JPH0582556B2 - - Google Patents

Info

Publication number
JPH0582556B2
JPH0582556B2 JP59135945A JP13594584A JPH0582556B2 JP H0582556 B2 JPH0582556 B2 JP H0582556B2 JP 59135945 A JP59135945 A JP 59135945A JP 13594584 A JP13594584 A JP 13594584A JP H0582556 B2 JPH0582556 B2 JP H0582556B2
Authority
JP
Japan
Prior art keywords
image
container
pixel
pixels
gradation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59135945A
Other languages
Japanese (ja)
Other versions
JPS6114592A (en
Inventor
Akihiko Nishide
Hideo Numagami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP59135945A priority Critical patent/JPS6114592A/en
Publication of JPS6114592A publication Critical patent/JPS6114592A/en
Publication of JPH0582556B2 publication Critical patent/JPH0582556B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、容器内部の内容物を判定する内容物
判定装置に係り、特に放射線の照射によつて得ら
れる透視画像の画像前処理技術を改良してなる内
容物判定装置に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a content determination device for determining the contents inside a container, and in particular improves an image preprocessing technique for a fluoroscopic image obtained by radiation irradiation. The present invention relates to a content determination device comprising:

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

この種の判定装置は、X線照射によつて得られ
る容器のX線透視画像をX線テレビカメラにより
ビデオ信号に変換した後、このビデオ信号を2値
化処理して容器領域と背景領域とに分けた2値画
像を得、さらにこの容器領域画像について容器枠
と容器内部の内容物とに分離できる閾値を揺いて
2値化処理して2値画像を得、この容器枠および
内容物の2値画像と前記容器領域画像とを論理和
することにより、背景領域、容器枠領域および内
容物領域に分割し、内容物の画像のみを抽出して
いた。
This type of determination device converts an X-ray fluoroscopic image of a container obtained by X-ray irradiation into a video signal using an X-ray television camera, and then binarizes this video signal to distinguish between a container area and a background area. This container area image is then binarized by varying the threshold that allows separation into the container frame and the contents inside the container to obtain a binary image. By ORing the binary image and the container area image, the image is divided into a background area, a container frame area, and a contents area, and only the image of the contents is extracted.

しかし、以上のような画像処理手段が有効なの
は、第7図に示すように内容物101が容器枠1
02から離れている場合であつて、例えば第8図
のように内容物101が容器枠102と接してい
る場合には容器枠102と一緒に内容物101も
除去されてしまうので正確に内容物101を判定
できない。
However, the image processing means described above is effective when the contents 101 are in the container frame 1 as shown in FIG.
02 and the contents 101 are in contact with the container frame 102 as shown in FIG. 101 cannot be determined.

〔発明の目的〕[Purpose of the invention]

本発明は以上のような点に着目してなされたも
ので、容器枠に内容物が接している場合でも容器
枠から切離して内容物を正確を判定し得る内容物
判定装置を提供することにある。
The present invention has been made with attention to the above points, and an object of the present invention is to provide a content determination device that can separate the contents from the container frame and determine the accuracy of the contents even when the contents are in contact with the container frame. be.

〔発明の概要〕[Summary of the invention]

本発明は、予め容器枠の厚さを画素数で予測し
ておき、容器の電気的な濃淡透視画像を2値化処
理して得られた容器領域画像から前記容器枠厚さ
の画素数だけ削り取つて縮小された容器領域のマ
スク画像を作成し、このマスク画像と前記容器の
電気的な濃淡透視画像との論理演算により、容器
内部の内容物の画像のみを抽出する内容物判定装
置である。
The present invention predicts the thickness of the container frame in advance in terms of the number of pixels, and then calculates the number of pixels corresponding to the thickness of the container frame from a container area image obtained by binarizing an electrically gray perspective image of the container. A content determination device that creates a mask image of a container area that has been reduced by scraping, and extracts only an image of the contents inside the container by performing a logical operation on this mask image and an electrical gradation perspective image of the container. be.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例について第1図ないし
第6図を参照して説明する。第1図は装置の全体
構成図、第2図は装置の動作を説明する図、第3
図ないし第6図は画像処理を説明する図である。
第1図において10はX線透視装置であつて、こ
れはX線発生器10aから照射されるX線10b
により被検査容器10cを透視し、そのX線透視
画像をX線テレビカメラ10dでビデオ信号に変
換して後続のA/D変換回路11に供給する。1
0eは被検査容器10cを載置する試料台であ
る。このA/D変換回路11は、X線透視装置1
0からのビデオ信号を装置全体より考慮した適切
なレベルで量子化して適切なサンプリング数で離
散化された濃淡透視画像データに変換する。12
は半導体メモリなどで構成された画像メモリであ
つて、A/D変換回路11からの離散化電気信号
の濃淡透視画像データを記憶するとともに、読出
指令信号によつて後続の2値化回路13および画
像論理回路14に送出するものである。この2値
化回路13は、画像メモリデータを所定の閾値で
比較して2値の白黒画像である容器領域画像を抽
出する機能をもつ容器領域抽出手段であつて、具
体的には内部に比較回路を有し、予め定めた設定
値を画像メモリ12に記憶されている濃淡透視画
像の各画素値とを比較し、画素値が設定値以下な
らばその画素の値を“0”とし、、設定値を超え
ていれば“1”とする2値の白黒画像に変換する
機能を持つている。なお、本実施例では設定値と
して例えば“6”を使用する。
Hereinafter, one embodiment of the present invention will be described with reference to FIGS. 1 to 6. Figure 1 is an overall configuration diagram of the device, Figure 2 is a diagram explaining the operation of the device, and Figure 3 is a diagram explaining the operation of the device.
6 through 6 are diagrams for explaining image processing.
In FIG. 1, numeral 10 is an X-ray fluoroscope, which is an X-ray ray 10b emitted from an X-ray generator 10a.
The container 10c to be inspected is seen through the container 10c, and the X-ray fluoroscopic image is converted into a video signal by the X-ray television camera 10d, and the video signal is supplied to the subsequent A/D conversion circuit 11. 1
0e is a sample stage on which the container to be inspected 10c is placed. This A/D conversion circuit 11 is connected to the X-ray fluoroscope 1
The video signal from 0 is quantized at an appropriate level considering the entire device and converted into gray scale perspective image data discretized with an appropriate number of samplings. 12
is an image memory composed of a semiconductor memory or the like, which stores the gradation perspective image data of the discretized electric signal from the A/D conversion circuit 11, and also stores the subsequent binarization circuit 13 and It is sent to the image logic circuit 14. This binarization circuit 13 is a container area extraction means that has a function of comparing image memory data with a predetermined threshold value and extracting a container area image that is a binary black and white image. It has a circuit that compares a predetermined setting value with each pixel value of the gray perspective image stored in the image memory 12, and if the pixel value is less than the setting value, the value of that pixel is set to "0", It has a function that converts to a binary black and white image that is set to "1" if it exceeds the set value. In this embodiment, for example, "6" is used as the setting value.

15は領域縮小回路であつて、これは具体的に
は次のような処理機能をもつている。即ち、この
領域縮小回路15は、所要数の画素のうちある1
つを注目画素とし、この注目画素の近傍にある限
りの画素のすべてが“1”であれば注目画素に対
応する出力画像の画素値を“1”とし、近傍にあ
る残りの画素のうち1つでも“0”であれば注目
画素に対応する出力画像の画素値を“0”とす
る。この処理は、画素値“1”を持つ被検査容器
10cに該当する容器領域画像の外輪郭側全体に
わたつてその画像外側に位置する1画素分を削り
取つて縮小された2値画像とする。そして、以上
のような処理は予め予測する容器枠の厚さに相当
する画素分例えば10画素数を削る容器領域画像の
外輪郭側から予測容器枠の厚さの画素数(10画素
数)分だけ内側方向に削り取つて縮小化された容
器領域画像を得た後、前記画像論理積回路14に
供給する。ここで、縮小化の意義は、容器枠の画
像領域に容器内部の物体が接している場合でも、
容器枠の部分を除去する一方、容器内の物体の画
像をそのまま残すことにある。この画像論理積回
路14は、領域縮小回路14によつて例えば10画
素削除せられた縮小化された容器領域画像の領域
を“1”、その他の領域を“0”とするマスク画
像とし、このマスク画像を用いて前記画像メモリ
12から読出される濃淡透視画像をマスキングす
るもので、マスクの“1”画素に対応する透視画
像の画素は濃淡値をそのままとし、マスクの
“0”の画素に対応する透視画像の画素は“0”
とする論理積演算を行ない、これによりマスクの
“1”の部分の濃淡透視画像、つまり容器内部の
内容物の画像を取り出す。16は画像論理積回路
14によつて得られた容器内内容物の透視画像を
表示する結果表示装置である。17は装置の各構
成要素12〜16を所定のタイミングで制御する
制御装置であつて、例えば制御コンピユータ等が
使用される。
Reference numeral 15 denotes an area reduction circuit, which specifically has the following processing functions. That is, this area reduction circuit 15 selects one of the required number of pixels.
If all pixels in the vicinity of this pixel of interest are "1", the pixel value of the output image corresponding to the pixel of interest is set to "1", and one of the remaining pixels in the vicinity If the pixel is always "0", the pixel value of the output image corresponding to the pixel of interest is set to "0". In this process, one pixel located outside the image is removed from the entire outer contour side of the container area image corresponding to the container to be inspected 10c having a pixel value of "1" to create a reduced binary image. . The above process is performed by removing pixels corresponding to the thickness of the predicted container frame (10 pixels) from the outer contour side of the container area image. After obtaining a reduced container area image by scraping it inward, the image is supplied to the image AND circuit 14. Here, the significance of reduction is that even if the object inside the container is in contact with the image area of the container frame,
The idea is to remove the container frame while leaving the image of the object inside the container intact. The image AND circuit 14 sets the area of the reduced container area image from which 10 pixels have been deleted by the area reduction circuit 14 to "1" and the other areas to "0" as a mask image. The mask image is used to mask the gradation fluoroscopic image read out from the image memory 12, and the gradation value of the fluoroscopic image pixel corresponding to the "1" pixel of the mask is left unchanged, and the gradation value is changed to the "0" pixel of the mask. The pixel of the corresponding perspective image is “0”
A logical product operation is performed, and thereby a gradation perspective image of the "1" portion of the mask, that is, an image of the contents inside the container is extracted. Reference numeral 16 denotes a result display device that displays a transparent image of the contents inside the container obtained by the image AND circuit 14. Reference numeral 17 denotes a control device that controls each of the components 12 to 16 of the apparatus at predetermined timing, and for example, a control computer or the like is used.

次に、以上のように構成された装置の作用につ
いて第2図ないし第6図を参照して説明する。X
線10bの照射を受けて被検査容器10cから出
力されるX線透視画像は第2図のステツプ21で示
すようにX線テレビカメラ10dにより検出さ
れ、ここでX線透視画像の濃淡に応じた電気的な
連続波の濃淡透視画像信号に変換された後、A/
D変換回路11に送られる。このA/D変換回路
11においてはX線透視装置10から送られてい
る濃淡透視画像の連続信号を第2図のステツプ2
2に示すように例えば256画素×256画素×8ビツ
ト階調(すなわち256階調)で量子化した離散さ
れた濃淡透視画像に変換し(ステツプ22)、画像
メモリ12に格納する(ステツプ23)。このよう
にして画像メモリ12に格納された濃淡透視画像
は制御装置17からの読出指令に基づいて所定の
順序で順次読出されて2値化回路13に送られ、
ここで入力された濃淡透視画像の各画素値を設定
値例えば“6階調”と比較し、設定値以下のとき
には“0”、設定値以上のときには“1”とする
2値化処理を行なつてノイズ成分を除去する(ス
テツプ24)。これによつて第3図に示すように
“1”の容器領域(容器領域画像)と容器領域以
外の背景領域とに分けた2値画像を得、そのうち
“1”に該当する容器領域画像を縮小回路15に
供給する。この領域縮小回路15では、“1”と
なつた容器領域においてステツプ25に示す如く容
器輪郭より例えば予め予測した容器枠の厚さに相
応する画素数例えば10画素分削り取る処理を行な
つて第4図の実線で示す縮小された容器領域画像
を取り出す。即ち、この領域縮小回路15は、具
体的には第5図に示すように各画素において例え
ば9画素のうち中央に位置する画素を注目画素イ
とし、その近傍8画素のすべてが“1”のとき、
入力画像の注目画素イに対応する出力画素の画素
値を“1”とし、近傍8画素のうち1つでも
“0”があれば、入力画像の注目画素イに対応す
る出力画像の画素値を“0”とする。以上のよう
な画像処理を1画面について行なえば、容器領域
画像の外輪郭側より1画素削ることができ、これ
を10回繰返すと容器領域画像の外輪郭部より10画
素削り取ることができる。第6図は例えば5画素
についてその中央画素を注目画素イとした例であ
る。そして、領域縮小回路15で縮小化された第
4図の実線で示す容器領域画像はマスク画像とし
て後続の画像論理積回路14に送られる。この画
像論理積回路14には画像メモリ12から未だ2
値化処理されていない濃淡透視画像が入力されて
いる。従つて、この回路14では、ステツプ26に
示すように容器領域画像の外輪郭側より10画素分
削り取られて縮小化されたマスク画像と画像メモ
リ12に蓄えられている濃淡透視画像とを同じ位
置同士を対向させて論理積演算することにより、
マスク画像の“1”の画素に対応する濃淡透視画
像の画素はその濃淡値をそのまま出力し、マスク
画像の“0”の画素に対応する濃淡透視画像の画
素は“0”として出力すれば、被検査容器10c
内部の内容物の画像を抽出できる。そして、画像
論理積回路14で抽出された内容物の画像はステ
ツプ27において結果表示装置16に表示され、こ
こで被検査容器10cに収納されている内容物が
何であるかを判定する。或いは電子計算機などで
自動的に判定する。
Next, the operation of the apparatus configured as described above will be explained with reference to FIGS. 2 to 6. X
The X-ray fluoroscopic image output from the inspection container 10c after being irradiated with the ray 10b is detected by the X-ray television camera 10d as shown in step 21 in FIG. After being converted into an electrical continuous wave gradation image signal, the A/
The signal is sent to the D conversion circuit 11. This A/D conversion circuit 11 converts the continuous signal of the gradation fluoroscopic image sent from the X-ray fluoroscope 10 into step 2 in FIG.
As shown in FIG. 2, the image is converted into a discrete gradation perspective image quantized with, for example, 256 pixels x 256 pixels x 8-bit gradation (that is, 256 gradations) (step 22), and stored in the image memory 12 (step 23). . The gradation fluoroscopic images stored in the image memory 12 in this way are sequentially read out in a predetermined order based on a read command from the control device 17 and sent to the binarization circuit 13.
Here, each pixel value of the input gradation perspective image is compared with a set value, for example, "6 gradations", and when it is below the set value, it is set to "0", and when it is above the set value, it is binarized to "1". Then, noise components are removed (step 24). As a result, as shown in Fig. 3, a binary image divided into a container area (container area image) of "1" and a background area other than the container area is obtained, and among these, the container area image corresponding to "1" is The signal is supplied to the reduction circuit 15. In this area reduction circuit 15, as shown in step 25, in the container area that has become "1", a process is performed to remove a number of pixels, for example, 10 pixels, corresponding to the thickness of the container frame predicted in advance, from the container contour, and then the fourth area is removed. The reduced container area image shown by the solid line in the figure is extracted. Specifically, as shown in FIG. 5, this area reduction circuit 15 sets the pixel located at the center of, for example, nine pixels in each pixel as the pixel of interest A, and all of the eight pixels in its vicinity are set to "1". When,
The pixel value of the output pixel corresponding to the pixel of interest A in the input image is set as "1", and if even one of the eight neighboring pixels is "0", the pixel value of the output pixel corresponding to the pixel of interest A in the input image is set as "1". Set to “0”. If the above image processing is performed for one screen, one pixel can be removed from the outer contour side of the container region image, and if this is repeated 10 times, 10 pixels can be removed from the outer contour side of the container region image. FIG. 6 shows an example in which the center pixel of five pixels is set as the pixel of interest A. Then, the container area image shown by the solid line in FIG. 4, which has been reduced by the area reduction circuit 15, is sent to the subsequent image AND circuit 14 as a mask image. This image AND circuit 14 still has two images from the image memory 12.
A gradation perspective image that has not been digitized is input. Therefore, in this circuit 14, as shown in step 26, the mask image, which has been reduced by removing 10 pixels from the outer contour side of the container region image, and the gradation perspective image stored in the image memory 12 are placed at the same position. By facing each other and performing a logical product operation,
If the pixel of the gradation perspective image corresponding to the "1" pixel of the mask image is output as it is, and the pixel of the gradation perspective image corresponding to the "0" pixel of the mask image is output as "0", Container to be inspected 10c
Images of internal contents can be extracted. Then, the image of the contents extracted by the image AND circuit 14 is displayed on the result display device 16 in step 27, and it is determined here what contents are contained in the container to be inspected 10c. Alternatively, it can be determined automatically using a computer or the like.

従つて、以上のような実施例の構成によれば、
画像メモリ12に格納されている濃淡透視画像を
2値化回路13で予め定めた階調により比較して
2値化処理を行なうので、正確に容器領域とその
他の背景領域とに分けることができる。また、2
値化処理された容器領域の2値画像は領域縮小回
路15で容器枠の厚みに相応する画素数だけ削り
取つて縮小化した容器領域画像とすれば、実質的
に容器枠が存在しない状態となり、つまり容器内
部の内容物と背景部分とが残つてしまう。従つ
て、画像論理積回路14において内容物に相応す
る部分はそのままの濃淡値で出力し、背景部分に
相応する部分は“0”として出力すれば、内容物
を正確かつ確実に抽出することができ、しかも表
示装置16では容器が無視されて内容物のみが表
示されるので、認識対象が1個少なくなり、それ
に要する認識時間の短縮化が図れる。
Therefore, according to the configuration of the embodiment as described above,
Since the gradation perspective image stored in the image memory 12 is compared and binarized using a predetermined gradation in the binarization circuit 13, it is possible to accurately separate the container area and other background areas. . Also, 2
If the binarized image of the container area that has been subjected to the digitization process is removed by the area reduction circuit 15 by the number of pixels corresponding to the thickness of the container frame to create a reduced container area image, the container frame will essentially be in a state where it does not exist. In other words, the contents inside the container and the background portion remain. Therefore, if the image AND circuit 14 outputs the portion corresponding to the content as it is with its gradation value, and the portion corresponding to the background portion is output as "0", the content can be extracted accurately and reliably. Moreover, since the container is ignored and only the contents are displayed on the display device 16, there is one less recognition target, and the recognition time required can be shortened.

なお、本発明は上記実施例に限定されるもので
はない。上記実施例においてはX線による透視画
像を用いたが、他の放射線例えばα線、β線、γ
線、赤外線などを用いたものでもよい。また、量
子化レベル数、サンプリング数は一例として8ビ
ツト階調(256階調)、256×256画素としたが、他
の量子化レベル数、サンプリング数にしてもよ
く、或いは同等のアナログ回路でもよい。また、
上記2値化回路13における2値化処理のための
閾値を6階調としたが、X線透視画像の濃度ダイ
ナミツクレンジなどの変化により他の閾値に変更
してもよい。さらに、上記実施例では容器の縮小
画素幅を10画素として説明したが、対象となる被
検査容器10cの種類および厚さなどに応じて他
の画素幅にしてもよい。また、X線発生器10a
とX線テレビカメラ10dの間の被検査容器10
cは固定式または移動式の試料台10eに載置さ
れるが、特に後者の移動式のものは被検査容器1
0cの所定位置通過を検出してX線発生器10a
を駆動制御する場合もある。その他、本発明はそ
の要旨を逸脱しない範囲で種々変形して実施でき
る。
Note that the present invention is not limited to the above embodiments. In the above embodiment, a fluoroscopic image using X-rays was used, but other radiation such as α-rays, β-rays, γ-rays, etc.
It may also be possible to use radiation, infrared rays, or the like. In addition, the number of quantization levels and the number of samplings are 8-bit gradation (256 gradations) and 256 x 256 pixels as an example, but other quantization levels and sampling numbers may be used, or equivalent analog circuits may be used. good. Also,
Although the threshold value for the binarization process in the binarization circuit 13 is set to six gradations, it may be changed to other threshold values depending on changes in the density dynamic range of the X-ray fluoroscopic image. Further, in the above embodiment, the reduced pixel width of the container was described as 10 pixels, but other pixel widths may be used depending on the type and thickness of the container 10c to be inspected. In addition, the X-ray generator 10a
and the container to be inspected 10 between the X-ray television camera 10d
c is placed on a fixed or movable sample stage 10e, especially the latter movable one is placed on a sample stage 10e to be inspected.
The X-ray generator 10a detects the passage of 0c at a predetermined position.
In some cases, it is driven and controlled. In addition, the present invention can be implemented with various modifications without departing from the gist thereof.

〔発明の効果〕〔Effect of the invention〕

以上詳記したように本発明によれば、容器領域
の画像から容器枠の画像を除去した後、容器内部
の内容物を抽出する処理を行なつているので、容
器枠に内容物が接している場合でも容器枠から確
実に内容物を切り離して抽出でき、しかも内容物
だけが表示されるので、内容物の判定が確実に行
なえ、判定時間の短縮化にも寄与する内容物判定
装置を提供できる。
As detailed above, according to the present invention, after removing the image of the container frame from the image of the container area, the process of extracting the contents inside the container is performed, so that the contents are not in contact with the container frame. Provided is a content determination device that can reliably separate and extract the contents from the container frame even when the container is in the container frame, and that only the contents are displayed so that the content can be determined reliably and contributes to shortening the determination time. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第6図は本発明に係る内容物判定
装置の一実施例を説明するために示したもので、
第1図は本発明装置の構成を示すブロツク図、第
2図は装置の動作を説明する流れ図、第3図は電
気的な濃淡透視画像を2値化処理して得られた2
値画像を示す図、第4図は容器画像から容器枠に
相当する厚さ分だけ画素数を削り取つて縮小した
容器の2値画像を示す図、第5図および第6図は
それぞれ容器縮小のための画像処理を説明する
図、第7図および第8図は従来装置の問題点を説
明するための図である。 10……X線透視装置、10a……X線発生
器、10c……被検査装置、10d……X線テレ
ビカメラ、11……A/D変換回路、12……画
像メモリ、13……2値化回路、14……画像論
理積回路、15……領域縮小回路、16……結果
表示装置、17……制御装置。
Figures 1 to 6 are shown to explain an embodiment of the content determination device according to the present invention.
Fig. 1 is a block diagram showing the configuration of the device of the present invention, Fig. 2 is a flowchart explaining the operation of the device, and Fig. 3 is a two-dimensional image obtained by binarizing an electrical gradation fluoroscopic image.
Figure 4 shows a binary image of a container reduced by removing the number of pixels by the thickness corresponding to the container frame from the container image, Figures 5 and 6 show container reduction, respectively. 7 and 8 are diagrams for explaining the problems of the conventional apparatus. 10...X-ray fluoroscope, 10a...X-ray generator, 10c...device to be inspected, 10d...X-ray television camera, 11...A/D conversion circuit, 12...image memory, 13...2 Value conversion circuit, 14... Image AND circuit, 15... Area reduction circuit, 16... Result display device, 17... Control device.

Claims (1)

【特許請求の範囲】 1 放射線の照射によつて被検査容器から透過出
力される放射線透視画像を放射線検出器により検
出して前記容器内部の内容物を判定する装置にお
いて、前記放射線検出器から出力されるアナログ
信号を量子化された濃淡透視画像データに変換し
てメモリに記憶するデータ変換手段と、この手段
によつて記憶された濃淡透視画像データを所定の
閾値をもつて比較して2値化された容器領域の画
像を抽出する容器領域抽出手段と、この容器領域
抽出手段によつて抽出された容器領域画像の輪郭
側より所望の画素数分削り取つて縮小化された容
器領域画像を得る容器領域縮小手段と、この手段
によつて得られた縮小された容器領域画像をマス
クとし、このマスク画像と前記メモリからの濃淡
透視画像とを論理演算して前記容器内部の内容物
の画像を取り出す内容物抽出手段とを備えたこと
を特徴とする内容物判定装置。 2 放射線検出器は、X線テレビカメラを用いた
ものである特許請求の範囲第1項記載の内容物判
定装置。 3 容器領域抽出手段にて予め定められる閾値
は、容器の外輪郭部が明らかになる階調値である
特許請求の範囲第1項記載の内容物判定装置。 4 容器領域抽出手段による画像抽出は容器領域
画像を“1”、それ以外の領域画像を“0”とす
る2値画像である特許請求の範囲第1項記載の内
容物判定装置。 5 容器領域縮小手段は、複数の画素のうち中央
画素を注目画素とし、この注目画素近傍の複数の
画素のすべてが“1”かまたは1つでも“0”を
含むかに応じて前記注目画素に対応する出力画像
の画素値を“1”または“0”とし、これを1画
面分行なつて容器輪郭部により1画素削り取り、
この処理を所望の画素数だけ繰り返すものである
特許請求の範囲第1項記載の内容物判定装置。
[Scope of Claims] 1. In an apparatus for determining the contents inside the container by detecting a radiographic image transmitted and output from a container to be inspected by radiation irradiation with a radiation detector, data converting means for converting the analog signal into quantized gradation perspective image data and storing it in a memory, and comparing the gradation perspective image data stored by this means with a predetermined threshold value to obtain binary values. a container region extracting means for extracting an image of the reduced container region; and a container region image reduced by removing a desired number of pixels from the outline side of the container region image extracted by the container region extracting means. A container area reduction means for obtaining a container area, and a reduced container area image obtained by this means as a mask, perform a logical operation on this mask image and the gradation perspective image from the memory to create an image of the contents inside the container. A content determination device comprising a content extraction means for extracting the content. 2. The content determination device according to claim 1, wherein the radiation detector uses an X-ray television camera. 3. The content determination device according to claim 1, wherein the threshold value predetermined by the container area extraction means is a gradation value that makes the outer contour of the container clear. 4. The content determination device according to claim 1, wherein the image extracted by the container region extracting means is a binary image in which the container region image is set to "1" and the other region images are set to "0". 5. The container area reduction means sets the central pixel among the plurality of pixels as a pixel of interest, and changes the pixel of interest depending on whether all of the plurality of pixels in the vicinity of the pixel of interest include "1" or even one "0". Set the pixel value of the output image corresponding to "1" or "0", repeat this for one screen, and remove one pixel from the container contour,
The content determination device according to claim 1, wherein this process is repeated for a desired number of pixels.
JP59135945A 1984-06-30 1984-06-30 Deciding device for contents Granted JPS6114592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59135945A JPS6114592A (en) 1984-06-30 1984-06-30 Deciding device for contents

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59135945A JPS6114592A (en) 1984-06-30 1984-06-30 Deciding device for contents

Publications (2)

Publication Number Publication Date
JPS6114592A JPS6114592A (en) 1986-01-22
JPH0582556B2 true JPH0582556B2 (en) 1993-11-19

Family

ID=15163514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59135945A Granted JPS6114592A (en) 1984-06-30 1984-06-30 Deciding device for contents

Country Status (1)

Country Link
JP (1) JPS6114592A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005024549A (en) * 2003-06-09 2005-01-27 Anritsu Sanki System Co Ltd X-ray inspection device
JP2005127962A (en) * 2003-10-27 2005-05-19 Anritsu Sanki System Co Ltd X-ray inspection system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05172765A (en) * 1991-12-24 1993-07-09 Sharp Corp Drift correction in aes analysis

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5850453A (en) * 1981-09-21 1983-03-24 Mitsubishi Electric Corp Inspection system of article
JPS5938634A (en) * 1982-08-27 1984-03-02 Toshiba Corp Non-destructive automatic inspection apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5850453A (en) * 1981-09-21 1983-03-24 Mitsubishi Electric Corp Inspection system of article
JPS5938634A (en) * 1982-08-27 1984-03-02 Toshiba Corp Non-destructive automatic inspection apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005024549A (en) * 2003-06-09 2005-01-27 Anritsu Sanki System Co Ltd X-ray inspection device
JP2005127962A (en) * 2003-10-27 2005-05-19 Anritsu Sanki System Co Ltd X-ray inspection system

Also Published As

Publication number Publication date
JPS6114592A (en) 1986-01-22

Similar Documents

Publication Publication Date Title
CA2411076A1 (en) A method for the non-invasive measurement of properties of meat
US6356652B1 (en) Visualization of diagnostically irrelevant zones in a radiographic image
US5283736A (en) Radiographic image processing apparatus
JPH041866A (en) Method and device for image processing
JPH0582556B2 (en)
Hayashibe et al. An automatic lung cancer detection from X-ray images obtained through yearly serial mass survey
JP2732608B2 (en) Background image erasing and binarization processing method for linear figure image and apparatus therefor
JPH0512441A (en) Edge image generator
JPS6118229B2 (en)
JP2853140B2 (en) Image area identification device
EP0654762A1 (en) Visualisation of diagnostically irrelevant zones in a radiographic image
JPS6072086A (en) Contour picture eliminating device
JPS6151280A (en) Picture processor
JPH0949712A (en) Apparatus for measuring flow ratio of wire
JPH0679332B2 (en) Image processing device
JP3379591B2 (en) Binarization processing method and apparatus
JPH04184576A (en) Picture processor
JPS63182972A (en) Binarization processor
JPH08241375A (en) Binarization processing system for image
JPH05191649A (en) Picture binarizing circuit
JPH0713836B2 (en) Binarization circuit
JPH0781961B2 (en) Image scratch inspection device
JPH077441B2 (en) Concentration histogram detector
JPH0561677B2 (en)
JPH0337229B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees