JPH058151B2 - - Google Patents

Info

Publication number
JPH058151B2
JPH058151B2 JP62099149A JP9914987A JPH058151B2 JP H058151 B2 JPH058151 B2 JP H058151B2 JP 62099149 A JP62099149 A JP 62099149A JP 9914987 A JP9914987 A JP 9914987A JP H058151 B2 JPH058151 B2 JP H058151B2
Authority
JP
Japan
Prior art keywords
acrylic monomer
concrete
compound
water
silane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62099149A
Other languages
Japanese (ja)
Other versions
JPS63265884A (en
Inventor
Chiaki Yamashita
Ryuichi Miura
Yoshio Iwasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kowa Chemical Industry Co Ltd
Original Assignee
Kowa Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kowa Chemical Industry Co Ltd filed Critical Kowa Chemical Industry Co Ltd
Priority to JP9914987A priority Critical patent/JPS63265884A/en
Publication of JPS63265884A publication Critical patent/JPS63265884A/en
Publication of JPH058151B2 publication Critical patent/JPH058151B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Aftertreatments Of Artificial And Natural Stones (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、コンクリート系構造物の劣化を防止
する方法及び亀裂等の劣化を生じた箇所を補修す
る方法に関し、更に詳しくは、アルキルトリアル
コキシシラン化合物とアクリル系単量体を順次塗
布、含浸させるか又は予め両成分を混合し塗布、
含浸させて、コンクリート系構造物の劣化を防止
又は劣化が進行した箇所を効果的に補修強化する
実用性の優れた構造物の強度改善方法に関する。 〔従来の技術とその問題点〕 近年、セメント系構造物の経年劣化が、大きな
社会的問題となつている。その主な原因は、資源
の枯渇により、骨材として望ましくない海砂や砕
石が用いられること、及び水硬性セメント系組成
物をポンプ輸送する施工上の要求に沿つて、流動
性を与えるために該組成物中に必要以上の水を添
加したこと等によるものと考えられる。このよう
なセメント系構造物においては、例えば、 (1) 構造物の中性化による内部鉄筋の発錆、 (2) 使用原材料中の塩分や外部から侵入した塩分
による鉄筋の発錆の促進、 (3) 膨張性骨材の使用に基づく膨張やポツプアウ
ト等による構造物の亀裂の発生、 等の不都合現象が生じ、これらの現象により、セ
メント系構造物の劣化が加速度的に促進されるよ
うである。 このような劣化を防止する手段として、従来、
コンクリート内に埋設する鉄筋類を、あらかじめ
亜鉛メツキしたり、エポキシ樹脂のような有機高
分子材料で被覆する方法が行われているが、亜鉛
メツキ鉄筋は、コンクリートが高アルカリ性であ
るため被覆耐性が問題であるばかりでなく、加工
時に傷付き易いという欠点があり、また、エポキ
シ塗装鉄筋は、現場加工時に傷つき易く、更に、
ある程度以上の厚い膜厚の塗膜が要求されること
及び材料が高価になるという理由から工業的に望
ましくない。 また、コンクリート系構造物の表面にエポキシ
樹脂をコーテイングする保護方法も試みられてい
るが、一般に有機塗膜は耐久性に問題があるほか
傷付き易いことなど、必ずしも満足できる方法と
はいい難い。更に、シリコーンやシリコーンオリ
ゴマー等を有機溶剤に溶かしてコンクリート表面
に塗布し、その溌水性を利用して遮水する試みも
行われているが、分子量が大きいために、細孔内
へ充分浸透できず極く表面層に止まるので、保護
効果や効果の持続性に不満足なものが多く、向上
が望まれている。 また更に、コンクリートや石材の防水、防塩保
護対策として、アルキルトリアルコキシシラン類
を塗布、含浸させる方法が行われた。これらのシ
ラン類は、それ自体の粘度が低く表面張力も小さ
いので、細孔内への浸透性は良好で、容易に深部
まで浸透するが、浸透したシランは多孔質の空隙
を完全に充てん閉塞し得ないので、アルキル基の
溌水作用により水の進入は阻止し得るが、多孔質
空隙が存在するために圧力水に対する保護効果は
極めて低いという欠点がある。 一方、コンクリート構造物等にメチルメタクリ
レートやスチレン等の単量体を塗布、含浸、重合
させる改質手段が知られているが、深く浸透させ
るために、構造体をあらかじめ減圧したり、塗布
後、加圧して含浸させる等の操作を必要とするの
で大型構造体には、実質的に採用できない。 深部に浸透して加水分解したシラノール層と浅
部に浸透したアクリル系単量体の重合体層とで従
つて、本発明の目的は、コンクリート系構造物の
防水性、遮塩性、耐久性等を大幅に向上させる改
質方法を提供するにある。また、他の目的は、長
期にわたつて劣化が防止され、強化補修されたコ
ンクリート構造物を提供することにある。 〔問題点を解決するための手段〕 本発明者らは、上記目的を達成する効果的方法
について実験、研究を重ねた結果、上記目的を効
果的に達成する実用的に極めて望ましい方法を見
出した。 すなわち、本発明は、コンクリート系構造物の
表面に、アルキルトリアルコキシシラン化合物を
塗布、含浸せしめたのち、重合性のアクリル系単
量体を重合開始触媒と共に塗布するか、又はアル
キルトリアルコキシシラン化合物と重合性のアク
リル系単量体との混合物を重合開始触媒と共に塗
布、含浸させ、構造物中に浸透したアクリル系単
量体を重合、硬化させることを特徴とするコンク
リート系構造物の劣化防止及び補修方法を提供す
る。 本発明の方法において、対象とするコンクリー
ト構造物とは、主として、内部に鉄筋や鉄骨を含
んだコンクリート製の大型構造体や構築体を対象
とするものである。しかし、本発明の方法は、各
種の多孔質構造体類に適用して、効果的にそれら
の劣化を防止し、補強し得るので、本発明におけ
るコンクリート構造物は、モルタル類のほか、例
えば、石材、窒業系材料、ALC、軽量骨材や木
材の如き多孔性構造物をも包含するものである。 本発明の方法に用いられるアルキルトリアルコ
キシシランは、次の一般式: R1−Si(OR23 で表わされる化合物類であつて、好ましくは、式
中のR1が炭素原子数3〜14のアルキル基で、且
つOR2がメトキシ基又はエトキシ基から成る化合
物類である。 そのような化合物としては、例えば、プロピル
トリメトキシ(エトキシ)シラン、ブチルトリメ
トキシ(エトキシ)シラン、アミルトリメトキシ
(エトキシ)シラン、ヘキシルトリメトキシ(エ
トキシ)シラン、オクチルトリメトキシ(エトキ
シ)シラン、デシルトリメトキシ(エトキシ)シ
ラン、ドデシルトリメトキシ(エトキシ)シラ
ン、テトラデシルトリメトキシ(エトキシ)シラ
ン、オクタデシルトリメトキシ(エトキシ)シラ
ン等を挙げることができる。これらは、単独種又
は二種以上を組み合わせて使用することができ
る。 これらシラン化合物類を多孔質構造物表面に適
用するには、そのまま塗布してもよいが、通常、
該シラン化合物を、例えば、10〜50%の脂肪族低
級アルコール溶液に調製して塗布することができ
る。多孔性構造物内へ浸透したシラン化合物は、
構造体内部に存在する水分によつて加水分解され
てシラノールとなり、このシラノール基は、構造
物中のシリカ等の表面のOH基や他のシラノール
基等との反応によつて脱水縮合し、強固なシロキ
サン結合を形成するものである。 本発明においては、多孔質構造物表面に、この
ようにアルキルトリアルコキシシラン化合物を塗
布、含浸させたのち、更に、重合性アクリル系単
量体を重合開始剤と共に塗布するか、又はアルキ
ルトリアルコキシシラン化合物と重合性のアクリ
ル系単量体とを予め混合し、その混合物を重合開
始触媒と共に塗布、含浸させて、重合、硬化させ
ることにより、深部に浸透して加水分解したシラ
ノール層と浅部に浸透したアクリル系単量体の重
合体層とで多孔質空隙部が密に充てんされた遮水
性保護層が効果的に形成される。 本発明の方法に好ましく用いられるアクリル系
単量体としては、例えば、メチルメタクリレート
(MMA),ブチルアクリレート(BA),グリシジ
ルメタクリレート(GMA),2−エチルヘキシ
ルメタクリレート(2−EHMA),シクロヘキシ
ルメタクリレート(CHMA),2−ヒドロキシプ
ロピルメタクリレート(2−HPMA),テトラヒ
ドロフルフリルメタクリレート(THFMA),イ
ソボニルメタクリレート(IBMA)等が挙げられ
る。これらは単独で用いてもよいし、二種以上を
組み合わせて使用することができる。 また、本発明の方法においては、上記アクリル
系単量体は、あらかじめ重合開始触媒と混合した
組成物の形で適用することが望ましいが、所定量
の触媒を適当な溶剤に溶解して塗布したのち、ア
クリル形単量体又はこれを含む液を塗布、含浸さ
せてもよい。 かかるアクリル系単量体と共に用いられる重合
開始剤は、通常知られた重合触媒類であつて、そ
の代表的なものとして、例えば、過酸化ベンゾイ
ル,クメンヒドロキシパーオキシド,メチルエチ
ルケトンパーオキシド等を挙げることができる。
また、それら重合開始剤の使用量は、通常知られ
た量範囲が好都合に採用され、所望の重合硬化時
間や可使時間に応じてその量は適宜選択される。
また、かかる重合開始触媒と組み合わせて少量の
重合助剤ないし重合促進剤を併用することができ
る。そのような促進剤としては、例えば、パラジ
メチルベンゾイツクアシドイソアミルエステル,
アセチルアセトンコバルト塩,ナフテン酸コバル
ト塩等を挙げることができる。 〔作用、効果〕 本発明の方法によれば、コンクリート系構造物
の多孔性空隙含浸部の内層には、主としてシラン
系化合物がシロキサン結合によつて固定化され、
該含浸部の表層には、主として耐候性の良好なア
クリル系重合体の充てん層が効果的に形成され
る。その結果、防水性及び遮塩性に優れた保護層
を有する耐劣化性に優れ、且つ長期安定なコンク
リート系構造物が提供される。 〔実施例〕 次に、実施例により、本発明を更に詳細に説明
する。なお、例中の部数及び%は、特に記載がな
い限り重量によるものである。 また、本発明の方法による劣化防止及び補修効
果についての各種フアクターの性能を試験するた
めに、コンクリート系構造物として代表的な下記
のような各種形状のモルタルを作り、これらを供
試体として各種組合せ処理剤を適用したものにつ
いて諸物性を測定した。 [測定用モルタル供試体] セメント:砂:水の配合割合が、1:2:0.5
の混和調製組成物を、各種試験用供試体の型枠に
打設し、2日後に脱型して、以後、温度20±2
℃、相対湿度65±5%の条件下に四週間養生させ
たものを供試体として使用した。 次に、これら供試体を用いて、各種劣化防止方
法の劣化防止性を次の試験法により評価した。 (a) 浸透深さ 養生した4×4×16cmのモルタル供試体の全
面に含浸処理材料の所定量を塗布し、温度20±
2℃、相対湿度65±5%の条件下に7日間放置
後、供試体を割裂して割裂面を水に濡らし、溌
水部分の深さ(mm)を測定する。 ただし、シラン系材料を適用しない場合に
は、あらかじめ塗布材料に染料を添加して着色
し、その浸透深さを調べた。 (b) 吸水率 養生した4×4×16cmのモルタル供試体の全
面に含浸塗布材料の所定量を塗布し、温度20±
2℃、相対湿度65±5%の条件下に7日間放置
後、水に水没状に浸漬して、30日後の重量増加
から給水率(%)を求める。 (c) 透水性試験−1 養生した10×10×20cmのモルタル供試体の一
面に、含浸塗布材料の所定量を塗布し、温度20
±2℃、相対湿度65±5%の条件下に7日間放
置し、これをJIS A6910の透水試験法によつ
て、24時間後の透水量(c.c.)を測定する。 (d) 透水性試験−2 本試験は、供試体をJIS A1404の規定に準じ
て作成し、次のような方法で加圧透水性を測定
する。 [供試体の作成] ポルトランドセメント5Kg、いわきけい砂5.5
号10Kg、いわきけい砂6号5Kgの混合物に、水を
3.25Kg加えて混練し(フロー値:約150〜155)、
これを内径15cm、高さ4cmの円筒状形枠に打設
し、温度20℃±3℃、相対湿度80%以上の室内に
48時間放置後、脱型する。脱型後、更に19日間、
同室内で養生させ、次いで、温度35℃、相対湿度
60%の室内に7日間放置したものを供試体とす
る。 [加圧透水性試験] この供試体の上面に含浸させる材料を所定量塗
布し、側面はポリウレタン樹脂でシールして、温
度20、相対湿度65%の条件下に7日間放置した
後、塗布面を上にしてJIS A1404で規定する透水
性試験機に取り付け、上面から3Kg/cm2の水圧で
清水を圧入し、5時間後のモルタルの重量増加量
を測定する。 (e) 遮塩性試験 4×4×16cmのモルタル供試体の全面に、含
浸用材料の所定量を塗布し、温度20±2℃、相
対湿度65±5%の条件下に7日間放置後、飽和
食塩水中に全没状に浸漬し、3ヶ月後の重量増
加を測定すると共に、浸漬6ヶ月後に供試体を
割裂して内部への塩素イオンの浸透深さ(mm)
をフルオレツセイン呈色反応によつて測定す
る。 (f) アルカリ浸漬試験 4×4×16cmのモルタル供試体の全面に材料
を所定量塗布し、温度20±2℃、相対湿度65±
5%の条件下に7日間放置後、飽和水酸化カル
シウム溶液中に全没状に浸漬して、3ヶ月後の
供試体の重量増加を測定する。 (g) 地下補強効果試験 7×7×2cmのモルタル供試体の上面に材料
を所定量塗布し、温度20℃、相対湿度65%の条
件下に7日間放置後、JIS A6909・5・5に規
定する垂直引張り強度を測定する。 (h) クラツク充てん付着効果試験 7×7×2cmと4×4×2cmの二枚のモルタ
ル供試体の間に、0.3mmφの針金で空隙を作り、
上部に100gの分銅を載せる。 この二枚の供試体の周縁部に材料を塗布する
と、材料が毛細管現象で空隙部に侵入する。こ
の塗布操作を60分間隔で計3回行い、温度25
℃、相対湿度65%の条件下に7日間放置したの
ち、幅2mm、深さ2mmの溝を縦横に2本ずつ入
れ、JIS A6909・5・5の規定に準じて引張り
強さを測定する。 実施例1〜5及び比較例1〜2 供試体の表面に、まずアルキルトリアルコキシ
シランを塗布、含浸させ、次いで重合性アクリル
系単量体を塗布し、含浸、硬化させて得られた改
質体について、上記各種試験を実施した。それら
の測定結果を第1表にまとめて示す。なお、アル
キルトリアルコキシシランとしてデシルトリエト
キシシラン(C10と略記する)を用い、また、重
合性アクリル系単量体として、IBMA、
THFMA、2−EHMA及び2−HPMAを選択使
用し、更に、重合開始触媒としてクメンヒドロキ
シパーオキシドを単量体合計量の約0.5%混合使
用した。C10の塗布量及び用いたアクリル系単量
体の種類、それらの組合せ及び各塗布量は、下掲
第1表中に示した。また、供試体にC10のみを塗
布、含浸させたもの(比較例1)、IBMAのみを
塗布、含浸、硬化させたもの(比較例2)及びこ
れらを全く適用しない供試体自体(ブランク)に
ついてのそれぞれの測定値を参考のために併記し
た。
[Industrial Application Field] The present invention relates to a method for preventing deterioration of concrete-based structures and a method for repairing deteriorated areas such as cracks. Apply and impregnate the body sequentially, or mix both components in advance and apply.
The present invention relates to a highly practical method for improving the strength of concrete structures by impregnating them to prevent deterioration of concrete structures or to effectively repair and strengthen areas where deterioration has progressed. [Prior art and its problems] In recent years, aging deterioration of cement-based structures has become a major social problem. The main reasons for this are the use of undesirable sea sand and crushed stone as aggregates due to resource depletion, and the need to provide fluidity in line with the construction requirements for pumping hydraulic cementitious compositions. This is thought to be due to the fact that more water than necessary was added to the composition. In such cement-based structures, for example, (1) rusting of internal reinforcing bars due to carbonation of the structure, (2) promotion of rusting of reinforcing bars due to salt in the raw materials used or salt entering from the outside, (3) Inconvenient phenomena such as cracks in structures due to expansion and pop-outs occur due to the use of expandable aggregates, and these phenomena appear to accelerate the deterioration of cement-based structures. be. Conventionally, as a means to prevent such deterioration,
Reinforcing bars to be buried in concrete are pre-galvanized or coated with organic polymer materials such as epoxy resins, but galvanized reinforcing bars have poor coating resistance due to the high alkalinity of concrete. Not only is this a problem, but it also has the disadvantage of being easily damaged during processing;
It is industrially undesirable because it requires a coating film with a certain thickness or more and the material is expensive. In addition, attempts have been made to protect the surface of concrete structures by coating them with epoxy resin, but this method is not necessarily satisfactory, as organic coatings generally have problems with durability and are easily damaged. Furthermore, attempts have been made to dissolve silicone or silicone oligomers in organic solvents and apply them to the concrete surface to take advantage of their water-repellent properties to block water, but due to their large molecular weight, they cannot sufficiently penetrate into the pores. Since the protection is limited to the surface layer, many products are unsatisfactory in terms of protective effect and durability of the effect, and improvements are desired. Furthermore, methods of coating and impregnating alkyltrialkoxysilanes have been used as waterproofing and salt-proofing measures for concrete and stone. These silanes have low viscosity and low surface tension, so they have good permeability into pores and easily penetrate deep into the pores, but the silanes that have penetrated completely fill and block the porous voids. Therefore, the ingress of water can be prevented by the water-repellent action of the alkyl group, but there is a drawback that the protective effect against pressure water is extremely low due to the presence of porous voids. On the other hand, a modification method is known in which monomers such as methyl methacrylate or styrene are applied, impregnated, and polymerized to concrete structures. Since it requires operations such as pressurization and impregnation, it cannot be practically adopted for large structures. The purpose of the present invention is to improve the waterproofness, salt-blocking property, and durability of concrete structures by using a hydrolyzed silanol layer that penetrates deep and a polymer layer of acrylic monomer that penetrates shallowly. The purpose of the present invention is to provide a modification method that significantly improves Another object of the present invention is to provide a reinforced and repaired concrete structure that is prevented from deteriorating over a long period of time. [Means for Solving the Problems] As a result of repeated experiments and research on effective methods for achieving the above objectives, the present inventors have discovered a practically highly desirable method for effectively achieving the above objectives. . That is, the present invention involves applying and impregnating an alkyltrialkoxysilane compound onto the surface of a concrete structure, and then applying a polymerizable acrylic monomer together with a polymerization initiation catalyst, or applying an alkyltrialkoxysilane compound to the surface of a concrete structure. and a polymerizable acrylic monomer together with a polymerization initiation catalyst, which is applied and impregnated, and the acrylic monomer that has penetrated into the structure is polymerized and hardened. and provide repair methods. In the method of the present invention, the target concrete structure is mainly a large-scale structure or construction made of concrete that includes reinforcing bars or steel frames inside. However, since the method of the present invention can be applied to various porous structures to effectively prevent their deterioration and strengthen them, the concrete structure of the present invention can be applied to various types of porous structures, such as It also includes porous structures such as stone, nitrogen-based materials, ALC, lightweight aggregates and wood. The alkyltrialkoxysilane used in the method of the present invention is a compound represented by the following general formula: R 1 -Si(OR 2 ) 3 , and preferably R 1 in the formula has 3 to 3 carbon atoms. 14 alkyl groups, and OR 2 is a methoxy group or an ethoxy group. Such compounds include, for example, propyltrimethoxy(ethoxy)silane, butyltrimethoxy(ethoxy)silane, amyltrimethoxy(ethoxy)silane, hexyltrimethoxy(ethoxy)silane, octyltrimethoxy(ethoxy)silane, decyltrimethoxy(ethoxy)silane, Examples include trimethoxy(ethoxy)silane, dodecyltrimethoxy(ethoxy)silane, tetradecyltrimethoxy(ethoxy)silane, octadecyltrimethoxy(ethoxy)silane, and the like. These can be used alone or in combination of two or more. In order to apply these silane compounds to the surface of a porous structure, they may be applied directly, but usually,
The silane compound can be applied, for example, by preparing a 10 to 50% aliphatic lower alcohol solution. The silane compound that has penetrated into the porous structure is
It is hydrolyzed by the moisture present inside the structure to form silanol, and this silanol group is dehydrated and condensed by reaction with the OH group on the surface of silica, etc. in the structure, or other silanol groups, and becomes strong. It forms a siloxane bond. In the present invention, after the alkyltrialkoxysilane compound is applied and impregnated onto the surface of the porous structure, a polymerizable acrylic monomer is further applied together with a polymerization initiator, or the alkyltrialkoxysilane By pre-mixing a silane compound and a polymerizable acrylic monomer, applying the mixture together with a polymerization initiation catalyst, impregnating it, polymerizing and curing, the silanol layer penetrates deep and is hydrolyzed, forming a silanol layer in shallow parts. A water-blocking protective layer in which the porous voids are densely filled is effectively formed by the polymer layer of the acrylic monomer infiltrated into the acrylic monomer. Examples of acrylic monomers preferably used in the method of the present invention include methyl methacrylate (MMA), butyl acrylate (BA), glycidyl methacrylate (GMA), 2-ethylhexyl methacrylate (2-EHMA), and cyclohexyl methacrylate (CHMA). ), 2-hydroxypropyl methacrylate (2-HPMA), tetrahydrofurfuryl methacrylate (THFMA), isobornyl methacrylate (IBMA), and the like. These may be used alone or in combination of two or more. In addition, in the method of the present invention, it is preferable that the acrylic monomer is applied in the form of a composition mixed with a polymerization initiation catalyst in advance, but it is preferable to apply the acrylic monomer after dissolving a predetermined amount of the catalyst in an appropriate solvent. Afterwards, an acrylic monomer or a liquid containing the same may be applied and impregnated. The polymerization initiator used with the acrylic monomer is a commonly known polymerization catalyst, and representative examples thereof include benzoyl peroxide, cumene hydroxy peroxide, methyl ethyl ketone peroxide, etc. I can do it.
Further, the amount of the polymerization initiator to be used is conveniently within a generally known amount range, and the amount is appropriately selected depending on the desired polymerization curing time and pot life.
Further, a small amount of a polymerization aid or polymerization promoter can be used in combination with such a polymerization initiation catalyst. Such accelerators include, for example, paradimethylbenzoic acid isoamyl ester,
Examples include acetylacetone cobalt salt and naphthenic acid cobalt salt. [Operations and Effects] According to the method of the present invention, a silane compound is mainly immobilized in the inner layer of the porous void impregnated part of a concrete structure by siloxane bonding,
A filling layer mainly made of an acrylic polymer having good weather resistance is effectively formed on the surface layer of the impregnated portion. As a result, a concrete-based structure having a protective layer with excellent waterproofness and salt-blocking properties, excellent deterioration resistance, and long-term stability is provided. [Example] Next, the present invention will be explained in more detail with reference to Examples. Note that parts and percentages in the examples are by weight unless otherwise specified. In addition, in order to test the performance of various factors regarding deterioration prevention and repair effects by the method of the present invention, mortar of various shapes as shown below, which are typical for concrete-based structures, was made and these were used as specimens in various combinations. Various physical properties were measured for those to which the treatment agent was applied. [Mortar specimen for measurement] The mixing ratio of cement: sand: water is 1:2:0.5
The mixed preparation composition was poured into the molds of various test specimens, removed from the mold after 2 days, and then kept at a temperature of 20 ± 2.
The specimens were cured for four weeks at a temperature of 65±5% and a relative humidity of 65±5%. Next, using these specimens, the deterioration prevention properties of various deterioration prevention methods were evaluated by the following test method. (a) Penetration depth A predetermined amount of impregnated material is applied to the entire surface of a cured 4 x 4 x 16 cm mortar specimen, and the temperature is 20±
After being left for 7 days at 2°C and relative humidity of 65±5%, the specimen is split open, the split surface is wetted with water, and the depth (mm) of the water-repellent area is measured. However, when a silane-based material was not applied, a dye was added to the coating material in advance to color it, and the penetration depth was examined. (b) Water absorption rate A predetermined amount of impregnation coating material was applied to the entire surface of a cured 4 x 4 x 16 cm mortar specimen, and the temperature was 20±
After being left for 7 days at 2°C and relative humidity of 65±5%, the sample was submerged in water, and the water supply rate (%) was determined from the weight increase after 30 days. (c) Water permeability test-1 A predetermined amount of impregnation coating material was applied to one side of a cured mortar specimen measuring 10 x 10 x 20 cm, and the temperature was 20°C.
The sample was left for 7 days at ±2°C and relative humidity of 65±5%, and the amount of water permeation (cc) after 24 hours was measured using the JIS A6910 water permeability test method. (d) Water permeability test-2 In this test, a specimen is prepared in accordance with the provisions of JIS A1404, and the pressurized water permeability is measured using the following method. [Preparation of specimen] 5 kg of Portland cement, 5.5 kg of Iwaki silica sand
Add water to a mixture of No. 10 kg and 5 kg of Iwaki silica sand No. 6.
Add 3.25Kg and mix (flow value: approx. 150-155),
This was poured into a cylindrical frame with an inner diameter of 15 cm and a height of 4 cm, and placed indoors at a temperature of 20°C ± 3°C and a relative humidity of 80% or more.
After leaving for 48 hours, demold. After demolding, for another 19 days,
Cured in the same room, then at a temperature of 35℃ and relative humidity.
The specimen was left in a 60% room for 7 days. [Pressure water permeability test] A predetermined amount of the material to be impregnated is applied to the top surface of this specimen, the sides are sealed with polyurethane resin, and after being left for 7 days at a temperature of 20°C and a relative humidity of 65%, the coated surface is Attach the mortar to a water permeability tester specified in JIS A1404 with the mortar facing up, and press clean water into the mortar from the top at a water pressure of 3 kg/cm 2 to measure the increase in weight of the mortar after 5 hours. (e) Salt-blocking test A predetermined amount of impregnating material was applied to the entire surface of a 4 x 4 x 16 cm mortar specimen, and after being left for 7 days at a temperature of 20 ± 2°C and a relative humidity of 65 ± 5%. The specimen was fully immersed in saturated saline solution, and the weight increase was measured after 3 months, and the specimen was split open after 6 months of immersion to determine the penetration depth of chlorine ions into the interior (mm).
is measured by fluorescein color reaction. (f) Alkali immersion test A predetermined amount of material is applied to the entire surface of a 4 x 4 x 16 cm mortar specimen, and the temperature is 20 ± 2 °C and the relative humidity is 65 ±.
After being left for 7 days under the condition of 5% calcium hydroxide, the sample was completely immersed in a saturated calcium hydroxide solution, and the weight increase of the sample after 3 months was measured. (g) Underground reinforcement effect test A predetermined amount of material was applied to the top surface of a 7 x 7 x 2 cm mortar specimen, and after being left for 7 days at a temperature of 20°C and a relative humidity of 65%, it was tested according to JIS A6909.5.5. Measure the specified vertical tensile strength. (h) Crack filling adhesion effect test A gap was created between two mortar specimens measuring 7 x 7 x 2 cm and 4 x 4 x 2 cm using a 0.3 mmφ wire.
Place a 100g weight on top. When a material is applied to the peripheral edges of these two specimens, the material enters the gap by capillary action. This coating operation was repeated three times at 60 minute intervals, and the temperature was 25
After leaving it for 7 days at ℃ and 65% relative humidity, two grooves with a width of 2 mm and a depth of 2 mm are made vertically and horizontally, and the tensile strength is measured according to the provisions of JIS A6909.5.5. Examples 1 to 5 and Comparative Examples 1 to 2 Modifications obtained by first coating and impregnating alkyltrialkoxysilane on the surface of a specimen, then coating, impregnating, and curing a polymerizable acrylic monomer The above-mentioned various tests were conducted on the body. The measurement results are summarized in Table 1. Incidentally, decyltriethoxysilane (abbreviated as C10 ) was used as the alkyltrialkoxysilane, and IBMA,
THFMA, 2-EHMA and 2-HPMA were selectively used, and cumene hydroxyperoxide was used as a polymerization initiation catalyst in an amount of about 0.5% based on the total amount of monomers. The amount of C 10 applied, the types of acrylic monomers used, their combinations, and the amount of each application are shown in Table 1 below. In addition, the specimens were coated and impregnated with C10 only (Comparative Example 1), those coated with IBMA, impregnated, and cured (Comparative Example 2), and the specimens themselves to which none of these were applied (blank). The measured values of each are also listed for reference.

【表】 実施例 6〜9 アルキルトリアルコキシシラン化合物及びアク
リル系単量体として、デシルトリエトキシシラン
及びイソボニルメタクリレートを用い、それらの
各種の重量割合の混合組成物を調製し、それら組
成物を塗布量が300g/m2となるように供試体表
面に塗布し、含浸、硬化させて、それぞれの組成
物による改質供試体を得た。得られたコンクリー
ト系構造物について行つた各試験の測定結果を第
2表にまとめて示す。 第1表及び第2表より、コンクリート系構造体
に対して、本発明の方法が顕著に優れた劣化防止
効果及び補修効果を有することが判る。また、コ
ンクリート系多孔質構造体に、先ずシラン系化合
物を適用後、重合性アクリル系単量体を適用する
二段法及び両成分を予め混合した組成物を塗布、
含浸、硬化させる一段適用法は、同様な遮水性、
遮塩性並びに加圧水抵抗性を示し、またクラツク
等に対し良好な充てん接着効果を有することが理
解できる。
[Table] Examples 6 to 9 Decyltriethoxysilane and isobornyl methacrylate were used as the alkyltrialkoxysilane compound and the acrylic monomer, and mixed compositions were prepared in various weight proportions. The composition was applied to the surface of the specimen in an amount of 300 g/m 2 , impregnated, and cured to obtain a modified specimen with each composition. Table 2 summarizes the measurement results of each test conducted on the obtained concrete structure. From Tables 1 and 2, it can be seen that the method of the present invention has a significantly excellent deterioration prevention effect and repair effect on concrete structures. In addition, a two-step method in which a silane compound is first applied to a concrete-based porous structure and then a polymerizable acrylic monomer is applied, and a composition in which both components are mixed in advance is applied.
The one-step application method of impregnating and curing has similar water-blocking properties,
It can be seen that it exhibits salt blocking properties and pressurized water resistance, and also has a good filling adhesive effect against cracks and the like.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 コンクリート系構造物の表面に、アルキルト
リアルコキシシラン化合物を塗布、含浸せしめた
のち、重合性のアクリル系単量体を重合開始触媒
と共に塗布するか、又はアルキルトリアルコキシ
シラン化合物と重合性のアクリル系単量体との混
合物を重合開始触媒と共に塗布、含浸させ、構造
物中に浸透したアクリル単量体を重合、硬化させ
ることを特徴とするコンクリート系構造物の劣化
防止及び補修方法。 2 上記シラン化合物が、炭素原子数3〜14のア
ルキル基を有し、且つメトキシ基及びエトキシ基
から選択されるアルコキシ基を有するアルコキシ
シラン化合物である特許請求の範囲第1項記載の
方法。
[Scope of Claims] 1. After applying and impregnating an alkyltrialkoxysilane compound on the surface of a concrete structure, a polymerizable acrylic monomer is applied together with a polymerization initiation catalyst, or an alkyltrialkoxysilane compound is applied to the surface of the concrete structure. Prevention of deterioration of concrete structures, characterized by coating and impregnating a mixture of a compound and a polymerizable acrylic monomer together with a polymerization initiation catalyst, and polymerizing and hardening the acrylic monomer that has penetrated into the structure. and repair methods. 2. The method according to claim 1, wherein the silane compound is an alkoxysilane compound having an alkyl group having 3 to 14 carbon atoms and an alkoxy group selected from a methoxy group and an ethoxy group.
JP9914987A 1987-04-22 1987-04-22 Method for preventing deterioration of concrete structure and repairing said structure Granted JPS63265884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9914987A JPS63265884A (en) 1987-04-22 1987-04-22 Method for preventing deterioration of concrete structure and repairing said structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9914987A JPS63265884A (en) 1987-04-22 1987-04-22 Method for preventing deterioration of concrete structure and repairing said structure

Publications (2)

Publication Number Publication Date
JPS63265884A JPS63265884A (en) 1988-11-02
JPH058151B2 true JPH058151B2 (en) 1993-02-01

Family

ID=14239635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9914987A Granted JPS63265884A (en) 1987-04-22 1987-04-22 Method for preventing deterioration of concrete structure and repairing said structure

Country Status (1)

Country Link
JP (1) JPS63265884A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0870743B1 (en) * 1997-04-08 2002-07-17 Betsinor Société Anonyme Building panel having cement matrix
KR100815046B1 (en) 2006-11-30 2008-03-18 한국전력공사 Method for repairing aged concrete using surface penetrating reinforcement agent
JP2012093263A (en) * 2010-10-27 2012-05-17 Asuton:Kk Concrete test body and method for manufacturing the same
JP6501724B2 (en) * 2016-04-01 2019-04-17 Dic株式会社 Dispersion liquid for filler for concrete structure, method for producing filler for concrete structure, and method for producing concrete structure
JP2021050111A (en) * 2019-09-24 2021-04-01 積水化学工業株式会社 Surface protection structure of cured cement body structure and surface protection method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55104380A (en) * 1979-02-07 1980-08-09 Toagosei Chem Ind Co Ltd Permeable water-proof composition
JPS5782183A (en) * 1980-11-07 1982-05-22 Toray Industries Coated ceramic product

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55104380A (en) * 1979-02-07 1980-08-09 Toagosei Chem Ind Co Ltd Permeable water-proof composition
JPS5782183A (en) * 1980-11-07 1982-05-22 Toray Industries Coated ceramic product

Also Published As

Publication number Publication date
JPS63265884A (en) 1988-11-02

Similar Documents

Publication Publication Date Title
KR100815046B1 (en) Method for repairing aged concrete using surface penetrating reinforcement agent
JP5227332B2 (en) Processing composite building materials
US7670421B2 (en) Penetration reinforcing agent for preventing aging of concrete and process for preparing the same
KR101422206B1 (en) High-performance flowing cement mortar composition and surface protection method of concrete structures using the composite
CA1238144A (en) Impregnant compositions for porous substrates
KR101194554B1 (en) Modified early strength concrete composite with acrylic emulsion and sulfur polymer, manufacturing method of the composite, and repairing method of concrete structure using the composite
US9914668B2 (en) Compositions and methods for curing concrete
KR100599586B1 (en) Repair agent for cracks of the structure and using method for the same
CN113249030B (en) Organosilicon waterproofing agent prepared by compounding silane coupling agent with MQ silicon resin
JPS6320799B2 (en)
KR100565268B1 (en) Synthetic method of protective coating materials for concrete carbonation and using method for the same
JPH058151B2 (en)
KR101931321B1 (en) High early strength repair materials compositions for concrete bridge deck and repairing method for concrete bridge deck using that
US5120574A (en) Concrete primer for polyester coatings
US4910080A (en) Impregnating composition and method of use thereof
KR101282655B1 (en) Ceramic sealant compositions for concrete structure repair
KR101665486B1 (en) Overlay pavement and reinforcing method for bridge deck by synthetic latex modified concrete based acrylate for concrete confusion
KR102274323B1 (en) Low-temperature and room-temperature fast-curing low-viscosity concrete structures with excellent thixotropic properties two-component polyurea resin composition for crack repair and reinforcement, and concrete structure crack repair and reinforcement method using te same
KR100656442B1 (en) Manufacturing method of dry polymer coating composition containing useless tire rubber chip
KR20120108684A (en) Water-soluble composite for strengthening and protecting the outer layer of concrete block, manufacturing method of concrete block, and method for strengthing the outer layer of concrete block using the composite
KR100734435B1 (en) Reparing method of concrete delicate crack using the pre-treatment agent
KR102287964B1 (en) Repairing agent with excellent wettability and rapid setting, and concrete crack repair method using the same
SU1694557A1 (en) Method of polymer-concrete preparation
JPH032828B2 (en)
JPS60226471A (en) Surface reformation for cementitious structure