JPH0582410B2 - - Google Patents

Info

Publication number
JPH0582410B2
JPH0582410B2 JP59215137A JP21513784A JPH0582410B2 JP H0582410 B2 JPH0582410 B2 JP H0582410B2 JP 59215137 A JP59215137 A JP 59215137A JP 21513784 A JP21513784 A JP 21513784A JP H0582410 B2 JPH0582410 B2 JP H0582410B2
Authority
JP
Japan
Prior art keywords
polymer
screw
extruder
polymerization
polyamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59215137A
Other languages
Japanese (ja)
Other versions
JPS6195026A (en
Inventor
Toshiaki Noda
Satoshi Tsuchida
Hideho Wada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP59215137A priority Critical patent/JPS6195026A/en
Publication of JPS6195026A publication Critical patent/JPS6195026A/en
Publication of JPH0582410B2 publication Critical patent/JPH0582410B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/625Screws characterised by the ratio of the threaded length of the screw to its outside diameter [L/D ratio]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/41Intermeshing counter-rotating screws

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> 本発明はポリアミドを迅速に高重合度化し、か
つ、異常滞留を防ぎ、ポリマの分解や不溶不融の
ゲルの生成を抑制するポリアミドの連続溶融重合
方法に関するものである。 <従来技術> ポリアミドはその強靭な性質の故に、衣料用、
産業資材用繊維、あるいはエンジニアリングプラ
スチツクとして大量に使用されている。またこれ
らの特性はポリアミドの重合度によつて大きく変
化する。 ポリアミドは重合平衡がポリエステルに比べ、
かなり水分の多い方向にあつて、大気圧の水蒸気
と溶解平衡にある水分率の溶融状態ポリマでさえ
も衣料用繊維に用いるには十分な重合度となる。
このため、衣料用繊維に用いるポリマを得るに
は、例えば、ナイロン66の場合、ヘキサメチレン
ジアンモニウムアジペートの水溶液を加圧下で反
応せしめた後、圧力を常圧まで戻し、空気等の混
入のない大気解放系の反応器に導びき、ポリマ中
に共存している過剰の水分を放出して重合反応を
平衡状態に進める方法が採用されている。 しかし産業資材用繊維やエンジニアリングプラ
スチツクの一部のように、高い重合度が必要な場
合には、更に溶融ポリマを減圧された気相、又は
窒素等の不活性ガスにより水蒸気分圧を下げた気
相に接触させ、ポリマ中の水分を低下させる必要
がある。一般には、ポリマを一旦大容量の容器に
導びき、減圧下の気相と充分な時間だけ接触させ
る方法が採用されている。 しかしながら、ポリアミドは長期に溶融下に滞
留すると分解したり不溶不融のゲルに変質する性
質を有しており、この性質は特にアジピン酸を1
成分として重合されたポリアミドの場合に著し
い。この問題は高重合度のポリマを得ようとする
場合に顕著である。 大容量の容器、即ち反応器はそれ自身が長期の
ポリマ滞留の部分となると共に、容器壁や、撹拌
翼表面に付着したポリマは極めて長期に滞留して
分解したりゲルに変質したりする。このゲルは徐
徐に蓄積してゆき、時折剥離してポリマの品質を
悪化させる。またポリマの分解時に発生する気体
は例えば紡糸時の糸切れの原因となる。 このような欠点を、反応器にセルフクリーニン
グ性をもたせることにより改善する方法が米国特
許第3717330号に示されているが、これは原理的
には3条ネジの同方向回転2軸スクリユーの機能
を撹拌翼に利用して、容器内壁及び撹拌翼表面に
付着したポリマを機械的にこすり落そうとするも
のである。この方法ではクリアランスが存在する
ために気相域に付着したポリマはクリアランスの
分だけは長期滞留することになり分解やゲル化が
進行することになる。 また、同方向回転2軸押出機を使用した重合方
法が特公昭50−15275号公報、米国特許第3040005
号に記載されている。この同方向回転2軸押出機
を使用した方法も、次に述べるように、異常滞留
によつて起るポリマ分解やゲル発生を防止すると
いう点で不充分である。即ち同方向回転2軸押出
機においては、ポリマの充填率が小さくなるとス
クリユーフライトの裏側にポリマとほとんど接触
しない部分ができる。押出機内の流量変動や飛散
によつて、一旦この部分に付着したポリマは、ク
リアランスに相当する分だけはかき落されること
もなく異常に長時間滞留することになり、不溶不
融のゲル等に変質し、時折脱落してポリマを汚染
することとなる。 <発明の目的・構成> 本発明者らは前述のような欠点をなくしたポリ
アミドの連続溶融重合方法について鋭意検討の結
果、スクリユーの構造を特定した異方向回転2軸
押出機とポリマ滞留のための配管とを併用するこ
とによりポリマの異常滞留を防止するとの知見を
得て、本発明に到達した。 すなわち、本発明の目的は、ポリアミド溶融ポ
リマの異常な長期滞留によつて引き起されるゲル
等への変質が少ない高重合度ポリアミドを得るた
めの連続溶融重合方法を提供するにある。 本発明に係るポリアミド重合方法は、互いに係
合して逆方向に回転する二本のスクリユーの一方
のスクリユーフライトと他方のスクリユーフライ
トの間の間〓がスクリユー径の1/15以下に設定さ
れ、且つ一方のスクリユーフライトの頂部と他方
のスクリユー溝底部との間の間〓がスクリユー径
の1/15以下に設定された二軸押出機を使用し、該
押出機内を進行中の溶融ポリマ中に含まれる水分
を連続的に除去しつつ次第に重合度を向上させ、
更にこのポリマを押出機の出口側に接続された滞
留域に供給し、該溶融ポリマを線速度1m/分以
上の平均流速で前進せしめつつ前記滞留域内に2
分以上滞留させてポリマ中の水分と平衡状態に達
するまで重合度を向上させた後これを順次系外に
取出すことを特徴とするものである。 <問題点を解決するための手段> 更に詳細に本発明の重合方法について述べる。
本発明に好適に用いられる重合装置は開口部を有
する異方向回転2軸押出機であり、該押出機へ導
入されたポリアミドポリマ中に含まれている水分
を該ポリマの重合度と重合平衡状態にある水分率
以下に減少させ、該押出機に接続した配管中の滞
留域で重合反応を進めるものである。 高重合度を達成させるための充分な水分除去を
行うには通過ポリマ単位体積当りについて、水分
率の低い気相との接触時間を永くする、あるい
は、気相との接触面積を大きくする方法が採用さ
れるが、接触時間を永くするためには一般には押
出機中の滞留時間を永くすることになり生産量に
対して大型の設備にならざるを得ない。またポリ
マ温度を高くすることも重合度を上げることは有
効であるが分解やゲル化が著しく加速されるため
にポリマ温度を上げることにたよることは好まし
くない。本発明では水分率の低い気相との接触を
有効に行うために、押出機中のポリマの充填率を
制御しながらポリマ輸送のできる異方向回転2軸
押出機を使用する。 2軸押出機のうち、同方向回転2軸押出機は本
発明のうち分解やゲル化を抑制するという点で適
当ではない。確かに理論的には同方向回転2軸押
出機は完全なセルフクリーニングのものが設計で
きるが、製作精度の面から必ず若干のクリアラン
スを有することになり、次の理由によりこのクリ
アランスが欠点となる。即ち、有効に水分除去を
行うために、押出機中のポリマ充填率をある程度
低目に制御して運転するが、同方向回転2軸押出
機ではこの際、スクリユーフライトの裏側(ポリ
マ進行方向の反対側)にポリマがほとんど接触し
ない部分ができる。運転中に発生するポリマの流
量変動が押出機中のポリマ充填率変動となつて上
記部分に付着したり、まれに飛散したポリマがこ
の部分に付着したりするが、このポリマはスクリ
ユーにクリアランスがあるために長期に滞留する
ことになり分解したり不溶不融のゲルになる。こ
のゲルは押出機の振動やスクリユーの振れ等によ
り脱落しポリマ中に混入して、生産ポリマの品質
を悪化させる。 本発明者らは、同方向回転2軸押出機を使用す
る限り上記の現象は避けられないものと認め、異
方向回転2軸押出機の特殊な構成で解決できる事
実に到達した。 異方向回転2軸押出機は、理論的には、交互の
スクリユーによる完全なセルフクリーリング性を
設計できない。これがこれまで異方向回転2軸押
出機よりも同方向回転2軸押出機が好んで使用さ
れてきた理由の1つである。 しかしながら、異方向回転2軸押出機のこの欠
点は次のように解決できることを見出した。即ち
スクリユーと他方のスクリユーの間にポリマを充
填しこのポリマに充分な剪断力を与えることによ
り実用上問題のない範囲までのセルフクリーニン
グ性をもたせることができたのである。この方法
は同方向回転2軸押出機の場合には適用できな
い。なぜらな、同方向回転2軸押出機ではスクリ
ユー間にポリマを充填できない部分が存在するか
らである。 更に、上記目的を達成するためには、異方向回
転2軸押出機に使用するスクリユーをも特定する
必要がある。即ち、一方のスクリユーフライトと
他方のスクリユーフライトとの間の距離がスクリ
ユー径の1/15以下であり、かつ、スクリユーフラ
イトと他方のスクリユーフライトとの間の距離が
スクリユー径の1/15以下であるスクリユーを使用
する必要がある。この範囲を外れる網きな〓間を
有するスクリユーを使用すると、ポリマの剪断力
によるスクリユー表面のポリマの更新が行なわれ
ず、分解やゲルの生産を抑制することができな
い。 また、スクリユー間の〓間を上記に特定した範
囲にすることによつて、押出機の先端のポリマ圧
力を充分に大きくすることも可能となり、開口部
からのベントアツプを防ぐことができる。これは
同方向回転2軸押出機や単軸押上機では得られな
い特徴である。 上述の如くにして、ゲルの混入のない、水分率
の低いメルトポリマが得られるが、異方向回転2
軸押出機内のポリマ滞留時間が短かいため、開口
部で除去した水分に相当するだけ重合反応が平衡
移動し高重合度化するには時間が充分ではない。
有効に高重合度変化を行うため異方向回転2軸押
出機に接続してポリマが2分以上滞留する配管を
設け、この配管中でポリアミドポリマをほぼ重合
平衡状態になるまで重合反応を進める必要があ
る。このようにして始めて、ゲルの混入のない高
重合度ポリアミドを得ることができる。2分以下
の滞留では重合平衡状態にほど遠く水分除去の効
果が有効に利用されない。 異方向回転2軸押出機に設けられる配管は異常
滞留による分解やゲル化を抑制するため、管径を
小さくするのが好ましい。ポリマの平均線速度を
1m/分以上、好ましくは2m/分以上とするの
が良い。 この配管に接続して、ペレツト化のための設
備、または紡糸ヘツド等を設けることができる。 一方、本発明におけるポリマの水分除去の方法
としては、開口部を外気の混入のないように減圧
する方法、あるいは開口部へ窒素等の不活性ガス
を導入し気相の水蒸気分圧を下げる方法等を用い
ることができる。 以上に述べた装置を使用することにより、ポリ
アミドを迅速に高重合度化し、かつ異常滞留によ
るゲルの生成を抑制することができる。 <実施例> 次に、本発明の装置について実施例をあげて具
体的に説明するが、本発明はこれらの実施例に限
定されるものではない。 実施例 1 第1図に実施態様例を示す。スクリユー4は直
径D=65mmの2条ネジ異方向回転2軸押出機(長
さはL/D=38)であり、溝深さ12mm、フライト
ピツチは55mm、スクリユーフライトと他方のスク
リユーフライトとの間11′,11′の距離は0.5
mm、スクリユーフライトトツプと他方のスクリユ
ー溝底部との間12の距離は0.5mm、開口部1の
長さはL/D=3、開口部2の長さはL/D=
6、スクリユー先端より開口部2までの長さは
L/D=5である。また配管5は熱媒による加熱
が可能な2重管でありポリマ流路は内径25mm、長
さ12mである。第1図に示す装置へ蟻酸相対粘度
(以下VPと略す)VR=34のポリヘキサメチレン
アジパミドのメルトポリマをギヤポンプにて計量
しながら供給口3より供給し、表1に示す結果を
得た。なお、開口部1,2の内部を70トルに保持
し、押出機及び配管の熱媒の温度は285℃とした。
ノズル6,7より抜き出したポリマはストランド
の状態で水中に通して固化しペレツト化した。
<Field of Industrial Application> The present invention relates to a method for continuous melt polymerization of polyamide that rapidly increases the degree of polymerization of polyamide, prevents abnormal retention, and suppresses polymer decomposition and the formation of insoluble and infusible gel. . <Prior art> Due to its strong properties, polyamide is used for clothing,
It is used in large quantities as fiber for industrial materials and engineering plastics. Furthermore, these properties vary greatly depending on the degree of polymerization of the polyamide. Polyamide has a higher polymerization equilibrium than polyester.
Even molten polymers with water percentages in solubility equilibrium with water vapor at atmospheric pressure, on the highly water-rich end of the spectrum, will have a sufficient degree of polymerization for use in clothing fibers.
Therefore, in order to obtain a polymer used for clothing fibers, for example, in the case of nylon 66, an aqueous solution of hexamethylene diammonium adipate is reacted under pressure, and then the pressure is returned to normal pressure to ensure that no air is mixed in. A method has been adopted in which the polymer is introduced into a reactor that is open to the atmosphere, and excess moisture coexisting in the polymer is released to allow the polymerization reaction to proceed to an equilibrium state. However, in cases where a high degree of polymerization is required, such as in fibers for industrial materials or some engineering plastics, the molten polymer may be further heated in a reduced pressure gas phase, or in a gaseous atmosphere with a lower water vapor partial pressure using an inert gas such as nitrogen. It is necessary to contact the phase and lower the water content in the polymer. Generally, a method is employed in which the polymer is introduced into a large-capacity container and brought into contact with a gas phase under reduced pressure for a sufficient period of time. However, polyamide has the property of decomposing or changing into an insoluble gel when it remains in the melt for a long period of time, and this property is particularly important for adipic acid.
This is particularly the case with polymerized polyamides as components. This problem is noticeable when trying to obtain a polymer with a high degree of polymerization. A large-capacity container, ie, a reactor, itself becomes a part where polymer stays for a long period of time, and polymers adhering to the walls of the container or the surface of stirring blades stay there for an extremely long period of time, decomposing or turning into gel. This gel builds up slowly and occasionally flakes off, deteriorating the quality of the polymer. Further, the gas generated when the polymer decomposes causes yarn breakage during spinning, for example. U.S. Pat. No. 3,717,330 shows a method to improve these drawbacks by providing a self-cleaning property to the reactor, but this method is based on the function of co-rotating twin screws with three threads. The aim is to mechanically scrape off the polymer adhering to the inner wall of the container and the surface of the stirring blade by using it as a stirring blade. In this method, since there is a clearance, the polymer adhering to the gas phase region remains for a long period of time corresponding to the clearance, and decomposition and gelation progress. In addition, a polymerization method using a co-rotating twin-screw extruder is disclosed in Japanese Patent Publication No. 15275-1975 and US Patent No. 3040005.
It is stated in the number. This method using a co-rotating twin-screw extruder is also insufficient in terms of preventing polymer decomposition and gel formation caused by abnormal retention, as described below. That is, in a co-rotating twin-screw extruder, when the polymer filling rate becomes small, a portion that hardly contacts the polymer is formed on the back side of the screw flight. Due to flow rate fluctuations and scattering within the extruder, once the polymer adheres to this area, an amount corresponding to the clearance is not scraped off and remains for an abnormally long time, resulting in insoluble and infusible gel, etc. The polymer deteriorates and occasionally falls off, contaminating the polymer. <Purpose and Structure of the Invention> As a result of extensive research into a method for continuous melt polymerization of polyamide that eliminates the above-mentioned drawbacks, the present inventors have developed a twin-screw extruder that rotates in opposite directions and a screw structure for polymer retention. The present invention was achieved based on the knowledge that abnormal retention of polymer can be prevented by using the same piping. That is, an object of the present invention is to provide a continuous melt polymerization method for obtaining a polyamide with a high degree of polymerization, which is less likely to undergo deterioration into gel or the like caused by abnormally long retention of a polyamide melt polymer. In the polyamide polymerization method according to the present invention, the distance between one screw flight and the other screw flight of two screws that engage with each other and rotate in opposite directions is set to 1/15 or less of the screw diameter. A twin-screw extruder is used in which the distance between the top of one screw flight and the bottom of the other screw groove is set to 1/15 or less of the screw diameter, and the melting that is progressing inside the extruder is Gradually improves the degree of polymerization while continuously removing water contained in the polymer.
Furthermore, this polymer is supplied to a retention area connected to the exit side of the extruder, and while the molten polymer is advanced at an average flow velocity of 1 m/min or more, 2.0 m/min is added to the retention area.
This method is characterized in that the polymerization degree is improved by allowing the polymer to remain in the polymer for more than a minute to reach an equilibrium state with the water in the polymer, and then sequentially taken out of the system. <Means for solving the problems> The polymerization method of the present invention will be described in more detail.
The polymerization apparatus preferably used in the present invention is a twin-screw extruder that rotates in opposite directions and has openings, and the water contained in the polyamide polymer introduced into the extruder is adjusted to the polymerization degree and polymerization equilibrium of the polymer. The water content is reduced to below a certain level, and the polymerization reaction proceeds in a retention area in a pipe connected to the extruder. In order to remove sufficient moisture to achieve a high degree of polymerization, it is necessary to increase the contact time with a gas phase with a low moisture content or to increase the contact area with the gas phase per unit volume of passing polymer. However, in order to increase the contact time, the residence time in the extruder is generally increased, which necessitates a large-sized equipment for the production volume. Increasing the polymer temperature is also effective in increasing the degree of polymerization, but it is not preferable to rely on raising the polymer temperature because decomposition and gelation are significantly accelerated. In the present invention, in order to effectively contact the gas phase with a low moisture content, a twin-screw extruder rotating in opposite directions is used, which can transport the polymer while controlling the filling rate of the polymer in the extruder. Among twin-screw extruders, a co-rotating twin-screw extruder is not suitable for the present invention in terms of suppressing decomposition and gelation. It is true that in theory, a co-rotating twin-screw extruder can be designed to be completely self-cleaning, but in terms of manufacturing accuracy it will always have some clearance, and this clearance is a drawback for the following reasons. . In other words, in order to effectively remove water, the polymer filling rate in the extruder is controlled to be low to some extent, but in a co-rotating twin-screw extruder, at this time, the (on the opposite side), there is a part where the polymer hardly touches. Fluctuations in the flow rate of the polymer that occur during operation lead to fluctuations in the polymer filling rate in the extruder, causing it to adhere to the above-mentioned areas, or in rare cases, scattered polymer adheres to this area, but this polymer is difficult to maintain due to the lack of clearance in the screw. Because of this, it stays for a long time and decomposes or becomes an insoluble gel. This gel falls off due to extruder vibrations, screw shakes, etc. and mixes into the polymer, deteriorating the quality of the produced polymer. The present inventors have recognized that the above-mentioned phenomenon is unavoidable as long as a co-rotating twin-screw extruder is used, and have arrived at the fact that it can be solved by a special configuration of a counter-rotating twin-screw extruder. Theoretically, a counter-rotating twin-screw extruder cannot be designed to have perfect self-cleaning properties due to alternating screws. This is one of the reasons why co-rotating twin-screw extruders have been used more favorably than counter-rotating twin-screw extruders. However, it has been found that this drawback of the counter-rotating twin-screw extruder can be solved as follows. That is, by filling the space between one screw with a polymer and applying sufficient shearing force to the polymer, it was possible to provide self-cleaning properties to a level that poses no practical problems. This method is not applicable in the case of a co-rotating twin screw extruder. This is because, in a co-rotating twin-screw extruder, there are portions between the screws where polymer cannot be filled. Furthermore, in order to achieve the above object, it is also necessary to specify the screws to be used in the counter-rotating twin-screw extruder. That is, the distance between one screw flight and the other screw flight is 1/15 or less of the screw diameter, and the distance between the screw flight and the other screw flight is 1/15 of the screw diameter. It is necessary to use a screw that is /15 or less. If a screw having a mesh gap outside this range is used, the polymer on the screw surface will not be renewed by the shearing force of the polymer, and decomposition and gel production cannot be suppressed. Further, by setting the distance between the screws within the range specified above, it is possible to sufficiently increase the polymer pressure at the tip of the extruder, and vent up from the opening can be prevented. This is a feature that cannot be obtained with a co-rotating twin-screw extruder or a single-screw pusher. As described above, a melt polymer with no gel contamination and a low water content can be obtained, but when rotated in the opposite direction 2
Since the residence time of the polymer in the shaft extruder is short, there is not enough time for the polymerization reaction to undergo an equilibrium shift corresponding to the water removed at the opening and to achieve a high degree of polymerization.
In order to effectively change the polymerization degree to a high degree, it is necessary to install a pipe that is connected to a twin-screw extruder rotating in opposite directions and where the polymer stays for at least 2 minutes, and to proceed with the polymerization reaction in this pipe until the polyamide polymer reaches an almost polymerization equilibrium state. There is. Only in this way can a highly polymerized polyamide without gel contamination be obtained. If the retention time is 2 minutes or less, the polymerization equilibrium state is far from being reached and the water removal effect is not effectively utilized. It is preferable that the diameter of the piping provided in the twin-screw extruder rotating in opposite directions be made small in order to suppress decomposition and gelation due to abnormal retention. The average linear velocity of the polymer is preferably 1 m/min or more, preferably 2 m/min or more. A facility for pelletizing, a spinning head, etc. can be provided in connection with this piping. On the other hand, methods for removing moisture from the polymer in the present invention include a method of reducing the pressure in the opening to prevent outside air from entering, or a method of introducing an inert gas such as nitrogen into the opening to lower the partial pressure of water vapor in the gas phase. etc. can be used. By using the apparatus described above, it is possible to quickly increase the degree of polymerization of polyamide and to suppress the formation of gel due to abnormal retention. <Examples> Next, the apparatus of the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples. Example 1 An example of implementation is shown in FIG. Screw 4 is a twin-screw extruder with two threads rotating in different directions (length L/D = 38) with a diameter D = 65 mm, a groove depth of 12 mm, a flight pitch of 55 mm, one screw flight and the other screw flight. The distance between 11' and 11' is 0.5
mm, the distance between the screw flight top and the other screw groove bottom is 0.5 mm, the length of opening 1 is L/D=3, the length of opening 2 is L/D=
6. The length from the screw tip to the opening 2 is L/D=5. The pipe 5 is a double pipe that can be heated by a heating medium, and the polymer flow path has an inner diameter of 25 mm and a length of 12 m. A polyhexamethylene adipamide melt polymer having a formic acid relative viscosity (hereinafter abbreviated as VP) VR = 34 was fed into the apparatus shown in Figure 1 from the supply port 3 while being metered with a gear pump, and the results shown in Table 1 were obtained. . The temperature inside the openings 1 and 2 was maintained at 70 torr, and the temperature of the heat medium in the extruder and piping was 285°C.
The polymer extracted from the nozzles 6 and 7 was passed through water in the form of a strand to solidify and form into pellets.

【表】 7日間の運転後、押出機を停止してスクリユー
を抜き出したが表1のNo.1〜No.6のいずれの場合
もスクリユー表面にゲルの付着は認められなかつ
た。又表1の蟻酸相対粘度の項に示すように高重
合度のポリマが得られた。 蟻酸相対粘度の測定はASTM D−789にした
がつて行つた。 比較例−1 実施例−1と同一の条件でポリアミドの連続重
合を行い、たゞし第1図のノズル8よりポリマを
抜き出しストランドの状態で水中に通して固化し
ペレツト化した。得られた結果を第2表に示す。
[Table] After 7 days of operation, the extruder was stopped and the screws were taken out, but no gel was observed on the screw surface in any of the cases No. 1 to No. 6 in Table 1. Furthermore, as shown in the section of formic acid relative viscosity in Table 1, a polymer with a high degree of polymerization was obtained. Measurement of formic acid relative viscosity was performed according to ASTM D-789. Comparative Example 1 Polyamide was continuously polymerized under the same conditions as in Example 1, except that the polymer was extracted from the nozzle 8 in FIG. 1 and passed through water in the form of a strand to solidify and pelletize it. The results obtained are shown in Table 2.

【表】 ノズル8よりポリマを抜出す場合には第2表に
示す如く配管中のポリマー滞留時間が短い(1分
以内)ので、蟻酸相対粘度が低く、充分な高重合
度のポリマが得られない。 実施例 2、比較例 2 実施例1に用いた装置のスクリユーを次に示す
スクリユーに入れ替えて運転した。新しく装着し
たスクリユーは異方向回転タイプのものであり、
溝深さは16mm、スクリユーフライトと他方のスク
リユーフライトとの間11及び11′の距離はそ
れぞれ4mm(実施例2)、8mm(比較例2)であ
り、スクリユーフライトトツプと他方のスクリ溝
底部の間12の距離は4mmであり、他は実施例1
と同様である。運転条件はポリマ流量50Kg/時、
スクリユー回転数は50rpm、開口部の圧力70ト
ル、押出機及び配管度は285℃である。供給ポリ
ヘキサメチレンアジパミドはVR=34でありノズ
ル6より得られたポリマのVRは86で良好に高重
合度化は達成されたが、運転開始後3日目よりペ
レツト内に黒色のゲルが認められ始めた。このた
め、停止してスクユーを抜き出したところスクリ
ユーフライトと他方のスクリユーフライトの間の
距離が8mm(比較例2)の側にところどころ黒色
のゲルが認められた。4mm(実施例2)の側、及
び溝底部には異常は認められなかつた。 比較例 3 ペレツトの溶融部及び2つの供給部を有する3
条ネジの直径84mmの同方向回転2軸押出機を用い
て、VR=34水分率0.14%のポリヘキサメチレン
アジパミドペレツトを流量90Kg/時で供給し、温
度285℃で押出しを行つた。始め実施例1で用い
た配管を押出機出口に接続し、開口部を密閉して
運転したところ押出機先端に近い側の開口部より
ベントアツプしたため配管を外して開口部圧力70
トルへ条件変更して4日目の運転を続けた。スク
リユー回転数は80rpmである。停止後スクリユー
を抜き出したところスクリユーフライトの裏側に
帯状に黒色のゲルが付着している部分が存在し
た。 <発明の効果> 本発明に係るポリアミド重合方法を用いること
によりゲル化等を抑制することができるため、重
合設備の連続運転期間が延長できると共に、得ら
れた高重合度ポリアミドポリマもゲルによる汚染
の少ないものが得られ、紡糸工程では紡口交換周
期の延長や糸切れの減少が達成される。またエン
ジニアリングプラスチツク分野では成型品の汚染
の減少による歩止りの向上や、強度等物性の向上
が期待される。 アジピン酸を1成分とするポリアミド、例えば
ポリヘキサメチレンジアミドは、長時間滞留して
熱を受け続けるとアジピン酸成分がかなり速い速
度で二酸化炭素を発生しつつ分解し、ゲル化に致
るために本発明の重合方法を用いる効果が大き
い。
[Table] When the polymer is extracted from the nozzle 8, as shown in Table 2, the residence time of the polymer in the pipe is short (within 1 minute), so the relative viscosity of formic acid is low, and a polymer with a sufficiently high degree of polymerization can be obtained. do not have. Example 2, Comparative Example 2 The screw in the apparatus used in Example 1 was replaced with the screw shown below and the apparatus was operated. The newly installed screw is a type that rotates in different directions.
The groove depth was 16 mm, the distances 11 and 11' between the screw flight top and the other screw flight were 4 mm (Example 2) and 8 mm (Comparative Example 2), respectively. The distance between the groove bottoms 12 is 4 mm, and the others are as in Example 1.
It is similar to Operating conditions are polymer flow rate 50Kg/hour,
The screw rotation speed is 50 rpm, the opening pressure is 70 torr, and the extruder and piping temperature is 285°C. The supplied polyhexamethylene adipamide had a VR of 34, and the VR of the polymer obtained from nozzle 6 was 86, indicating that a high degree of polymerization was successfully achieved. However, from the third day after the start of operation, black gel appeared in the pellets. began to be recognized. Therefore, when the screw was stopped and the screw was pulled out, black gel was observed here and there on the side where the distance between the screw flight and the other screw flight was 8 mm (Comparative Example 2). No abnormality was observed on the 4 mm side (Example 2) and the bottom of the groove. Comparative Example 3 3 with a pellet melting section and two supply sections
Using a co-rotating twin-screw extruder with a screw diameter of 84 mm, polyhexamethylene adipamide pellets with a VR = 34 moisture content of 0.14% were supplied at a flow rate of 90 kg/hour, and extrusion was performed at a temperature of 285 °C. . Initially, the piping used in Example 1 was connected to the extruder outlet, and when the opening was sealed and the operation was started, venting occurred from the opening near the tip of the extruder, so the piping was removed and the opening pressure was reduced to 70°C.
I changed the conditions to Tor and continued driving for the fourth day. The screw rotation speed is 80 rpm. When the screw was pulled out after the screw was stopped, there was a band of black gel attached to the back side of the screw flight. <Effects of the Invention> By using the polyamide polymerization method according to the present invention, it is possible to suppress gelation, etc., so that the continuous operation period of the polymerization equipment can be extended, and the obtained high degree of polymerization polyamide polymer is also free from gel contamination. In the spinning process, the spinneret exchange cycle can be extended and yarn breakage can be reduced. In the field of engineering plastics, it is expected to improve yields by reducing contamination of molded products and improve physical properties such as strength. When polyamides containing adipic acid as one component, such as polyhexamethylene diamide, remain for a long time and continue to receive heat, the adipic acid component decomposes at a fairly rapid rate while generating carbon dioxide, resulting in gelation. The effects of using the polymerization method of the present invention are significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施するための装置の
例、第2図はかみ合い状態にある2本のスクリユ
ーの中心軸を含む面での断面の垂直上方より見た
拡大部分図である。 1及び2……開口部、3……ポリマ供給口、4
……スクリユー、5……配管、6……ポリマノズ
ル、7及び8……サンプリングノズル、9……真
空ポンプ、11及び11′……スクリユーフライ
トと他方のスクリユーフライトとの〓間、12…
…スクリユーフライトトツプと他方のスクリユー
溝底部の間の〓間、13……ポリマ進行方向。
FIG. 1 is an example of an apparatus for carrying out the method of the present invention, and FIG. 2 is an enlarged partial view of a cross section taken in a plane including the central axes of two screws in mesh, seen from vertically above. 1 and 2...opening, 3...polymer supply port, 4
... Screw, 5 ... Piping, 6 ... Polymer nozzle, 7 and 8 ... Sampling nozzle, 9 ... Vacuum pump, 11 and 11' ... Between the screw flight and the other screw flight, 12 ...
...The distance between the top of the screw flight and the bottom of the other screw groove, 13...Polymer traveling direction.

Claims (1)

【特許請求の範囲】 1 互いに係合して逆方向に回転する二本のスク
リユーの一方のスクリユーフライトと他方のスク
リユーフライトの間の間〓がスクリユー径の1/15
以下に設定され、且つ一方のスクリユーフライト
の頂部と他方のスクリユー溝底部との間の間〓が
スクリユー径の1/15以下に設定された二軸押出機
を使用し、該押出機内を進行中の溶融ポリマ中に
含まれる水分を連続的に除去しつつ次第に重合度
を向上させ、更にこのポリマを押出機の出口側に
接続された滞留域に供給し、該溶融ポリマを線速
度1m/分以上の平均流速で前進せしめつつ前記
滞留域内に2分以上滞留させてポリマ中の水分と
平衡状態に達するまで重合度を向上させた後これ
を順次系外に取出すことを特徴とするポリアミド
の連続重合方法。 2 ポリアミドがアジピン酸を一成分とするポリ
アミドである特許請求の範囲第1項に記載の重合
方法。
[Claims] 1. The distance between one screw flight and the other screw flight of two screws that engage with each other and rotate in opposite directions is 1/15 of the screw diameter.
A twin-screw extruder is used with the following settings and the distance between the top of one screw flight and the bottom of the other screw groove is set to 1/15 or less of the screw diameter, and the extruder moves through the extruder. The degree of polymerization is gradually increased while continuously removing water contained in the molten polymer, and this polymer is further supplied to a retention area connected to the exit side of the extruder, and the molten polymer is moved at a linear speed of 1 m/ The polyamide is allowed to remain in the retention area for 2 minutes or more while advancing at an average flow rate of 1 minute or more to improve the degree of polymerization until it reaches an equilibrium state with the water in the polymer, and then sequentially taken out of the system. Continuous polymerization method. 2. The polymerization method according to claim 1, wherein the polyamide is a polyamide containing adipic acid as one component.
JP59215137A 1984-10-16 1984-10-16 Polymerization of polyamide Granted JPS6195026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59215137A JPS6195026A (en) 1984-10-16 1984-10-16 Polymerization of polyamide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59215137A JPS6195026A (en) 1984-10-16 1984-10-16 Polymerization of polyamide

Publications (2)

Publication Number Publication Date
JPS6195026A JPS6195026A (en) 1986-05-13
JPH0582410B2 true JPH0582410B2 (en) 1993-11-18

Family

ID=16667312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59215137A Granted JPS6195026A (en) 1984-10-16 1984-10-16 Polymerization of polyamide

Country Status (1)

Country Link
JP (1) JPS6195026A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004024795A1 (en) * 2002-08-30 2004-03-25 Toyo Boseki Kabushiki Kaisha Method for continuous production of polyamide
JP5081425B2 (en) * 2006-10-24 2012-11-28 積水化学工業株式会社 Screw for biaxial extrusion
JP4999895B2 (en) * 2009-08-20 2012-08-15 株式会社日本製鋼所 Volume reduction method and apparatus for raw material solution containing volatile components
JP2016141698A (en) * 2015-01-30 2016-08-08 東レ株式会社 Method for producing dehydration polycondensation polymer
TWI794146B (en) * 2015-12-01 2023-03-01 美商阿散德性能材料營運公司 High molecular weight polyamides and copolyamides with uniform rv and low gel content

Also Published As

Publication number Publication date
JPS6195026A (en) 1986-05-13

Similar Documents

Publication Publication Date Title
JP3756520B2 (en) Method for producing polyester articles with low acetaldehyde content
JPH09510247A (en) Method for increasing the molecular weight of polyamides and other condensation polymers
CN101503830B (en) Preparation of polyphenyl thioether fiber
EP1441885A1 (en) Method and device for increasing the limiting viscosity of polyester
FR2593510A1 (en) PROCESS FOR THE PREPARATION OF HIGH VISCOSITY POLYHEXAMETHYLENEADIPAMIDE
KR20090124967A (en) Process and apparatus for producing thermoplastic resin pellets
DE19517166A1 (en) High-mol. wt. lactic acid polymers prodn.
US3496133A (en) Process for preparing filled polymeric structures
JPH051111A (en) Polypropylene pellet
JPH09110999A (en) Production of particulate thermoplastic polymeric material from polymer solution
EP1245610B1 (en) Process for producing oxidative cross-linked polyarylene sulfide
JPH0582410B2 (en)
EP0316571B2 (en) Process for preparation of porous shaped articles
EP0092898A2 (en) Process for remelting polyamides
US3840509A (en) Process for preparing polymers from styrene
JP4098456B2 (en) Method for producing aromatic polycarbonate pellets
US4529321A (en) Device for the preparation of dispersions
US3447583A (en) Process for the continuous removal of monomeric and oligomeric fractions from nitrogen containing polymers
CN101668792A (en) Method for production of aromatic polycarbonate resin composition
CN113260493B (en) Method and device for producing Polylactide (PLA) from a lactide mixture by means of polymerization
CN114131879A (en) Preparation method of cladding protective plastic capable of being bonded with metal
WO1997031968A1 (en) Process for forming articles directly from melt polymerization
JPS63291915A (en) Stabilization of raw oxymethylene copolymer and device therefor
US4532310A (en) Contacting arylene sulfide polymer with oxygen in extruder by continuous processing
KR920008999B1 (en) Process for the production of aromatic polyamide short fibers

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees