JPH0580578B2 - - Google Patents

Info

Publication number
JPH0580578B2
JPH0580578B2 JP60242576A JP24257685A JPH0580578B2 JP H0580578 B2 JPH0580578 B2 JP H0580578B2 JP 60242576 A JP60242576 A JP 60242576A JP 24257685 A JP24257685 A JP 24257685A JP H0580578 B2 JPH0580578 B2 JP H0580578B2
Authority
JP
Japan
Prior art keywords
bleed valve
compressor
signal
burner
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60242576A
Other languages
Japanese (ja)
Other versions
JPS61149530A (en
Inventor
Furanshisu Kenison Deuitsudo
Gowaa Rin Deuitsudo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RTX Corp
Original Assignee
United Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Technologies Corp filed Critical United Technologies Corp
Publication of JPS61149530A publication Critical patent/JPS61149530A/en
Publication of JPH0580578B2 publication Critical patent/JPH0580578B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/16Control of working fluid flow
    • F02C9/18Control of working fluid flow by bleeding, bypassing or acting on variable working fluid interconnections between turbines or compressors or their stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0207Surge control by bleeding, bypassing or recycling fluids
    • F04D27/0223Control schemes therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0207Surge control by bleeding, bypassing or recycling fluids
    • F04D27/023Details or means for fluid extraction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2200/00Mathematical features
    • F05D2200/10Basic functions
    • F05D2200/11Sum

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)
  • Compressor (AREA)

Description

【発明の詳細な説明】 技術分野 本発明はガスタービンエンジン、一層詳細に
は、エンジンの過渡的作動の間に圧縮機ブリード
弁を制御するための装置に係る。
DETAILED DESCRIPTION OF THE INVENTION TECHNICAL FIELD This invention relates to gas turbine engines and, more particularly, to an apparatus for controlling a compressor bleed valve during transient operation of the engine.

背景技術 周知のように、可能なかぎり迅速に過渡的作動
を達成するためエンジンのサージング線の近くで
エンジンを作動させることが望ましい。明らか
に、サージングが破局的な条件を招き得るかぎ
り、サージング線を越えることは許容され得な
い。典型的に、ガスタービンエンジン用のエンジ
ン制御装置は、エンジンがサージングに入るのを
防止するための内蔵された安全措置を有する。こ
れらの制御装置は一般にいくつかのエンジンパラ
メータをモニタし、また開ループのスケジユーリ
ングにより、その制御装置が使用される特定のエ
ンジンのサージング特性を考慮に入れている。
BACKGROUND OF THE INVENTION As is well known, it is desirable to operate an engine near the engine's surging line in order to achieve transient operation as quickly as possible. Obviously, exceeding the surging line cannot be tolerated as long as surging can lead to catastrophic conditions. Engine controls for gas turbine engines typically have built-in safeguards to prevent the engine from entering surging. These controllers typically monitor several engine parameters and, through open loop scheduling, take into account the surging characteristics of the particular engine in which they are used.

また、一層迅速な応答を達成し且つサージング
線の一層近くでエンジンを作動させるため、過渡
条件の間に圧縮機のブリード弁を開くことが有利
であることは良く知られている。このようなシス
テムの一例は1961年10月31日付けの米国特許第
3006145号明細書に開示されている。このような
制御モードでは、所与の時間的変化率が超過され
ている時を確認することが非常に重要であるが、
この確認は上記特許に開示されている公知の制御
装置によつては達成されない。
It is also well known that it is advantageous to open the compressor bleed valve during transient conditions in order to achieve a more rapid response and operate the engine closer to the surging line. An example of such a system is U.S. Patent No. 31, October 31, 1961.
It is disclosed in specification No. 3006145. In such a control mode, it is very important to identify when a given temporal rate of change is exceeded;
This verification is not achieved by the known control device disclosed in the above-mentioned patent.

発明の開示 本発明の特徴は、時間的変化率が所定の値を超
過している時を確認することによりエンジンの過
渡条件の間に双スプールガスタービンエンジンの
圧縮機ブリード弁を制御するための信号を電子的
に発生することである。本発明によれば、補正さ
れた高圧圧縮機速度とエンジンにより動力を与え
られる航空機の高度との関数として計算される制
限値を発生するため、バーナの圧力の時間的変化
率の近似値を示す信号がバーナの圧力のスケジユ
ールされた時間的変化率と比較される。本発明の
他の特徴は、ブリード弁のサイクリングを防止す
るべく、出力信号にヒステリシス値を与えること
である。
DISCLOSURE OF THE INVENTION Features of the present invention provide a system for controlling a compressor bleed valve in a twin-spool gas turbine engine during engine transient conditions by determining when the temporal rate of change exceeds a predetermined value. It is the generation of a signal electronically. According to the invention, an approximate value of the rate of change of the burner pressure over time is provided to generate a limit value that is calculated as a function of the corrected high pressure compressor speed and the altitude of the aircraft powered by the engine. The signal is compared to a scheduled time rate of change of burner pressure. Another feature of the invention is to provide a hysteresis value to the output signal to prevent cycling of the bleed valve.

他の特徴及び利点は、以下に本発明の実施例を
図面により説明するなかで明らかになろう。
Other features and advantages will become apparent from the following description of embodiments of the invention with reference to the drawings.

発明を実施するための最良の形態 本発明は、その好ましい実施態様で、圧縮機ブ
リード弁を開閉するためタービンエンジンの過渡
状態を制御するのに利用されるが、本発明が他の
制御モードにも応用され得ることは当業者に明ら
かであろう。例えば、本発明によれば、測定され
た変数の微分が近似的に求められるが、同一の方
法が、測定された変数の微分を利用したいけれど
も、微分を実際に計算することは望ましくないと
いう場合に応用され得る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Although the present invention is utilized in its preferred embodiment to control transient conditions in a turbine engine to open and close a compressor bleed valve, the present invention may be used in other control modes. It will be clear to a person skilled in the art that the same can also be applied. For example, according to the present invention, the derivative of a measured variable is determined approximately, but the same method may be used if one wishes to utilize the derivative of the measured variable, but it is not desirable to actually calculate the derivative. It can be applied to

図面に示されているように、本発明は、全体と
して参照符号10を付されている双スプールガス
タービンエンジン、例えば本願の譲受人であるユ
ナイテツド・テクノロジーズ・コーポレイシヨン
のプラツト・アンド・ホイツトニー・エアクラフ
トにより製造されたPW2037、に利用されてい
る。本発明を理解するためには、エンジンが高圧
圧縮機12及び低圧圧縮機13を有する双スプー
ル形式であることを知れば十分である。適当なブ
リード弁16が、以下の説明から気付くように、
特定のエンジン作動の間に圧縮機をアンロードす
るべく圧縮機空気をダンプする役割をする。バー
ナ20は、圧縮機を作動させ且つ航空機に動力を
与えるために必要な推力を発生するように燃料の
燃焼により周知の仕方で圧縮された空気を加速す
る役割をする。
As shown in the drawings, the present invention is directed to a twin spool gas turbine engine, generally designated 10, manufactured by Pratt & Whitney of United Technologies Corporation, the assignee of the present application. Used in PW2037, manufactured by Aircraft. To understand the invention, it is sufficient to know that the engine is of twin spool type with a high pressure compressor 12 and a low pressure compressor 13. A suitable bleed valve 16, as will be noticed from the following description,
Serves to dump compressor air to unload the compressor during certain engine operations. The burner 20 serves to accelerate the compressed air in a known manner by burning fuel to generate the thrust necessary to operate the compressor and power the aircraft.

ブリード弁16は、これらの形式のエンジンで
典型的に行われているように、特定のエンジン作
動の間に自動的に開かれ、またその制御は一般に
電子式燃料制御装置により行われる。PW2037で
は、本願の譲受人であるユナイテツド・テクノロ
ジーズ・コーポレイシヨンのハミルトン・スタン
ダード・デイビジヨンにより製造された電子式制
御装置モデルNo.EEC‐104が用いられている。本
発明の目的は、制御を従来よりも一層多面的にす
る追加的制御モードを追加することである。
The bleed valve 16 is opened automatically during certain engine operations, as is typical in these types of engines, and its control is generally provided by an electronic fuel control system. PW2037 uses an electronic controller model No. EEC-104 manufactured by Hamilton Standard Division of United Technologies Corporation, the assignee of this application. The purpose of the invention is to add additional control modes that make the control more versatile than before.

ブリード弁開放の終了時に回路はバーナ圧力の
時間微分を近似するP・b信号を発生する。これは、
バーナ圧力Pbを検出して、導線34を経て固定
時定数を与える電子的フイルタ32に与え、且つ
同時に加算器36に与えることにより実現されて
いる。バーナ圧力とフイルタ32により確立され
た一次時定数との間の差である加算器36の出力
信号、バーナ圧力の近似的な時間微分(P・b)を
発生するべく除算器38により除算される。
At the end of the bleed valve opening, the circuit generates a P· b signal that approximates the time derivative of the burner pressure. this is,
This is accomplished by detecting the burner pressure P b and applying it via a conductor 34 to an electronic filter 32 providing a fixed time constant and at the same time to an adder 36 . The output signal of adder 36, which is the difference between the burner pressure and the first-order time constant established by filter 32, is divided by divider 38 to generate the approximate time derivative (P· b ) of the burner pressure. .

この値(P・b)は次いで加算器42内で、補正
された高圧圧縮機速度及びエンジン入口温度及び
航空機高度の関数としてスケジユールを発生する
ことにより導き出されているスケジユールされた
P・b信号と比較される。関数発生器39は、高圧
圧縮機速度(N2)及びエンジン入口温度(T2
に応答する計算器40の出力端から補正された高
圧圧縮機速度(N2/θT2 1/2)を示す信号を受ける。
速度信号は、絶対周囲温度を標準周囲温度に関係
付けることにより、受入れられている仕方で補正
されている。計算器40から発生された信号は次
いで、P・b制限信号を発生するべく乗算器44に
より実際の圧縮機入口圧力(PT2)を乗算される。
このスケジユールは次いで加算器42に与えら
れ、Pbの近似的な時間微分(P・b)と比較され、
検出された過渡状態を示す誤差信号を発生する。
この信号はブリード弁16を開閉するのに用いら
れ得る。ブリード弁16が振動して不安定になる
ことがないように、加算器42の出力信号は、選
択回路48に伝達される前に適当なヒステリシス
回路に与えられる。
This value ( P.b ) is then combined in summer 42 with the scheduled P.b signal, which is derived by generating a schedule as a function of corrected high pressure compressor speed and engine inlet temperature and aircraft altitude . be compared. The function generator 39 outputs high pressure compressor speed (N 2 ) and engine inlet temperature (T 2 ).
A signal indicative of the corrected high pressure compressor speed (N 2T2 1/2 ) is received from the output of the calculator 40 in response to .
The speed signal is corrected in an accepted manner by relating absolute ambient temperature to standard ambient temperature. The signal generated from calculator 40 is then multiplied by the actual compressor inlet pressure (P T2 ) by multiplier 44 to generate the P· b limit signal.
This schedule is then applied to an adder 42 and compared with the approximate time derivative (P· b ) of P b ,
An error signal is generated indicative of the detected transient.
This signal can be used to open and close bleed valve 16. To prevent bleed valve 16 from vibrating and becoming unstable, the output signal of adder 42 is applied to a suitable hysteresis circuit before being transmitted to selection circuit 48.

以上に於ては本発明を特定の好ましい実施例に
ついて説明してきたが、本発明はこれらの実施例
に限定されるものではなく、本発明の範囲内にて
種々の実施例が可能であることは当業者にとつて
明らかであろう。
Although the present invention has been described above with reference to specific preferred embodiments, it is understood that the present invention is not limited to these embodiments, and that various embodiments are possible within the scope of the present invention. will be clear to those skilled in the art.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明を実施するための電子回路網の概
要を示すブロツク図である。 10…双スプールガスタービンエンジン、12
…高圧圧縮機、13…低圧圧縮機、16…ブリー
ド弁、20…バーナ、32…フイルタ、38…除
算器、39…関数発生器、40…計算器、42…
加算器、44…乗算器、48…選択器。
The drawing is a block diagram outlining an electronic circuitry for implementing the invention. 10...twin spool gas turbine engine, 12
...High pressure compressor, 13...Low pressure compressor, 16...Bleed valve, 20...Burner, 32...Filter, 38...Divider, 39...Function generator, 40...Calculator, 42...
Adder, 44... Multiplier, 48... Selector.

Claims (1)

【特許請求の範囲】 1 高圧圧縮機と、航空機に動力を与えるための
低圧圧縮機及びバーナと、ブリード弁と、サージ
ング防止のために圧縮機空気を吐出するべく前記
ブリード弁を開くための制御装置とを含んでいる
ガスタービン双スプールエンジンに用いられ、前
記エンジンをそのサージング線の近くで作動させ
るべくエンジン過渡状態の間に前記ブリード弁を
開閉するための装置に於て、 バーナ圧力の近似的な時間的変化率を示す第一
の信号を発生するためにバーナ圧力の一次時定数
に応答する手段と、 第二の信号を発生するためにバーナ圧力の時間
的変化率の制限を示すスケジユールを発生するた
め、補正された高圧圧縮機速度及び航空機の高度
に応答する手段と、 前記第一の信号及び前記第二の信号の差に応答
して、所定の値の超過時に前記ブリード弁をを制
御するための手段と を含んでいることを特徴とする圧縮機ブリード弁
開閉装置。
[Claims] 1. A high-pressure compressor, a low-pressure compressor and burner for powering an aircraft, a bleed valve, and a control for opening the bleed valve to discharge compressed air to prevent surging. Approximation of burner pressure in a device for opening and closing said bleed valve during engine transient conditions to operate said engine near its surging line for use in a gas turbine twin spool engine, said device comprising: means responsive to a first order time constant of the burner pressure for generating a first signal indicative of a temporal rate of change of the burner pressure; and a schedule indicating a limit on the temporal rate of change of the burner pressure for generating a second signal. means responsive to a corrected high pressure compressor speed and aircraft altitude to generate a bleed valve; and responsive to a difference between said first signal and said second signal, said bleed valve is activated upon exceeding a predetermined value. A compressor bleed valve opening/closing device comprising: means for controlling a compressor bleed valve;
JP60242576A 1984-12-20 1985-10-29 Bleed valve opening and closing apparatus of compressor Granted JPS61149530A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US06/683,886 US4655034A (en) 1984-12-20 1984-12-20 Transient gas turbine engine bleed control
US683886 1984-12-20

Publications (2)

Publication Number Publication Date
JPS61149530A JPS61149530A (en) 1986-07-08
JPH0580578B2 true JPH0580578B2 (en) 1993-11-09

Family

ID=24745865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60242576A Granted JPS61149530A (en) 1984-12-20 1985-10-29 Bleed valve opening and closing apparatus of compressor

Country Status (6)

Country Link
US (1) US4655034A (en)
EP (1) EP0187114B1 (en)
JP (1) JPS61149530A (en)
CA (1) CA1240381A (en)
DE (1) DE3578345D1 (en)
IL (1) IL76568A (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4756152A (en) * 1986-12-08 1988-07-12 United Technologies Corporation Control for bleed modulation during engine deceleration
US4894782A (en) * 1987-12-18 1990-01-16 United Technologies Corporation Diagnostic system for determining engine start bleed strap failure
US5136841A (en) * 1989-02-27 1992-08-11 Zimmerman Ward H Aircraft propulsion control system
US5044155A (en) * 1989-02-27 1991-09-03 The Boeing Company Aircraft propulsion control system
USRE34388E (en) * 1989-04-13 1993-09-28 General Electric Company Method and apparatus for detecting stalls
US5012637A (en) * 1989-04-13 1991-05-07 General Electric Company Method and apparatus for detecting stalls
US4991389A (en) * 1989-04-21 1991-02-12 United Technologies Corporation Bleed modulation for transient engine operation
GB2273316B (en) * 1992-12-12 1996-02-28 Rolls Royce Plc Bleed valve control
DE19740227C2 (en) * 1997-09-12 2003-07-03 Rolls Royce Deutschland Device and method for controlling the degree of opening of a relief valve
US6141951A (en) * 1998-08-18 2000-11-07 United Technologies Corporation Control system for modulating bleed in response to engine usage
US6513333B2 (en) * 2000-05-25 2003-02-04 Honda Giken Kogyo Kabushiki Kaisha Surge detection system of gas turbine aeroengine
US6463730B1 (en) 2000-07-12 2002-10-15 Honeywell Power Systems Inc. Valve control logic for gas turbine recuperator
US6481210B1 (en) 2001-05-16 2002-11-19 Honeywell International, Inc. Smart surge bleed valve system and method
US6934619B2 (en) * 2003-10-06 2005-08-23 International Engine Intellectual Property Company, Llc Engine transient detection and control strategy
US20050193739A1 (en) * 2004-03-02 2005-09-08 General Electric Company Model-based control systems and methods for gas turbine engines
DE102004015090A1 (en) * 2004-03-25 2005-11-03 Hüttinger Elektronik Gmbh + Co. Kg Arc discharge detection device
US7762084B2 (en) * 2004-11-12 2010-07-27 Rolls-Royce Canada, Ltd. System and method for controlling the working line position in a gas turbine engine compressor
US7762078B2 (en) * 2006-09-13 2010-07-27 Aerojet-General Corporation Nozzle with temperature-responsive throat diameter
US8302405B2 (en) * 2006-10-13 2012-11-06 Rolls-Royce Power Engineering Plc Dynamic control of a gas turbine engine compressor during rapid transients
US7850419B2 (en) * 2006-11-30 2010-12-14 Pratt & Whitney Canada Corp. Bleed valve actuating system for a gas turbine engine
GB0813413D0 (en) * 2008-07-23 2008-08-27 Rolls Royce Plc A compressor variable stator vane arrangement
US9200572B2 (en) 2012-09-13 2015-12-01 Pratt & Whitney Canada Corp. Compressor surge prevention digital system
US9228501B2 (en) * 2012-12-14 2016-01-05 Solar Turbines Incorporated Bleed valve override schedule on off-load transients
WO2014158307A2 (en) * 2013-03-14 2014-10-02 United Technologies Corporation Pressure sensor noise filter prior to surge detection for a gas turbine engine
GB201319563D0 (en) * 2013-11-06 2013-12-18 Rolls Royce Plc Pneumatic system for an aircraft
CN112443508B (en) * 2019-09-02 2022-04-08 中国航发商用航空发动机有限责任公司 Surge detection method and system for turbofan engine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3006145A (en) * 1959-10-14 1961-10-31 Gen Motors Corp Antisurge control using compressor bleed
US3852958A (en) * 1973-09-28 1974-12-10 Gen Electric Stall protector system for a gas turbine engine
US4060980A (en) * 1975-11-19 1977-12-06 United Technologies Corporation Stall detector for a gas turbine engine
US4117668A (en) * 1975-11-19 1978-10-03 United Technologies Corporation Stall detector for gas turbine engine
US4164034A (en) * 1977-09-14 1979-08-07 Sundstrand Corporation Compressor surge control with pressure rate of change control

Also Published As

Publication number Publication date
CA1240381A (en) 1988-08-09
EP0187114A3 (en) 1987-05-06
JPS61149530A (en) 1986-07-08
IL76568A0 (en) 1986-02-28
DE3578345D1 (en) 1990-07-26
US4655034A (en) 1987-04-07
IL76568A (en) 1991-01-31
EP0187114B1 (en) 1990-06-20
EP0187114A2 (en) 1986-07-09

Similar Documents

Publication Publication Date Title
JPH0580578B2 (en)
US4294069A (en) Exhaust nozzle control and core engine fuel control for turbofan engine
US7331169B2 (en) Control logic for fuel controls on APUs
US5303541A (en) Closed loop fuel control method
US3520133A (en) Gas turbine control system
US4437303A (en) Fuel control system for a gas turbine engine
EP0185600B1 (en) A transient derivative scheduling control system
JPH0580576B2 (en)
US5596871A (en) Deceleration fuel control system for a turbine engine
US4274255A (en) Control for start-up of a gas turbine engine
JP2644785B2 (en) Gas turbine engine controller
US6591613B2 (en) Methods for operating gas turbine engines
KR960003682B1 (en) Acceleration controller for a gas turbine engine
US5447023A (en) Synthesized fuel flow rate and metering valve position
US5361579A (en) Turbojet fuel control system
US6389816B1 (en) Simplified fuel system for jet engines
GB2120407A (en) Electronic control system
JPS61182425A (en) Control of opening degree of gas turbine compressor inlet guide vane
GB2156544A (en) Fuel system for a gas turbine engine
RU2022143C1 (en) Gas-turbine engine fuel and control system
JPH06213005A (en) Fan stall preventing device