部は、それぞれLD11A,11Bの接合面を
なしており、これらは支持体12の表・裏面と略平行で
ある。ステム16には電極18A,18B,18C,1
8Dが植立され、本体部10A,10Cはそれぞれ電極
18A,18Bと接続されている。これら電極18A,
18B,18C,18Dはステム16を貫通して、ステ
ム16の裏側ではリード部をなしている。支持体12は
電極18A,18Bに対する対電極となっている。
On the back surface side of the support 12, the other LD 1 composed of a main body portion 10C and a submount portion 10D.
1B is loaded. The boundary between the main body 10A and the submount 10B, the main body 10C and the submount 10
Boundary portions of D form joining surfaces of the LDs 11A and 11B, respectively, and these are substantially parallel to the front and back surfaces of the support 12. The stem 16 has electrodes 18A, 18B, 18C, 1
8D is planted, and the main bodies 10A and 10C are connected to the electrodes 18A and 18B, respectively. These electrodes 18A,
18B, 18C and 18D penetrate the stem 16 and form a lead portion on the back side of the stem 16. The support 12 is a counter electrode for the electrodes 18A and 18B.

【0017】ステム16にはまた、2つのフォトダイオ
ード14A,14Bが設けられている。フォトダイオー
ド14Aは、LD11Aから後方すなわちステム16の
側に放射される光を受光し得るように配備され、受光量
に応じた信号を電極18Cを介して出力するようになっ
ている。フォトダイオード14Bは、LD11Aから後
方に放射される光を受光し得るように配備され、受光量
に応じた信号を電極18Dを介して出力するようになっ
ている。
The stem 16 is also provided with two photodiodes 14A and 14B. The photodiode 14A is arranged so as to be able to receive the light emitted from the LD 11A rearward, that is, to the side of the stem 16, and outputs a signal corresponding to the amount of received light via the electrode 18C. The photodiode 14B is arranged so as to be able to receive the light emitted rearward from the LD 11A, and outputs a signal corresponding to the amount of received light via the electrode 18D.

【0018】図1のLD光源は、従来から知られたLD
光源と同じく、「窓ガラスを取り付けられたキャップ
(図示されず)」を被せられ、内部が密閉される。ステ
ム16と図示されないキャップとはパッケージを構成す
る。
The LD light source shown in FIG. 1 is a conventional LD.
As with the light source, a "cap with a window glass (not shown)" is put on and the inside is sealed. The stem 16 and a cap (not shown) form a package.

【0019】高密度の光走査を行なう場合は、図5に示
すように、LD11A,11Bの配列方向Lを主走査対
応方向LPに対して微小角:θだけ傾け、副走査対応方
向(図5で主走査対応方向LPに直交する方向)におけ
る発光部間隔が小さくなるようにする。角:θが小さい
ので、LD11A,11Bからの光束のファーフィール
ドパターンFPA,FPBの長軸方向は主走査対応方向
LPに平行に近く、主走査対応方向に長い矩形状開口を
持つアパーチュアでビーム整形を行なっても、高い光利
用効率を確保できる。
When performing high-density optical scanning, as shown in FIG. 5, the arrangement direction L of the LDs 11A and 11B is tilted with respect to the main scanning corresponding direction LP by a small angle: θ, and the sub scanning corresponding direction (FIG. 5). Then, the interval between the light emitting portions in the main scanning corresponding direction LP is set to be small. Since the angle: θ is small, the long-axis directions of the far-field patterns FPA and FPB of the light fluxes from the LDs 11A and 11B are close to parallel to the main scanning corresponding direction LP, and the beam is shaped with an aperture having a long rectangular opening in the main scanning corresponding direction. Even if the above is performed, high light utilization efficiency can be secured.

【0020】光走査に際しては、LD11A,11Bか
ら後方に放射される光を、それぞれフォトダイオード1
4A,14Bにより検出し、図2に示すように駆動回路
20を介してLD11A,11Bにフィードバックする
ことにより、例えばパルス幅変調時の光強度や、パワー
変調時の段階的な強度レベルを正確に制御することがで
きる。
At the time of optical scanning, the light emitted backward from the LDs 11A and 11B is respectively reflected by the photodiode 1.
4A and 14B, and by feeding back to the LDs 11A and 11B via the drive circuit 20 as shown in FIG. 2, for example, the light intensity during pulse width modulation and the stepwise intensity level during power modulation are accurately measured. Can be controlled.

【0021】図3は、別実施例を要部のみ略示してい
る。煩雑をさけるため、混同の虞れがないと思われるも
のに就いては図1におけると同一の符号を用いる。図
中、符号12Aもって示す平板状の支持体はL字状の平
面形状でステム16から鉤状に直立し、ステム表面から
離れた部分に1対のLD11A,11Bが、支持体12
Aの表・裏面に形成されている。符号14で示すフォト
ダイオードはLD11A,11Bから、これらの後方へ
放射される光を受光できるように、LD11A,11B
に共通に設けられている。
FIG. 3 schematically shows another embodiment of the main part. In order to avoid complication, the same reference numerals as those in FIG. 1 are used for those which are not considered to be confused. In the figure, a flat plate-shaped support body denoted by reference numeral 12A is an L-shaped plane shape and stands upright from the stem 16 in a hook shape, and a pair of LDs 11A and 11B are provided on the support body 12 at a portion apart from the stem surface.
It is formed on the front and back of A. The photodiode indicated by the reference numeral 14 is designed to receive light emitted from the LDs 11A and 11B to the rear of the LDs 11A and 11B.
It is provided in common.

【0022】この実施例の場合は図4に示すように、フ
ォトダイオード14と駆動回路20とLD11A,11
Bとによりフィードバック回路を構成し、光走査領域外
で、LD11A,11Bを順次発光させ、光走査領域内
におけるパルス幅変調時の光強度の安定化を図ることが
できる。勿論、図1,図3の実施例とも、光走査に際し
てはLD11A,11Bを独立に駆動する。
In the case of this embodiment, as shown in FIG. 4, the photodiode 14, the drive circuit 20, and the LDs 11A and 11 are used.
A feedback circuit is formed by B and the LDs 11A and 11B are sequentially made to emit light outside the optical scanning region to stabilize the light intensity during pulse width modulation in the optical scanning region. Of course, in both the embodiments of FIGS. 1 and 3, the LDs 11A and 11B are driven independently during optical scanning.

【0023】図6に、請求項4のLD光源装置の1実施
例を分解斜視図により示す。符号1で示すLD光源は、
例えば図1,3に即して説明したようなLD光源であ
り、符号2で示すコリメート光学系に一体化され、コリ
メート光学系2とともにLD光源装置を構成する。コリ
メートレンズ2Aを保持する基部2Bには曲がり長孔2
a,2bが穿設され、これらの曲がり長孔2a,2bに
螺子4a,4bを貫通させて不動部材3に、LD光源装
置を固定する。螺子4a,4bを若干弛めた状態では、
LD光源装置全体をコリメートレンズ2Aの光軸の回り
に、曲がり長孔2a,2bの許容限度内で回転させるこ
とができる。この回転により、図5に即して説明した、
角:θを変化させることができ、走査線のピッチを画素
密度に応じて調整・変更することが可能となる。
FIG. 6 is an exploded perspective view showing one embodiment of the LD light source device according to the present invention. The LD light source indicated by reference numeral 1 is
For example, the LD light source as described with reference to FIGS. 1 and 3 is integrated with a collimating optical system indicated by reference numeral 2 and constitutes an LD light source device together with the collimating optical system 2. The base 2B holding the collimating lens 2A has a curved long hole 2
a and 2b are provided, and the LD light source device is fixed to the immovable member 3 by passing the screws 4a and 4b through the curved elongated holes 2a and 2b. With the screws 4a and 4b slightly loosened,
The entire LD light source device can be rotated around the optical axis of the collimating lens 2A within the allowable limit of the curved elongated holes 2a and 2b. Due to this rotation, as described with reference to FIG.
The angle: θ can be changed, and the pitch of the scanning lines can be adjusted / changed according to the pixel density.

【0024】図7に、請求項5のLD光源装置の1実施
例を示す。符号1’で示すLD光源は図6の実施例と同
様、例えば図1,3に即して説明したようなLD光源
で、図7(a)に示すように、コリメート光学系2’に
対して矢印方向へ抜き差しできるようになっている。L
D光源1’は、コリメート光学系2’に嵌合した状態で
摺動的に回転可能であるが、図7(b)に示すように、
パッケージのステムの周縁部分にはカニメ1aが形成さ
れ、これらカニメ1aは、コリメート光学系の基部2
B’に形成された係合部2aと係合する。そしてこの係
合が、LD光源1のコリメートレンズ2Aの光軸の回り
の回転領域を制限する。基部2B’に対してLD光源
1’を回転させることにより、図5に即して説明した
角:θを変化させることができ、走査線のピッチを画素
密度に応じて調整・変更することが可能となる。
FIG. 7 shows an LD light source device according to an embodiment of the present invention. The LD light source indicated by reference numeral 1'is the same as that of the embodiment of FIG. 6, for example, the LD light source described with reference to FIGS. 1 and 3, and as shown in FIG. You can insert and remove it in the direction of the arrow. L
The D light source 1'is slidably rotatable while fitted in the collimating optical system 2 ', but as shown in FIG. 7 (b),
Crabs 1a are formed on the peripheral portion of the package stem, and these claws 1a are the base 2 of the collimating optical system.
It engages with the engaging portion 2a formed on B '. This engagement limits the rotation area around the optical axis of the collimating lens 2A of the LD light source 1. By rotating the LD light source 1 ′ with respect to the base 2B ′, the angle θ described with reference to FIG. 5 can be changed, and the pitch of the scanning lines can be adjusted / changed according to the pixel density. It will be possible.

【0025】上に説明したLD光源の各実施例において
も、従来のLD光源に対して提案されているような温度
制御を実施することができる。このためには例えば、ス
テムと支持体とを一体に構成して支持体を「ヒートシン
ク」とし、パッケージの外側においてステムの部分の温
度を検出し、検出結果に応じて例えばペルチエ素子等に
より周知の温度制御方式で温度制御を行えば良い。この
ように温度制御を行うことにより、モードホップ等を防
止することができる。
In each of the embodiments of the LD light source described above, the temperature control as proposed for the conventional LD light source can be implemented. For this purpose, for example, the stem and the support body are integrally formed, and the support body is used as a “heat sink”, the temperature of the stem portion is detected outside the package, and according to the detection result, for example, a Peltier element or the like is known. Temperature control may be performed by a temperature control method. By performing the temperature control in this way, it is possible to prevent mode hopping and the like.

【0026】[0026]

【発明の効果】以上のように、この発明によれば新規な
LD光源およびLD光源装置を提供できる。請求項1〜
3のLD光源は、2つのLDの配列方向を主走査対応方
向に対して微小角傾けて配置し、光利用効率の高い高密
度の光走査を行うことが可能である。また請求項4,5
のLD光源装置では、画素に応じて走査線のピッチを容
易に調整・変更できる。
As described above, according to the present invention, a novel LD light source and LD light source device can be provided. Claim 1
In the LD light source No. 3, the arrangement direction of the two LDs is arranged at a slight angle with respect to the main scanning corresponding direction, and high density optical scanning with high light utilization efficiency can be performed. Further, claims 4 and 5
In the above LD light source device, the pitch of the scanning lines can be easily adjusted / changed according to the pixel.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の1実施例を要部のみ示す図である。FIG. 1 is a diagram showing only an essential part of one embodiment of the present invention.

【図2】図1の実施例におけるLDの駆動制御を説明す
る図である。
FIG. 2 is a diagram illustrating drive control of an LD in the embodiment of FIG.

【図3】別実施例を要部のみ示す図である。FIG. 3 is a diagram showing only a main part of another embodiment.

【図4】図3の実施例におけるLDの駆動制御を説明す
る図である。
FIG. 4 is a diagram for explaining drive control of an LD in the embodiment of FIG.

【図5】この発明の特徴部分を説明する図である。FIG. 5 is a diagram illustrating a characteristic part of the present invention.

【図6】請求項4の装置の1実施例を説明する分解斜視
図である。
FIG. 6 is an exploded perspective view illustrating an embodiment of the apparatus of claim 4;

【図7】請求項5の装置の1実施例を説明する図であ
る。
FIG. 7 is a diagram for explaining an embodiment of the device of claim 5;

【符号の説明】[Explanation of symbols]

11A,11B LD 12 支持体 16 ステム 11A, 11B LD 12 support 16 stem

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】平板状の支持体の表・裏面に各1個ずつ、
LDを、その接合面が上記支持体の表・裏面に略平行と
なるように配設して同一パッケージ内に装備し、上記各
LDを独立に駆動可能としたことを特徴とするLD光
源。
1. A flat support member, one on each of the front and back surfaces,
An LD light source, wherein the LDs are mounted in the same package by arranging the LDs so that their bonding surfaces are substantially parallel to the front and back surfaces of the support, and each of the LDs can be independently driven.
【請求項2】請求項1において、 LDから後方に放射される光束を、各LDごとに個別的
に受光する2つのフォトダイオードをパッケージ内に有
することを特徴とするLD光源。
2. The LD light source according to claim 1, wherein the package has two photodiodes for individually receiving the light flux emitted backward from the LD for each LD.
【請求項3】請求項1において、 LDから後方に放射される光束を、2個のLDに共通し
て受光する単一のフォトダイオードをパッケージ内に有
することを特徴とするLD光源。
3. The LD light source according to claim 1, wherein the package has a single photodiode for receiving the light beam emitted rearward from the LD in common to the two LDs.
【請求項4】LD光源と、このLD光源からの光をコリ
メートするコリメート光学系とを一体化してなり、配設
態位が上記コリメート光学系の光軸の回りに調整可能
で、上記LD光源が請求項1または2または3のLD光
源であることを特徴とするLD光源装置。
4. An LD light source and a collimating optical system for collimating the light from the LD light source are integrated, and the disposition state is adjustable around the optical axis of the collimating optical system. Is an LD light source according to claim 1, 2 or 3, and is an LD light source device.
【請求項5】LD光源と、このLD光源からの光をコリ
メートするコリメート光学系とを有し、上記LD光源が
請求項1または2または3のLD光源であって上記コリ
メート光学系に嵌合可能であり、コリメート光学系に対
し、その光軸の回りに回転可能であることを特徴とする
LD光源装置。
5. An LD light source and a collimating optical system for collimating the light from the LD light source, wherein the LD light source is the LD light source according to claim 1, 2 or 3, and is fitted to the collimating optical system. An LD light source device, which is capable of rotating with respect to a collimating optical system around its optical axis.
JP23970491A 1991-09-19 1991-09-19 LD light source device Expired - Fee Related JP3193742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23970491A JP3193742B2 (en) 1991-09-19 1991-09-19 LD light source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23970491A JP3193742B2 (en) 1991-09-19 1991-09-19 LD light source device

Publications (2)

Publication Number Publication Date
JPH0582906A true JPH0582906A (en) 1993-04-02
JP3193742B2 JP3193742B2 (en) 2001-07-30

Family

ID=17048683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23970491A Expired - Fee Related JP3193742B2 (en) 1991-09-19 1991-09-19 LD light source device

Country Status (1)

Country Link
JP (1) JP3193742B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07193336A (en) * 1993-11-22 1995-07-28 Xerox Corp Laser diode rear face emission monitoring device and laser diode array configuration method
JPH07193339A (en) * 1993-11-22 1995-07-28 Xerox Corp Laser array
JP2003218471A (en) * 1993-11-22 2003-07-31 Xerox Corp Method of generating laser diode
JP2003243760A (en) * 2002-02-18 2003-08-29 Ricoh Co Ltd Light source module, light source device, optical scanner, and image forming device
KR100681655B1 (en) * 1999-03-02 2007-02-09 로무 가부시키가이샤 Semiconductor laser
JP2007103731A (en) * 2005-10-05 2007-04-19 Sony Corp Optical communication module and optical communication system
JP2008124351A (en) * 2006-11-15 2008-05-29 Sumitomo Electric Ind Ltd Photoelectric conversion module
US7483460B2 (en) 2005-08-04 2009-01-27 Sumitomo Electric Industries, Ltd. Transmitter optical subassembly and a transmitter optical module installing the same
JP2010123886A (en) * 2008-11-21 2010-06-03 Panasonic Corp Semiconductor device and its manufacturing method
JP2010217439A (en) * 2009-03-16 2010-09-30 Ricoh Co Ltd Light source unit, light source device, optical scanner, and image forming apparatus
JP2011257698A (en) * 2010-06-11 2011-12-22 Ricoh Co Ltd Light source device, optical scanning device and image forming device
US20120267738A1 (en) * 2011-04-22 2012-10-25 Sumitomo Electric Device Innovations, Inc. Optical device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07193339A (en) * 1993-11-22 1995-07-28 Xerox Corp Laser array
JP2003218471A (en) * 1993-11-22 2003-07-31 Xerox Corp Method of generating laser diode
JP2004274085A (en) * 1993-11-22 2004-09-30 Xerox Corp Laser diode array
JPH07193336A (en) * 1993-11-22 1995-07-28 Xerox Corp Laser diode rear face emission monitoring device and laser diode array configuration method
KR100681655B1 (en) * 1999-03-02 2007-02-09 로무 가부시키가이샤 Semiconductor laser
JP2003243760A (en) * 2002-02-18 2003-08-29 Ricoh Co Ltd Light source module, light source device, optical scanner, and image forming device
US7483460B2 (en) 2005-08-04 2009-01-27 Sumitomo Electric Industries, Ltd. Transmitter optical subassembly and a transmitter optical module installing the same
JP2007103731A (en) * 2005-10-05 2007-04-19 Sony Corp Optical communication module and optical communication system
JP2008124351A (en) * 2006-11-15 2008-05-29 Sumitomo Electric Ind Ltd Photoelectric conversion module
JP2010123886A (en) * 2008-11-21 2010-06-03 Panasonic Corp Semiconductor device and its manufacturing method
JP2010217439A (en) * 2009-03-16 2010-09-30 Ricoh Co Ltd Light source unit, light source device, optical scanner, and image forming apparatus
JP2011257698A (en) * 2010-06-11 2011-12-22 Ricoh Co Ltd Light source device, optical scanning device and image forming device
US20120267738A1 (en) * 2011-04-22 2012-10-25 Sumitomo Electric Device Innovations, Inc. Optical device
US8743564B2 (en) * 2011-04-22 2014-06-03 Sumitomo Electric Device Innovations, Inc. Optical device

Also Published As

Publication number Publication date
JP3193742B2 (en) 2001-07-30

Similar Documents

Publication Publication Date Title
US6324320B1 (en) Optical apparatus for producing a high-brightness multi-laser radiation source
US6552853B2 (en) Radiation beam combiner
JP3193742B2 (en) LD light source device
WO2019192055A1 (en) Laser radar
JP2006032971A (en) Diode laser assembly and beam forming unit for same
KR101258167B1 (en) Method and apparatus for driving semiconductor lasers, and method and apparatus for deriving drive current patterns for semiconductor lasers
JP2008109083A (en) Laser light source apparatus, illumination apparatus, monitor, and projector
US20240036197A1 (en) Distance measuring device
EP0844707B1 (en) Multiple beam light source device and multiple beam scanning optical apparatus using the device
JP2005537643A (en) Semiconductor laser device
JP2892820B2 (en) Semiconductor laser device
JP3681120B2 (en) Multi-beam scanning device, light source device
JP4166493B2 (en) Multi-beam scanning device and light source device
JP2623093B2 (en) Laser optics
JP2004087816A (en) Light source apparatus and image recording apparatus
JPS6059794A (en) Stabilized device for semiconductor laser
JP2004103839A (en) Semiconductor multiple beam laser device and image forming device
US5543611A (en) Method and apparatus for back facet monitoring of laser diode power output
JP2004066543A (en) Semiconductor laser array light source
JPS6410805B2 (en)
JPH11340574A (en) Optical semiconductor device and optical semiconductor element incorporated in the same
CN1347100A (en) Optical pickup device
US20150159832A1 (en) Light source unit and projector
JP2004333717A (en) Multi-beam laser scanning device
JP2003174293A (en) Guide member and method for mounting light emitting element to substrate

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080525

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090525

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees