JPH0580848B2 - - Google Patents

Info

Publication number
JPH0580848B2
JPH0580848B2 JP58234815A JP23481583A JPH0580848B2 JP H0580848 B2 JPH0580848 B2 JP H0580848B2 JP 58234815 A JP58234815 A JP 58234815A JP 23481583 A JP23481583 A JP 23481583A JP H0580848 B2 JPH0580848 B2 JP H0580848B2
Authority
JP
Japan
Prior art keywords
frequency
oscillator
signal
clock
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58234815A
Other languages
Japanese (ja)
Other versions
JPS60126931A (en
Inventor
Gakuo Atsugi
Masahiro Morikura
Masahiro Umehira
Shuzo Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP23481583A priority Critical patent/JPS60126931A/en
Publication of JPS60126931A publication Critical patent/JPS60126931A/en
Publication of JPH0580848B2 publication Critical patent/JPH0580848B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Transceivers (AREA)
  • Radio Relay Systems (AREA)

Description

【発明の詳細な説明】 この発明は無線通信方式において必要とする無
線周波数信号、中間周波数信号及びベースバンド
処理クロツク信号を発生させる周波数発生方式に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a frequency generation system for generating radio frequency signals, intermediate frequency signals, and baseband processing clock signals required in a wireless communication system.

<従来技術> 第1図は従来の衛星通信の地球局における原発
振器の構成を示す。ベースバンド信号処理装置1
1、変復調装置12、無線周波数装置13が縦続
的に接続され、これらに必要な周波数信号を発生
するためにベースバンド信号処理装置11に必要
なクロツクを発生させるための原発振器14、変
復調装置12に必要な中間周波数信号を得るため
の原発振器15、無線周波数装置13に必要な無
線周波数信号を発生するための原発振器16がそ
れぞれ設けられる。原発振器14の出力は位相同
期ループ17でm倍の周波数の信号に変換され
る。位相同期ループ17は電圧制御発振器(以下
VCOと記す)18の出力を分周器19で分周し、
その分周出力と原発振器14の出力と位相比較器
20で位相比較し、その位相比較出力を低減通過
波器21を通じてVCO18に周波数制御信号
として供給して、原発振器14の出力周波数のm
倍でかつ位相同期した出力がVCO18から得ら
れる。位相同期ループ17の出力、つまりVCO
18の出力は分周器22,……23でそれぞれ
n,……n′分周されて、所要の周波数とされ、ベ
ースバンド信号処理装置11の各部にベースバン
ド処理クロツク信号として供給される。また原発
振器15,16はそれぞれ周波数逓倍器24,2
5でそれぞれ所要の周波数の中間周波数信号、無
線周波数信号とされて変復調装置12、無線周波
数装置13へそれぞれ供給される。
<Prior Art> FIG. 1 shows the configuration of an original oscillator in a conventional satellite communication earth station. Baseband signal processing device 1
1. A modulation/demodulation device 12 and a radio frequency device 13 are connected in series, and an original oscillator 14 and a modulation/demodulation device 12 are used to generate a clock necessary for the baseband signal processing device 11 in order to generate frequency signals necessary for these devices. A source oscillator 15 for obtaining an intermediate frequency signal necessary for the radio frequency device 13 and a source oscillator 16 for generating a radio frequency signal necessary for the radio frequency device 13 are provided, respectively. The output of the original oscillator 14 is converted by the phase locked loop 17 into a signal of m times the frequency. The phase-locked loop 17 is a voltage controlled oscillator (hereinafter referred to as
The output of VCO) 18 is divided by a frequency divider 19,
The phase of the divided output and the output of the original oscillator 14 is compared with the phase comparator 20, and the phase comparison output is supplied as a frequency control signal to the VCO 18 through the reduced pass wave generator 21, and the output frequency of the original oscillator 14 is
A doubled and phase-synchronized output is obtained from the VCO 18. Output of phase-locked loop 17, that is, VCO
The output of 18 is divided by n, . . . n' by frequency dividers 22, . Further, the original oscillators 15 and 16 are frequency multipliers 24 and 2, respectively.
5, the signal is converted into an intermediate frequency signal and a radio frequency signal of required frequencies, respectively, and supplied to a modulation/demodulation device 12 and a radio frequency device 13, respectively.

このように従来の無線通信方式においてはベー
スバンド信号処理装置11に供給するクロツクを
発生させるための原発振器14と、変復調装置1
2に供給する中間周波数信号を発生させるための
原発振器15と無線周波数装置13に供給する無
線周波数信号を発生させるための原発振器16と
がそれぞれ独立に動いており、クロツク周波数、
中間周波数及び無線周波数の安定度は、それぞれ
の原発振器14,15,16の安定度に依存して
いた。また特に無線周波数のように高い周波数を
発生させるための原発振器16の安定度は素子等
の問題からあまり高いものを得ることができず、
高周波数用の原発振器の安定度が低いという欠点
があつた。更にシステム全体から見た周波数偏差
は各原発振器14,15,16の周波数偏差の和
となり、全体として周波数安定度の悪いシステム
となる欠点があつた。このため変復調装置12に
対する要求条件がきびしくなる欠点もあつた。
In this way, in the conventional wireless communication system, the original oscillator 14 for generating a clock to be supplied to the baseband signal processing device 11, and the modulation/demodulation device 1 are used.
A primary oscillator 15 for generating an intermediate frequency signal to be supplied to the clock frequency device 2 and a primary oscillator 16 for generating a radio frequency signal to be supplied to the radio frequency device 13 operate independently, and the clock frequency,
The stability of the intermediate and radio frequencies depended on the stability of the respective original oscillators 14, 15, 16. In addition, the stability of the original oscillator 16, which is used to generate high frequencies such as radio frequencies, cannot be very high due to problems with the elements, etc.
The drawback was that the stability of the original oscillator for high frequencies was low. Furthermore, the frequency deviation seen from the entire system is the sum of the frequency deviations of the respective original oscillators 14, 15, and 16, resulting in a system with poor frequency stability as a whole. For this reason, there was also the drawback that the requirements for the modulation/demodulation device 12 became stricter.

以上は衛星通信方式の地球局についてである
が、衛星局についても衛星上の信号処理装置に供
給されるクロツク周波数用の原発振器、中間周波
数信号用の原発振器、及び無線周波数信号用の原
発振器は、従来の方式ではそれそれ独立に動いて
おり、前述の地球局における原発振器の構成と同
じであつた。更に衛星上というのは地上に較べて
非常に過酷な環境にあるため、地球局以上に衛星
上の原発振器は安定度が悪いという欠点があつ
た。
The above is about a satellite communication earth station, but a satellite station also has a primary oscillator for the clock frequency supplied to the signal processing device on the satellite, a primary oscillator for intermediate frequency signals, and a primary oscillator for radio frequency signals. In the conventional system, the oscillators operated independently, and had the same configuration as the original oscillator at the earth station described above. Furthermore, because the environment on a satellite is much harsher than on the ground, the primary oscillator on a satellite has the disadvantage of being less stable than on an earth station.

<発明の概要> この発明はこの欠点を解決するため、地球局に
おいては地上網の安定度10-11という高安定なク
ロツク周波数に地球局の原発振器を従属同期さ
せ、衛星においては地上網の高安定なクロツク周
波数に従属同期した地球局の原発振器より発生し
たクロツクに衛星上の原発振器を従属同期させ、
地球局及び衛星上においてそれぞれ高安定な外部
クロツク周波数に従属同期した単一の高安定な原
発振器を共通の原発振器として、複数の所要の無
線周波数信号、中間周波数信号及びクロツク信号
を発生させる構成としたものである。
<Summary of the Invention> In order to solve this drawback, the present invention synchronizes the primary oscillator of the earth station to the highly stable clock frequency of the terrestrial network with a stability of 10 -11 in the earth station, and The primary oscillator on the satellite is slave-synchronized to the clock generated by the earth station's primary oscillator, which is slave-synchronized to a highly stable clock frequency.
A configuration in which a plurality of required radio frequency signals, intermediate frequency signals, and clock signals are generated using a single highly stable source oscillator slave-synchronized to a highly stable external clock frequency as a common source oscillator on the earth station and the satellite, respectively. That is.

<実施例> 第2図は地球局にこの発明を適用した実施例で
あつて、第1図と対応する部分には同一符号を付
けてある。地球局26には外部のクロツク周波数
に従属同期させた原発振器27が設けられる。例
えば地上網28内に設けられている高安定なデイ
ジタルクロツク供給装置29(これは例えば
8.19MHzのセシウム発振器が用いられる)が原発
振器27へ供給され、これに原発振器27が同期
される。原発振器27は位相同期ループであり、
VCO31の出力とクロツク供給装置29のクロ
ツク信号とが位相比較器32で位相比較され、そ
の比較出力は低域通過波器30を通してVCO
31に制御信号として供給される。VCO31は
クロツク供給装置29の高安定なクロツク周波数
に従属同期する。これにより地球局26の原発振
器27の出力クロツク33は高安定なものとな
る。
<Embodiment> FIG. 2 shows an embodiment in which the present invention is applied to an earth station, and parts corresponding to those in FIG. 1 are given the same reference numerals. The earth station 26 is provided with a source oscillator 27 which is slave-synchronized to an external clock frequency. For example, a highly stable digital clock supply device 29 installed in the terrestrial network 28 (for example,
(8.19 MHz cesium oscillator is used) is supplied to the original oscillator 27, and the original oscillator 27 is synchronized with this. The original oscillator 27 is a phase-locked loop,
The output of the VCO 31 and the clock signal of the clock supply device 29 are phase-compared by a phase comparator 32, and the comparison output is passed through a low-pass waver 30 to the VCO
31 as a control signal. VCO 31 is synchronized to the highly stable clock frequency of clock supply 29. This makes the output clock 33 of the primary oscillator 27 of the earth station 26 highly stable.

この高安定化されたクロツク33は多数分岐さ
れ、その一つは位相比較器34、低域波器3
5、電圧制御発振器36及び分周器37で構成さ
れる位相同期ループ38により、無線周波数に近
い高安定な周波数信号に変換される。この位相同
期ループ38の出力信号は逓倍器39により逓倍
されて無線周波数信号として無線周波数装置13
に供給される。同様に多数分岐したクロツク33
の他の一つは位相比較器41、低域波器42、
電圧制御発振器43及び分周器44で構成される
位相同期ループ45により中間周波数に近い高安
定な周波数信号に変換される。この位相同期ルー
プ45の出力は逓倍器46により逓倍して中間周
波数信号として変復調装置12に供給される。ま
たベースバンド信号処理装置11に供給する比較
的低周波数のクロツクはクロツク33を分周器4
7または逓倍器48により直接分周または逓倍し
て作成される。
This highly stabilized clock 33 is branched into many branches, one of which is a phase comparator 34 and a low frequency filter 34.
5. The signal is converted into a highly stable frequency signal close to a radio frequency by a phase-locked loop 38 composed of a voltage controlled oscillator 36 and a frequency divider 37. The output signal of this phase-locked loop 38 is multiplied by a multiplier 39 and sent to the radio frequency device 13 as a radio frequency signal.
supplied to Similarly, the clock 33 has many branches.
The other one is a phase comparator 41, a low frequency filter 42,
A phase locked loop 45 composed of a voltage controlled oscillator 43 and a frequency divider 44 converts the signal into a highly stable frequency signal close to the intermediate frequency. The output of this phase-locked loop 45 is multiplied by a multiplier 46 and supplied to the modem 12 as an intermediate frequency signal. Also, a relatively low frequency clock supplied to the baseband signal processing device 11 is passed through a clock 33 to a frequency divider 4.
7 or by directly dividing or multiplying the frequency by a multiplier 48.

以上説明したように地球局26で必要とする無
線周波数信号、中間周波数信号及びベースバンド
処理クロツク信号等を、地上網のクロツク周波数
に従属同期した単一の高安定な原発振器27から
発生させることにより、高安定な無線周波数信
号、中間周波数信号及びクロツク信号を得ること
ができる。デイジタルクロツク供給装置29内の
例えば8.19MHzのセシウム発振器の出力を外部の
高安定クロツクとして用いる場合には、原発振器
27の出力クロツク33の周波数は8.19MHzであ
り、位相同期ループ38の出力は1GHz附近の周
波数とされ、これより得る無線周波数信号は30G
Hz附近の周波数とされ、位相同期ループ45の出
力周波数は70MHz附近とされ、中間周波数信号は
140MHz附近とされ、ベースバンド処理クロツク
の周波数は数10KHz〜20MHzのものとされる。位
相同期ループ38,45の各出力からそれぞれ直
接無線周波数信号、中間周波数信号を得て逓倍2
器39,46を省略することもできる。
As explained above, the radio frequency signals, intermediate frequency signals, baseband processing clock signals, etc. required by the earth station 26 are generated from a single highly stable source oscillator 27 that is slave-synchronized to the clock frequency of the terrestrial network. As a result, highly stable radio frequency signals, intermediate frequency signals, and clock signals can be obtained. For example, when the output of the 8.19MHz cesium oscillator in the digital clock supply device 29 is used as an external highly stable clock, the frequency of the output clock 33 of the original oscillator 27 is 8.19MHz, and the output of the phase-locked loop 38 is The frequency is said to be around 1GHz, and the radio frequency signal obtained from this is 30G.
The frequency is around Hz, the output frequency of the phase locked loop 45 is around 70MHz, and the intermediate frequency signal is around 70MHz.
It is said to be around 140MHz, and the frequency of the baseband processing clock is said to be several tens of kilohertz to 20MHz. Direct radio frequency signals and intermediate frequency signals are obtained from each output of the phase-locked loops 38 and 45 and multiplied by 2.
The containers 39 and 46 can also be omitted.

第3図は衛星上におけるこの発明の実施例であ
つて、この実施例では地上デイジタル網28のデ
イジタルクロツク供給装置29から長期安定度
10-11という高安定なクロツクを地球局26の原
発振期27に供給し、その位相同期ループにより
原発振器27を地上デイジタル網28からの高安
定なクロツクに従属同期させる。更に原発振器2
7の出力クロツク33をもとに作られたクロツク
信号、中間周波数信号及び無線周波数信号を用い
て、地球局26は地球局装置49により信号を変
調して、アンテナ50から衛星51に向けて信号
を送出する。衛星51では地球局26より送出さ
れた信号をアンテナ52で受信し、無線周波数装
置53を経て変復調装置54により、その受信信
号からクロツク56を再生する。その再生クロツ
ク56を衛星51上の原発振器57に供給し、位
相比較器58、低域波器59及び電圧制御発振
器61で構成される位相同期ループにより、衛星
上の原発振器57を再生クロツク56に従属同期
させる。このような構成とすることにより衛星上
の原発振器57は地球局26を介して地上網の高
安定なクロツク周波数に従属同期することにな
り、衛星上の原発振器57の出力クロツク62は
高安定なものとなる。その高安定化された原発振
器57の出力62を多数分岐し、その一つを位相
比較器63、低域波器64、電圧制御発振器6
5及び分周器66で構成される位相同期ループ6
7に入力してこれより無線周波数に近い高安定な
周波数の信号を発生させ、その出力を逓倍器68
により周波数を上げて無線周波数信号を作り、こ
れを無線周波数装置53へ供給する。同様に多数
分岐したクロツク62の他の一つは位相比較器6
9、低域波器71、電圧制御発振器72及び分
周器73で構成される位相同期ループ74へ入力
され、これより中間周波数に近い高安定な周波数
の信号を発生させ、その信号は逓倍器75により
周波数を上げて中間周波数信号とされ、この中間
周波数信号は変復調装置54へ供給される。変復
調装置54と接続された衛星上信号処理装置76
に供給される比較的低周波数のクロツクはクロツ
ク62を逓倍器77または分周器78などによ
り、逓倍または分周して作られる。
FIG. 3 shows an embodiment of the present invention on a satellite, in which long-term stability is
A highly stable clock of 10 -11 is supplied to the primary oscillation period 27 of the earth station 26, and the primary oscillator 27 is slave-synchronized with the highly stable clock from the terrestrial digital network 28 through its phase-locked loop. Furthermore, the original oscillator 2
Using the clock signal, intermediate frequency signal, and radio frequency signal generated based on the output clock 33 of 7, the earth station 26 modulates the signal with the earth station device 49 and transmits the signal from the antenna 50 to the satellite 51. Send out. In the satellite 51, a signal transmitted from the earth station 26 is received by an antenna 52, and a clock 56 is regenerated from the received signal by a modulation/demodulation device 54 via a radio frequency device 53. The regenerated clock 56 is supplied to the original oscillator 57 on the satellite 51, and the original oscillator 57 on the satellite is slave-synchronized to the regenerated clock 56 by a phase locked loop composed of a phase comparator 58, a low frequency generator 59, and a voltage controlled oscillator 61. . With such a configuration, the primary oscillator 57 on the satellite is slave-synchronized to the highly stable clock frequency of the terrestrial network via the earth station 26, and the output clock 62 of the primary oscillator 57 on the satellite becomes highly stable. . The output 62 of the highly stabilized original oscillator 57 is branched into many branches, one of which is connected to a phase comparator 63, a low frequency generator 64, and a voltage controlled oscillator 6.
5 and a phase-locked loop 6 composed of a frequency divider 66
7 to generate a signal with a highly stable frequency close to the radio frequency, and the output is sent to a multiplier 68.
The frequency is increased to create a radio frequency signal, which is supplied to the radio frequency device 53. Similarly, the other one of the many branched clocks 62 is the phase comparator 6.
9. It is input to a phase-locked loop 74 composed of a low-frequency wave generator 71, a voltage-controlled oscillator 72, and a frequency divider 73, which generates a signal with a highly stable frequency close to the intermediate frequency, and the signal is sent to a multiplier. 75 increases the frequency to produce an intermediate frequency signal, and this intermediate frequency signal is supplied to the modulation/demodulation device 54. Satellite signal processing device 76 connected to modem 54
A relatively low frequency clock supplied to the clock 62 is generated by multiplying or dividing the frequency of the clock 62 using a multiplier 77 or a frequency divider 78.

以上説明したように地上網28の高安定なクロ
ツクの周波数に地球局26を介して衛星51上の
原発振器57を従属同期させ、単一の高安定な原
発振器57をもとに衛星51上で必要とする無線
周波数信号、中間周波数信号及びベースバンド処
理クロツク信号を作ることにより、これらの周波
数の安定化を図ることができる。衛星51におい
ても逓倍器68,75を省略してもよい。なお以
上は衛星通信方式を例に取つて説明したが、この
発明はその他一般の無線通信方式に対しても適用
できる。
As explained above, the primary oscillator 57 on the satellite 51 is synchronized via the earth station 26 to the highly stable clock frequency of the terrestrial network 28, and based on the single highly stable primary oscillator 57, the necessary These frequencies can be stabilized by creating radio frequency signals, intermediate frequency signals, and baseband processing clock signals. The multipliers 68 and 75 may also be omitted in the satellite 51. Although the above description has been made using a satellite communication system as an example, the present invention can also be applied to other general wireless communication systems.

以上説明したように地球局及び衛星などの無線
周波数信号、中間周波数信号及びベースバンド処
理クロツク信号等を高安定化させることにより、
地球局及び衛星などの変復調装置に対する要求条
件を大幅に軽減することができるという利点があ
る。また位相同期ループを用いることにより、比
較的低い周波数であるが高安定化されたクロツク
33,62より高い周波数の無線周波数信号や中
間周波数信号を容易に得ることができる。
As explained above, by highly stabilizing radio frequency signals, intermediate frequency signals, baseband processing clock signals, etc. from earth stations and satellites,
An advantage is that the requirements for modem equipment such as earth stations and satellites can be significantly reduced. Further, by using a phase-locked loop, it is possible to easily obtain a radio frequency signal or an intermediate frequency signal having a relatively low frequency but higher than that of the highly stabilized clocks 33 and 62.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の衛星通信の地球局における周波
数発生方式を示すブロツク図、第2図は地球局に
この発明を適用した実施例を示すブロツク図、第
3図は衛星上にこの発明を適用した実施例を示す
ブロツク図である。 11,76:ベースバンド信号処理装置、1
2,54:変復調装置、13,53:無線周波数
装置、26:地球局、27:原発振器、28:地
上網、29:地上網の高安定なデイジタルクロツ
ク供給装置、38,45,67,74:位相同期
ループ、51:衛星、57:衛星の原発振器。
Fig. 1 is a block diagram showing a frequency generation system in a conventional satellite communication earth station, Fig. 2 is a block diagram showing an embodiment in which the present invention is applied to an earth station, and Fig. 3 is a block diagram showing the application of this invention to a satellite. FIG. 11, 76: Baseband signal processing device, 1
2, 54: Modulation and demodulation device, 13, 53: Radio frequency device, 26: Earth station, 27: Original oscillator, 28: Terrestrial network, 29: Highly stable digital clock supply device for terrestrial network, 38, 45, 67, 74: Phase locked loop, 51: Satellite, 57: Satellite original oscillator.

Claims (1)

【特許請求の範囲】 1 少なくとも1つ以上のクロツク信号によりベ
ースバンド信号を処理するベースバンド信号処理
装置と、ベースバンド信号と中間周波数信号とを
変復調処理をする変復調装置と、中間周波数信号
と無線周波数信号との変換処理を行う無線周波数
装置とが縦続的に接続された無線通信装置を使用
する無線通信方式において、 外部から供給される高安定なクロツク周波数に
従属同期させた単一の高安定な原発振器と、 その原発振器の出力が供給され、これと位相同
期したこれよりも高い周波数の信号を得る第1位
相同期ループを有し、上記中間周波数信号を上記
変復調装置へ供給する手段と、 上記原発振器の出力が供給され、これと位相同
期したこれよりも高い周波数の信号を得る第2位
相同期ループを有し、上記無線周波数信号を上記
無線周波数装置へ供給する手段と、 上記原発振器の出力が供給され、少なくとも一
つの分周期をもち周波数が異なる上記少なくとも
1つ以上のクロツク信号を作つて上記ベースバン
ド信号処理装置へ供給する手段とを具備する無線
通信方式の周波数発生方式。 2 上記外部から供給される高安定なクロツクは
地上網に存在するクロツクであり、上記原発振器
は衛星通信地球局に設けられたものである特許請
求の範囲第1項記載の無線通信方式の周波数発生
方式。 3 上記地球局の原発振器に衛星上の単一の原発
振器を従属同期させ、衛星上で用いる所要の周波
数の信号を得る手段を含む特許請求の範囲第2項
記載の無線通信方式の周波数発生方式。
[Claims] 1. A baseband signal processing device that processes a baseband signal using at least one or more clock signals, a modulation/demodulation device that modulates and demodulates the baseband signal and an intermediate frequency signal, and a In a wireless communication system that uses a wireless communication device that is cascaded with a radio frequency device that performs conversion processing to a frequency signal, a single highly stable clock frequency that is subordinately synchronized to a highly stable clock frequency supplied from an external source means for supplying the intermediate frequency signal to the modulation/demodulation device; and a first phase-locked loop to which the output of the primary oscillator is supplied and which obtains a signal of a higher frequency that is phase-locked with the primary oscillator; , a second phase-locked loop to which the output of the source oscillator is supplied and which obtains a higher frequency signal phase-locked therewith, and means for supplying the radio frequency signal to the radio frequency device; A frequency generation system for a wireless communication system, comprising means to which an output of an oscillator is supplied, and means for generating at least one or more clock signals having at least one period division and different frequencies and supplying the generated clock signals to the baseband signal processing device. 2. The highly stable clock supplied from the outside is a clock existing in a terrestrial network, and the source oscillator is provided in a satellite communication earth station. How it occurs. 3. Frequency generation for the wireless communication system according to claim 2, including means for slave-synchronizing a single source oscillator on the satellite with the source oscillator of the earth station to obtain a signal of a desired frequency for use on the satellite. method.
JP23481583A 1983-12-12 1983-12-12 Frequency generation system of radio communication system Granted JPS60126931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23481583A JPS60126931A (en) 1983-12-12 1983-12-12 Frequency generation system of radio communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23481583A JPS60126931A (en) 1983-12-12 1983-12-12 Frequency generation system of radio communication system

Publications (2)

Publication Number Publication Date
JPS60126931A JPS60126931A (en) 1985-07-06
JPH0580848B2 true JPH0580848B2 (en) 1993-11-10

Family

ID=16976817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23481583A Granted JPS60126931A (en) 1983-12-12 1983-12-12 Frequency generation system of radio communication system

Country Status (1)

Country Link
JP (1) JPS60126931A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0685799A (en) * 1992-04-21 1994-03-25 Nec Corp Satellite communication system
JPH07303059A (en) * 1994-05-06 1995-11-14 Nec Corp Radio equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5087513A (en) * 1973-12-06 1975-07-14

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5087513A (en) * 1973-12-06 1975-07-14

Also Published As

Publication number Publication date
JPS60126931A (en) 1985-07-06

Similar Documents

Publication Publication Date Title
JP2526847B2 (en) Digital wireless telephone
US4513447A (en) Simplified frequency scheme for coherent transponders
EP0315489A3 (en) Fast frequency settling signal generator utilizing a frequency locked-loop
US3646444A (en) Method and apparatus for synchronizing the transmission of digital signals between ground stations via a communications satellite
US5163160A (en) Satellite transponder able to use same frequency scheme for transmitter and receiver local oscillator
JPH0580848B2 (en)
US4039968A (en) Synchronizing circuit
JPH07327058A (en) Satellite communication receiver
US3866137A (en) Phase locked frequency divider circuitry
JPH02186840A (en) Signal generator
JP2552948B2 (en) Modulator
JPH0728258B2 (en) Signal generator
JPH0728242B2 (en) Frequency signal generator
Kojima et al. Low phase noise frequency synthesizer for inter-orbit link transponder of COMETS
JPS6089155A (en) Phase locked loop system
KR910005529B1 (en) Apparatus for providing stabilized frequency by dual phase locked loop
KR100259913B1 (en) A circuit and method for providing variable clock in data communication system
JPS6349962Y2 (en)
JPS61200723A (en) Forming circuit for angular modulation transmission wave in simultaneous transmission and reception communication equipment
JPS5856293B2 (en) Auxiliary signal input method for multidirectional communication network
RU31080U1 (en) Frequency Modulated Digital Synthesizer
JPS58204630A (en) System for constituting radio equipment
JPH04196926A (en) Receiver
JPS62186621A (en) Local oscillator for satellite communication
JPH04336715A (en) Frequency distributing circuit for modulator