JPH0582163A - Manufacture of sealed secondary battery - Google Patents
Manufacture of sealed secondary batteryInfo
- Publication number
- JPH0582163A JPH0582163A JP3268816A JP26881691A JPH0582163A JP H0582163 A JPH0582163 A JP H0582163A JP 3268816 A JP3268816 A JP 3268816A JP 26881691 A JP26881691 A JP 26881691A JP H0582163 A JPH0582163 A JP H0582163A
- Authority
- JP
- Japan
- Prior art keywords
- lid
- cathode
- anode
- secondary battery
- alumina ring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は密閉形二次電池の製造方
法に関するもので、さらに詳しく言えば、イオン伝導性
の固体電解質管の内部に陰極室を、外部に陽極室を形成
してなる密閉形二次電池の製造方法に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a sealed secondary battery, and more specifically, it comprises a cathode chamber inside an ion conductive solid electrolyte tube and an anode chamber outside. The present invention relates to a method for manufacturing a sealed secondary battery.
【0002】[0002]
【従来の技術】イオン伝導性の固体電解質管の内部に陰
極室を、外部に陽極室を形成してなる密閉形二次電池と
しては、陰極室に陰極活物質としてのナトリウムを、陽
極室に陽極活物質としての硫黄を用いた電池がある。2. Description of the Related Art As a sealed secondary battery in which a cathode chamber is formed inside an ion conductive solid electrolyte tube and an anode chamber is formed outside, sodium as a cathode active material is placed in the cathode chamber and There is a battery using sulfur as an anode active material.
【0003】このような密閉形二次電池の従来の製造方
法を図2のナトリウム−硫黄電池の要部断面図によって
説明する。A conventional method for manufacturing such a sealed type secondary battery will be described with reference to FIG. 2 which is a sectional view of an essential portion of a sodium-sulfur battery.
【0004】すなわち、図2において、固体電解質管1
の上部にα−アルミナリング2がガラス半田接合されて
なり、前記α−アルミナリング2の上面に陰極蓋3が、
下面に陽極蓋4がそれぞれ熱圧接合されている。前記陰
極蓋3には陰極端子5が溶接されるとともに、その中央
部を貫通して陰極集電体としての陰極パイプ6が溶接さ
れ、その下方は前記固体電解質管1内に挿入されてい
る。この固体電解質管1内には金属繊維7が配され、約
150℃の保温下において前記陰極パイプ6より固体電
解質管1内を排気した後、同温度で溶融させたナトリウ
ム8が真空充填され、充填後陰極端子5の上端は封止さ
れる。このような陰極室構成体は、円筒形の硫黄成形体
10が内挿され、陽極集電端子11が溶接された陽極集
電体を兼ねる電槽9内に挿入され、その上端は前記陽極
蓋4と真空溶接されて完全密閉される。That is, in FIG. 2, the solid electrolyte tube 1
The α-alumina ring 2 is glass-soldered on the upper part of the
The anode lids 4 are respectively thermocompression bonded to the lower surface. A cathode terminal 5 is welded to the cathode lid 3, a cathode pipe 6 serving as a cathode current collector is welded through the central portion thereof, and the lower portion thereof is inserted into the solid electrolyte tube 1. Metal fibers 7 are arranged in the solid electrolyte tube 1, and the inside of the solid electrolyte tube 1 is evacuated from the cathode pipe 6 while keeping the temperature at about 150 ° C. Then, sodium 8 melted at the same temperature is vacuum filled. After filling, the upper end of the cathode terminal 5 is sealed. In such a cathode chamber structure, a cylindrical sulfur molded body 10 is inserted, and the anode current collector terminal 11 is welded and inserted into a battery case 9 which also functions as an anode current collector. 4 is vacuum welded and completely sealed.
【0005】[0005]
【発明が解決しようとする課題】上記した密閉形二次電
池の製造方法では、α−アルミナリング2の上面に陰極
蓋3を、下面に陽極蓋4をそれぞれ熱圧接合する際にα
−アルミナリング2と固体電解質管1とのガラス半田接
合部に割れが生じ、電池の使用時に固体電解質管1が破
損に至るという問題があった。In the above-described method for manufacturing a sealed secondary battery, the α-alumina ring 2 has an upper surface to which the cathode lid 3 and a lower surface to which the anode lid 4 is attached by thermocompression bonding.
There was a problem that the glass solder joint between the alumina ring 2 and the solid electrolyte tube 1 was cracked and the solid electrolyte tube 1 was damaged when the battery was used.
【0006】また、このような密閉形二次電池の製造方
法では、工程中の熱サイクルによって固体電解質管1に
クラックが発生し、電池の使用時に固体電解質管1が破
損に至るという問題があった。Further, in the method of manufacturing such a sealed type secondary battery, there is a problem that the solid electrolyte tube 1 is cracked due to the thermal cycle during the process and the solid electrolyte tube 1 is damaged during use of the battery. It was
【0007】[0007]
【課題を解決するための手段】上記課題を解決するた
め、本発明は、イオン伝導性の固体電解質管の上部にα
−アルミナリングをガラス半田接合する工程と、前記α
−アルミナリングの上面に陰極蓋および陽極蓋を接合
し、前記陰極蓋によって密閉される陰極室および前記陽
極蓋によって密閉される陽極室を形成する工程とを備え
てなる密閉形二次電池の製造方法であって、前記α−ア
ルミナリングが上面の内側および外側に傾斜部を設けた
ものであり、かつ少なくともこの傾斜部に金属ろう材を
融着させたものであり、前記陰極蓋、陽極蓋がアルミニ
ウム合金、鉄合金、ニッケル合金、クラッド鋼材または
メッキ鋼材からなり、この陰極蓋、陽極蓋を400℃以
下の温度下で前記α−アルミナリングに超音波で接合す
ることを特徴とするものである。SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides an α-type solid electrolyte tube at the upper part of an ion conductive solid electrolyte tube.
-A step of bonding an alumina ring to glass solder, and
-Bonding a cathode lid and an anode lid to the upper surface of the alumina ring to form a cathode chamber sealed by the cathode lid and an anode chamber sealed by the anode lid, and manufacturing a sealed secondary battery. A method in which the α-alumina ring is provided with inclined portions on the inner and outer sides of the upper surface, and a metal brazing material is fused to at least the inclined portions. Is made of an aluminum alloy, an iron alloy, a nickel alloy, a clad steel material or a plated steel material, and the cathode lid and the anode lid are ultrasonically bonded to the α-alumina ring at a temperature of 400 ° C. or less. is there.
【0008】[0008]
【作用】従って、本発明は、アルミニウム合金、鉄合
金、ニッケル合金、クラッド鋼材またはメッキ鋼材から
なる陰極蓋、陽極蓋を400℃以下の温度下で、表面に
金属ろう材を融着させたα−アルミナリングに超音波で
接合しているので、ガラス半田接合部に熱サイクルによ
る応力が加わることを防止することができる。Therefore, according to the present invention, the cathode lid and the anode lid made of an aluminum alloy, an iron alloy, a nickel alloy, a clad steel material or a plated steel material are fused at a temperature of 400.degree. -Because it is ultrasonically bonded to the alumina ring, it is possible to prevent stress due to thermal cycles from being applied to the glass solder bonding portion.
【0009】また、熱サイクルによって固体電解質管に
クラックが発生することを防止することができる。Further, it is possible to prevent the solid electrolyte tube from cracking due to the thermal cycle.
【0010】[0010]
【実施例】図1は本発明の製造方法によって得られた密
閉形二次電池としてのナトリウム−硫黄電池の要部断面
図で、図2と共通する部分には同じ符号を付している。1 is a cross-sectional view of a main portion of a sodium-sulfur battery as a sealed secondary battery obtained by the manufacturing method of the present invention, in which the same parts as those in FIG.
【0011】本発明の特徴は、固体電解質管1の上部に
α−アルミナリング2をガラス半田接合する工程と、こ
のα−アルミナリング2の上面にニッケルメッキされた
鉄からなる陰極蓋3および陽極蓋4を大気中で超音波に
よって接合する工程とを備えたものであって、前記α−
アルミナリング2の上面の内側および外側に傾斜部2
1,22を設けるとともに、少なくともこの傾斜部に金
属ろう材12を融着させ、内側の傾斜部21に陰極蓋3
を、外側の傾斜部22に陽極蓋4を接合したものであ
る。なお、前記接合は陰極蓋3、陽極蓋4の表面に対し
て垂直ねじり回転方向の超音波振動(周波数:35kH
z,ねじり回転振幅:約35μm,圧力:約1.7Kg/
cm2 ,時間:3秒間)を与えることによって行っている
が、陰極蓋3、陽極蓋4の表面に対して円周方向の超音
波振動(周波数:40kHz,振幅:約40μm,圧
力:約1.5Kg/cm2 ,時間:1秒間)を与えることに
よって行うこともできる。なお、前記ねじり回転振幅は
2μm〜100μmであればよく、好ましくは25μm
〜50μmであるのがよい。The present invention is characterized by the step of glass-bonding the α-alumina ring 2 to the upper portion of the solid electrolyte tube 1, and the cathode lid 3 and the anode made of nickel-plated iron on the upper surface of the α-alumina ring 2. A step of joining the lid 4 by ultrasonic waves in the atmosphere, wherein the α-
Inclined portions 2 inside and outside the upper surface of the alumina ring 2
1, 22 are provided, the metal brazing material 12 is fused to at least this inclined portion, and the cathode lid 3 is attached to the inner inclined portion 21.
The anode lid 4 is joined to the outer inclined portion 22. In addition, the above-mentioned joining is performed by ultrasonic vibration (frequency: 35 kHz) in a torsional rotation direction perpendicular to the surfaces of the cathode lid 3 and the anode lid 4.
z, torsional rotation amplitude: about 35 μm, pressure: about 1.7 kg /
cm 2 and time: 3 seconds), but ultrasonic vibration (frequency: 40 kHz, amplitude: about 40 μm, pressure: about 1) in the circumferential direction with respect to the surfaces of the cathode lid 3 and the anode lid 4 is performed. 0.5 Kg / cm 2 , time: 1 second). The torsional rotation amplitude may be 2 μm to 100 μm, preferably 25 μm.
It is preferable that the thickness is ˜50 μm.
【0012】前記陰極蓋3には陰極端子5が溶接される
とともに、その中央部を貫通して陰極集電体としての陰
極パイプ6が溶接され、その下方が固体電解質管1内に
挿入されて図2の電池と同様に陰極室構成体が形成され
る。A cathode terminal 5 is welded to the cathode lid 3, a cathode pipe 6 as a cathode current collector is welded through the central portion thereof, and the lower portion thereof is inserted into the solid electrolyte tube 1. A cathode chamber assembly is formed similar to the battery of FIG.
【0013】そして、この陰極室構成体は、円筒形の硫
黄形成体10が内挿され、陽極集電端子11が溶接され
た陽極集電体を兼ねる電槽9内に挿入され、その上端は
前記陽極蓋4と真空溶接されて完全密閉される。In this cathode chamber structure, a cylindrical sulfur former 10 is inserted, and an anode current collector terminal 11 is inserted into a welded battery case 9 which also serves as an anode current collector, and its upper end is It is vacuum-welded to the anode lid 4 and completely sealed.
【0014】なお、前記超音波による接合は大気中で行
っているが、ナトリウム−硫黄電池のような高温下で動
作させる電池では、その作動温度である400℃以下の
温度下、好ましくは300℃〜380℃の温度下で行っ
てもよい。Although the ultrasonic bonding is performed in the atmosphere, in a battery operated at a high temperature such as a sodium-sulfur battery, the operating temperature is 400 ° C. or lower, preferably 300 ° C. It may be carried out at a temperature of ˜380 ° C.
【0015】また、前記陰極蓋3、陽極蓋4としては、
ニッケルメッキされた鉄以外にアルミニウム合金、鉄合
金、クラッド鋼材、メッキ鋼材を用いてもよい。Further, as the cathode lid 3 and the anode lid 4,
In addition to nickel-plated iron, aluminum alloy, iron alloy, clad steel material, and plated steel material may be used.
【0016】次に、陰極蓋3、陽極蓋4の表面に対して
垂直ねじり回転方向の超音波振動を与えて接合した本発
明の製造方法により製造した電池10本と、図2のよう
な従来の製造方法により製造された電池10本とについ
て、室温から350℃までのヒートサイクル試験を実施
し、破損電池数を調査したところ、表1のような結果が
得られた。Next, ten batteries manufactured by the manufacturing method of the present invention, which are bonded by applying ultrasonic vibrations in the direction of vertical twist rotation to the surfaces of the cathode lid 3 and the anode lid 4, and the conventional battery as shown in FIG. A heat cycle test from room temperature to 350 ° C. was carried out on 10 batteries manufactured by the manufacturing method of 1. and the number of damaged batteries was investigated, and the results shown in Table 1 were obtained.
【0017】[0017]
【表1】 [Table 1]
【0018】表1から、従来方法による電池では10サ
イクル目で2セルが破損したのに対し、本発明方法によ
る電池では15サイクル目で1セルが破損したのみであ
ることがわかる。It can be seen from Table 1 that in the battery prepared by the conventional method, 2 cells were damaged at the 10th cycle, whereas in the battery prepared by the method of the present invention, only 1 cell was damaged at the 15th cycle.
【0019】なお、陰極蓋3、陽極蓋4の表面に対して
円周方向の超音波振動を与えて接合した場合についても
同様の試験を行ったところ、表1と同じ結果が得られ
た。A similar test was carried out when the surfaces of the cathode lid 3 and the anode lid 4 were bonded by applying ultrasonic vibration in the circumferential direction, and the same results as in Table 1 were obtained.
【0020】また、350℃の温度下で超音波振動を与
えて接合した場合についても同様の試験を行ったとこ
ろ、表1と同じ結果が得られた。Further, when the same test was performed in the case where ultrasonic vibration was applied at a temperature of 350 ° C. and the bonding was performed, the same results as in Table 1 were obtained.
【0021】[0021]
【発明の効果】上記したとおりであるから、本発明の密
閉形二次電池の製造方法は、固体電解質管とα−アルミ
ナリングとのガラス半田接合部に熱サイクルによる応力
が加わらないので、電池の生産性を向上させることがで
きる。また傾斜部および少なくともこの傾斜部に融着さ
せた金属ろう材によって超音波による接合を確実に行う
ことができる。As described above, according to the method of manufacturing a sealed secondary battery of the present invention, stress due to thermal cycle is not applied to the glass solder joint between the solid electrolyte tube and the α-alumina ring. The productivity of can be improved. Further, ultrasonic bonding can be surely performed by the inclined portion and at least the metal brazing material fused to the inclined portion.
【図1】本発明の製造方法により製造された密閉形二次
電池の要部断面図である。FIG. 1 is a cross-sectional view of essential parts of a sealed secondary battery manufactured by a manufacturing method of the present invention.
【図2】従来の製造方法により製造された密閉形二次電
池の要部断面図である。FIG. 2 is a cross-sectional view of a main part of a sealed secondary battery manufactured by a conventional manufacturing method.
1 固体電解質管 2 α−アルミナリング 3 陰極蓋 4 陽極蓋 12 金属ろう材 21 傾斜部 22 傾斜部 1 Solid Electrolyte Tube 2 α-Alumina Ring 3 Cathode Lid 4 Anode Lid 12 Metal Brazing Material 21 Inclined Part 22 Inclined Part
Claims (4)
−アルミナリングをガラス半田接合する工程と、前記α
−アルミナリングの上面に陰極蓋および陽極蓋を接合
し、前記陰極蓋によって密閉される陰極室および前記陽
極蓋によって密閉される陽極室を形成する工程とを備え
てなる密閉形二次電池の製造方法であって、前記α−ア
ルミナリングが上面の内側および外側に傾斜部を設けた
ものであり、かつ少なくともこの傾斜部に金属ろう材を
融着させたものであり、前記陰極蓋、陽極蓋がアルミニ
ウム合金、鉄合金、ニッケル合金、クラッド鋼材または
メッキ鋼材からなり、この陰極蓋、陽極蓋を400℃以
下の温度下で前記α−アルミナリングに超音波で接合す
ることを特徴とする密閉形二次電池の製造方法。1. An α-ion is formed on the top of an ion-conducting solid electrolyte tube.
-A step of bonding an alumina ring to glass solder, and
-Bonding a cathode lid and an anode lid to the upper surface of the alumina ring to form a cathode chamber sealed by the cathode lid and an anode chamber sealed by the anode lid, and manufacturing a sealed secondary battery. A method in which the α-alumina ring is provided with inclined portions on the inner and outer sides of the upper surface, and a metal brazing material is fused to at least the inclined portions. Is made of an aluminum alloy, an iron alloy, a nickel alloy, a clad steel material or a plated steel material, and the cathode lid and the anode lid are ultrasonically bonded to the α-alumina ring at a temperature of 400 ° C. or less. Manufacturing method of secondary battery.
り回転方向の超音波で陰極蓋、陽極蓋とα−アルミナリ
ングとを接合したことを特徴とする請求項第1項記載の
密閉形二次電池の製造方法。2. The hermetically sealed structure according to claim 1, wherein the cathode lid, the anode lid and the α-alumina ring are joined by ultrasonic waves in a direction of vertical twist rotation with respect to the surfaces of the cathode lid and the anode lid. Type secondary battery manufacturing method.
の超音波で陰極蓋、陽極蓋とα−アルミナリングとを接
合したことを特徴とする請求項第1項記載の密閉形二次
電池の製造方法。3. The closed type according to claim 1, wherein the cathode lid, the anode lid and the α-alumina ring are joined to the surfaces of the cathode lid and the anode lid by ultrasonic waves in the circumferential direction. Manufacturing method of secondary battery.
を収納する工程と、陽極室に陽極活物質としての硫黄を
収納する工程とを有し、かつイオン伝導性の固体電解質
管としてのβ−アルミナまたはβ”−アルミナの上部に
α−アルミナリングをガラス半田接合する工程を有する
ことを特徴とする請求項第1項記載の密閉形二次電池の
製造方法。4. A β-ion as a solid electrolyte tube having ion conductivity, which has a step of storing sodium as a cathode active material in a cathode chamber and a step of storing sulfur as an anode active material in an anode chamber. The method for manufacturing a sealed secondary battery according to claim 1, further comprising a step of glass-bonding an α-alumina ring on top of alumina or β ″ -alumina.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3268816A JPH0582163A (en) | 1991-09-19 | 1991-09-19 | Manufacture of sealed secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3268816A JPH0582163A (en) | 1991-09-19 | 1991-09-19 | Manufacture of sealed secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0582163A true JPH0582163A (en) | 1993-04-02 |
Family
ID=17463656
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3268816A Pending JPH0582163A (en) | 1991-09-19 | 1991-09-19 | Manufacture of sealed secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0582163A (en) |
-
1991
- 1991-09-19 JP JP3268816A patent/JPH0582163A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0484368B1 (en) | A method of closing one end of the case of a sodium/sulphur cell and a sodium/sulphur cell produced by this method | |
JPH0574484A (en) | Manufacture of sealed secondary battery | |
JPH0574483A (en) | Manufacture of sealed secondary battery | |
JPH0582163A (en) | Manufacture of sealed secondary battery | |
JPH0766798B2 (en) | Airtight method for battery terminal | |
JPH0589909A (en) | Manufacture of closed type secondary battery | |
JPH0589910A (en) | Manufacture of closed type secondary cell | |
JPH0582164A (en) | Manufacture of sealed secondary battery | |
JPH06243890A (en) | Sealed secondary cell | |
JPH0589906A (en) | Closed type secondary cell | |
JPH0766799B2 (en) | Airtight method for battery terminal | |
JPH0582165A (en) | Sealed secondary battery | |
KR101323241B1 (en) | Sodium-sulfur rechargeable battery and device and method for manufacturing the same | |
JPS6319773A (en) | Sodium-sulfur battery and its manufacture | |
JPS62295368A (en) | Sodium-sulphur cell and its manufacture | |
JPH01252587A (en) | Method for binding ceramic part to metallic part | |
JP3292994B2 (en) | Sodium-sulfur battery | |
JP3146684B2 (en) | Sealed secondary battery | |
JPH11204141A (en) | Sealed battery | |
JP2000251929A (en) | Negative electrode compartment structural body for sodium-sulfur battery and its manufacture | |
JPH034459A (en) | Sodium-sulfur battery and its manufacture | |
JPS63195974A (en) | Sodium-sulfur battery | |
JP2614908B2 (en) | Sodium-sulfur battery and method of manufacturing the same | |
JPS6366862A (en) | Sodium-sulfur battery | |
JPS5851461A (en) | Manufacture of enclosed cell |