JPH0580540B2 - - Google Patents

Info

Publication number
JPH0580540B2
JPH0580540B2 JP23638285A JP23638285A JPH0580540B2 JP H0580540 B2 JPH0580540 B2 JP H0580540B2 JP 23638285 A JP23638285 A JP 23638285A JP 23638285 A JP23638285 A JP 23638285A JP H0580540 B2 JPH0580540 B2 JP H0580540B2
Authority
JP
Japan
Prior art keywords
strength
bendability
alloy
heat resistance
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23638285A
Other languages
Japanese (ja)
Other versions
JPS6296644A (en
Inventor
Haruyumi Kosuge
Katsuaki Kamio
Tomoaki Sano
Koichi Ito
Nobuaki Nakajima
Sumyo Uzawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Light Metal Co Ltd
Original Assignee
Toshiba Corp
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Light Metal Co Ltd filed Critical Toshiba Corp
Priority to JP23638285A priority Critical patent/JPS6296644A/en
Publication of JPS6296644A publication Critical patent/JPS6296644A/en
Publication of JPH0580540B2 publication Critical patent/JPH0580540B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49579Lead-frames or other flat leads characterised by the materials of the lead frames or layers thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

「発明の目的」 本発明はリードフレーム用アルミニウム合金に
係り、熱覆歴後の強度、硬度ならびに曲げ加工性
が良好で低コストなリードフレーム用アルミニウ
ム合金を提供しようとするものである。 産業上の利用分野 半導体を要素とするIC、LED等の機器におけ
るリードフレーム用アルミニウム合金。 従来の技術 半導体を要素とするIC、LSI、LEDなどの機器
は何れも半導体ペレツト、リード、ボンデイング
ワイヤにより構成されたものを、セラミツクスや
樹脂によつて封止したもので、種々の形式のもの
が用いられている。然してこの種機器に使用され
るリード用フレームは薄板をプレス打抜きして所
定の形状に成形した後、組付けを容易とするため
溶融ハンダ材が被覆されることとなり、このよう
な工程において熱覆歴を受ける。ところで従来こ
れらの機器におけるリードフレーム材としては、
鉄系材料としてコバール(Fe−29%Ni−17%
Co)、Fe−42%Ni合金、Fe−Ni合金にAlをクラ
ツドした材料が用いられ、又銅系材料として194
合金(Cu−Fe−Zn−P系)、195合金(Cu−Fe
−Co−Sn−P系)などが使用されて来た。即ち
前記鉄系材料は耐熱性、強度などが優れており、
MOS型IC、LSI等に広く採用され、銅系材料は
良好な熱伝導性や曲げ性を有し、しかも鉄系のも
のに比較して安価であることから近年パワートラ
ンジスタ、ダイオード、サイリスタ等の個別半導
体のリードフレーム材として広く使用されてい
る。近時、高集積化がますます進む中で、電気抵
抗の小さい、高熱伝導度、高強度の銅合金も開発
され、鉄系材料に代つて次第に使用されつつあ
る。 なお一部に銅合金より更に低価格な材料として
アルミニウム合金の使用も考えられているようで
ある。 発明が解決しようとする問題点 しかし前記した鉄系材料のものは相当に高価で
あり、しかも熱伝導性や耐食性に劣る不利があ
る。この点銅系材料によるものは鉄系材料よりは
安価で、熱伝導性や曲げ性に優れたものである
が、耐熱性や強度においては鉄系材料のものより
劣り、しかもやはりそれなりに高価格とならざる
を得ない。 アルミニウム合金によるものは価格的には最も
有利であるが、熱覆歴後の硬度、耐繰返し曲げ性
などの機械的性質が低いという問題点を有してい
る。 「発明の構成」 問題点を解決するための手段 Cu:3.0〜6.5wt%、Mg:0.02〜1.7wt%、Si:
0.02〜0.5wt% を含有し、しかも Mn:0.20〜1.2wt%、Cr:0.10〜0.30wt%、
Zr:0.05〜0.25wt%、V:0.05〜0.20wt% の1種又は2種以上を添加し、残部がAlと不可
避的不純物より成ることを特徴とするリードフレ
ーム用アルミニウム合金。 作 用 Mg、Si、Cuを下限以上に含有させることによ
り溶体化処理後の時効によつて、Mg2Si、Al−
Cu−Mg相などを析出し、析出硬化によつて大き
な強度を与える。又それらが上限以下とすること
によつて曲げ性劣化を回避する。 Mn、Cr、Zr、Vの何れか1種又は2種以上を
下限値以上に添加することにより耐熱性を向上
し、結晶粒径を微細化せしめ、しかもその上限以
下とすることにより曲げ性劣化を防止する。 実施例 上記したような本発明について更に説明する
と、本発明では前記のようにMg、Si、Cuを含有
させることによりリードフレーム材として必要な
強度を高価化を来すことなしに得ようとする。即
ちこれらの成分は溶体化処理後の時効によつて
Mg2Si、Al−Cu−Mg相などが析出し、その析出
硬化により大きな強度を得しめる。wt%(以下
単に%という)でMgが不純物としての上限であ
る0.05%以下の0.02%以下では充分な斯かる強度
が得られず、一方1.7%を超えると曲げ性が劣化
する。 Siも、不純物上限の0.05%より低い0.02%以下
では上記のような強度が得られず、しかも0.5%
を越えると強度は増加するが曲げ性が劣化するの
で0.02〜0.5%とした。 Cuは、上記のような条件下で3.0%未満では充
分な強度が得られず、一方6.5%を超えて添加し
てもそれ以上に強度の増加がなく、むしを曲げ性
を劣化させるので3.0〜6.5%とした。好ましい範
囲としては3.0〜6.2%である。 Mn、Cr、ZrおよびVは、耐熱性を向上させる
ために添加し、又結晶粒径を小さくしてプレス打
抜き工程などにおける肌荒れを防止する。然して
これらの遷移金属元素はAl中に固溶した状態で
は導電率および熱伝導率を低下させる。又これら
の元素はMnAl6、AlMnSi、CrAl7、ZrAl3
VAl10などの化合物について微細な粒子としてマ
トリツクスに分散しているとき最も耐熱性が高く
なる。 Mnが0.20%以下では上部のような耐熱性が有
効に得られず、一方1.0%以上となると粗大な
MnAl6粒子が生じて曲げ性を劣化する。 Crも0.10%以下では耐熱性に対する上記効果が
不充分であり、一方0.30%を超えると粗大な
CrAl7粒子が生じて曲げ性を劣化する。 Zrは、このもので上記のような耐熱性を得る
には0.05%以下では効果が乏しく、又0.25%以上
となると粗大なZrAl3粒子が生じて曲げ性を劣化
させるので、0.05〜0.25%とした。 Vは、0.05%以下では充分な耐熱性が得られ
ず、又0.20%以上では粗大なVAl10粒子が生じて
曲げ性を劣化する。 なお本発明によるものは上記成分以外に鋳造割
れ防止および結晶粒微細化のために一般的に添加
されているTi、Bの何れか一方又は双方を含有
させてもよい。特に本発明合金においてはこれら
の成分が前述した耐熱性向上元素の均一な分布を
図るという効果があり、それらの効果はTiが0.01
%未満、Bが0.001%未満では充分でなく、又Ti
が0.15%を超え、Bが0.01%を超えると、TiAl3
TiB2、AlB2などの粗大粒子を生じ、曲げ性を害
するので、Ti:0.01〜0.15%およびB:0.001〜
0.01%が適当な添加範囲である。 又不純物としてFe≦0.3%、Zn≦0.3%の範囲で
あれば、本発明の特性を劣化させることがない。 本発明合金によるリードフレーム材の製造は、
通常のアルミニウム合金と同様に溶解され、前記
した結晶微細化剤のTiとBが溶解炉中、又は鋳
造機への溶湯移送樋中へ連続的に添加され、次い
で溶湯中の酸化物などの非金属介在物を除去すべ
く濾過され、最後にDC鋳造などの半連続鋳造法
や、ハンター鋳造法などの連続鋳造圧延によつて
鋳塊とされる。次いで鋳塊の均質化処理、熱間圧
延又は冷間圧延によつて所定の厚さの板とし、最
後に熱処理が施される。なお熱処理は圧延の中間
段階でも施されることがある。 本発明によるものの具体的な製造例について説
明すると以下の如くである。 次の第1表に示すような成分組成を有している
本発明例1〜8および比較例A〜HのAl−Cu−
Mg系の合金を溶解鋳造して鋳塊となし、500℃
で8時間加熱した後、熱間圧延により5mm厚まで
圧延した。このようにして得られた合金板は、次
いでこの圧延板を溶体化処理し、水焼入れ後0.5
mm厚まで冷間圧延し、更に200℃で1時間の人工
時効を行つた。
``Object of the Invention'' The present invention relates to an aluminum alloy for lead frames, and an object of the present invention is to provide an aluminum alloy for lead frames that has good strength, hardness, and bending workability after thermal annealing and is inexpensive. Industrial Application Fields Aluminum alloys for lead frames in devices such as ICs and LEDs that use semiconductors as elements. Conventional technology Devices that use semiconductors, such as ICs, LSIs, and LEDs, are made of semiconductor pellets, leads, and bonding wires that are sealed with ceramics or resin, and come in various formats. is used. However, after the lead frames used in this type of equipment are press-punched from a thin plate and formed into a predetermined shape, they are coated with molten solder material to facilitate assembly. Receive history. By the way, the conventional lead frame materials for these devices are:
Kovar (Fe-29%Ni-17%) is used as an iron-based material.
Co), Fe-42%Ni alloy, Fe-Ni alloy clad with Al, and 194% copper-based material.
Alloy (Cu-Fe-Zn-P system), 195 alloy (Cu-Fe
-Co-Sn-P system) etc. have been used. That is, the iron-based materials have excellent heat resistance, strength, etc.
Widely used in MOS type ICs, LSIs, etc., copper-based materials have good thermal conductivity and bendability, and are cheaper than iron-based materials, so they have recently become popular in power transistors, diodes, thyristors, etc. Widely used as lead frame material for individual semiconductors. In recent years, as the degree of integration continues to increase, copper alloys with low electrical resistance, high thermal conductivity, and high strength have been developed and are gradually being used in place of iron-based materials. In addition, it seems that the use of aluminum alloy as a material that is even cheaper than copper alloy is being considered in some cases. Problems to be Solved by the Invention However, the above-mentioned iron-based materials are quite expensive and have the disadvantages of poor thermal conductivity and corrosion resistance. In this regard, copper-based materials are cheaper than iron-based materials and have excellent thermal conductivity and bendability, but they are inferior to iron-based materials in terms of heat resistance and strength, and are also relatively expensive. I have no choice but to do so. Aluminum alloys are the most advantageous in terms of cost, but have the problem of low mechanical properties such as hardness after heat treatment and repeated bending resistance. "Structure of the invention" Means for solving the problem Cu: 3.0 to 6.5 wt%, Mg: 0.02 to 1.7 wt%, Si:
Contains 0.02-0.5wt%, Mn: 0.20-1.2wt%, Cr: 0.10-0.30wt%,
An aluminum alloy for lead frames, characterized in that one or more of Zr: 0.05 to 0.25 wt% and V: 0.05 to 0.20 wt% are added, and the remainder consists of Al and inevitable impurities. Effect By containing Mg, Si, and Cu above the lower limit, Mg 2 Si, Al−
It precipitates Cu-Mg phase and gives great strength through precipitation hardening. Also, by keeping these values below the upper limit, deterioration in bendability is avoided. Adding one or more of Mn, Cr, Zr, and V in an amount above the lower limit improves heat resistance and refines the crystal grain size, and adding below the upper limit reduces bendability. prevent. Example To further explain the present invention as described above, the present invention attempts to obtain the strength necessary for a lead frame material without increasing the price by incorporating Mg, Si, and Cu as described above. . In other words, these components deteriorate due to aging after solution treatment.
Mg 2 Si, Al-Cu-Mg phases, etc. precipitate, and the precipitation hardening provides great strength. If the wt% (hereinafter simply referred to as %) of Mg is less than 0.02%, which is less than the upper limit of 0.05% as an impurity, sufficient strength cannot be obtained, while if it exceeds 1.7%, bendability deteriorates. With Si, the above strength cannot be obtained when the impurity content is below 0.02%, which is lower than the upper limit of 0.05%;
If it exceeds 0.02% to 0.5%, the strength will increase but the bendability will deteriorate. Under the above conditions, if Cu is less than 3.0%, sufficient strength cannot be obtained, while if it is added in excess of 6.5%, there is no further increase in strength, and the bendability deteriorates. ~6.5%. The preferred range is 3.0 to 6.2%. Mn, Cr, Zr, and V are added to improve heat resistance, and reduce crystal grain size to prevent surface roughness during press punching and the like. However, when these transition metal elements are dissolved in Al, the electrical conductivity and thermal conductivity decrease. Also, these elements include MnAl 6 , AlMnSi, CrAl 7 , ZrAl 3 ,
Compounds such as VAl 10 have the highest heat resistance when dispersed in a matrix as fine particles. If Mn is less than 0.20%, the heat resistance as in the upper part cannot be effectively obtained, while if it is more than 1.0%, coarse
MnAl 6 particles are generated and the bendability deteriorates. If Cr is less than 0.10%, the above effect on heat resistance will be insufficient, while if it exceeds 0.30%, the
CrAl 7 particles are generated and the bendability deteriorates. In order to obtain the above heat resistance, Zr has a poor effect if it is less than 0.05%, and if it is more than 0.25%, coarse ZrAl3 particles are generated and the bendability is deteriorated, so Zr should be added in an amount of 0.05 to 0.25%. did. If V is less than 0.05%, sufficient heat resistance cannot be obtained, and if it is more than 0.20%, coarse VAl 10 particles are generated and the bendability is deteriorated. The material according to the present invention may contain, in addition to the above-mentioned components, one or both of Ti and B, which are generally added for prevention of casting cracks and refinement of crystal grains. In particular, in the alloy of the present invention, these components have the effect of uniformly distributing the heat resistance-improving elements mentioned above, and these effects are as follows when Ti is 0.01
%, B is less than 0.001%, it is not sufficient, and Ti
exceeds 0.15% and B exceeds 0.01%, TiAl 3 ,
Ti: 0.01~0.15% and B : 0.001~0.
A suitable addition range is 0.01%. Further, as long as the impurities are in the range of Fe≦0.3% and Zn≦0.3%, the characteristics of the present invention will not be deteriorated. The production of lead frame materials using the alloy of the present invention is as follows:
It is melted in the same way as ordinary aluminum alloys, and the crystal refiners Ti and B described above are continuously added to the melting furnace or the molten metal transfer trough to the casting machine, and then non-containing substances such as oxides in the molten metal It is filtered to remove metal inclusions, and finally it is made into an ingot by semi-continuous casting such as DC casting or continuous casting and rolling such as Hunter casting. Next, the ingot is homogenized, hot rolled or cold rolled to form a plate of a predetermined thickness, and finally heat treated. Note that heat treatment may also be performed at an intermediate stage of rolling. A specific manufacturing example of the product according to the present invention will be described below. The Al-Cu-
Mg-based alloy is melted and cast into an ingot at 500℃.
After heating for 8 hours, it was hot rolled to a thickness of 5 mm. The alloy plate obtained in this way is then subjected to solution treatment of this rolled plate, and after water quenching, 0.5
It was cold rolled to a thickness of mm and then artificially aged at 200°C for 1 hour.

【表】 これらの板について、ハンダづけに相当した
275℃で30秒間の加熱をなしてから強度、硬さ、
90°曲げの繰返し曲げ性および導電率を測定した
結果は次の第2表の如くであり、前記繰返し曲げ
性の評価基準は上記のような275℃×30secの加熱
後に90°の繰返し曲げを3回以上行つても割れの
生じないものを良とし、割れの生じたものは不良
とした。総合評価については、強度、硬度、繰返
し曲げ性の全般について判断し評価した。
[Table] Regarding these boards, the
After heating at 275℃ for 30 seconds, strength, hardness,
The results of measuring the repeated bendability and conductivity of 90° bending are shown in Table 2 below. Those with no cracks even after three or more tests were evaluated as good, and those with cracks were evaluated as poor. Regarding the comprehensive evaluation, overall strength, hardness, and repeated bendability were judged and evaluated.

【表】 又LED用リードフレームとして使用する場合、
該フレームは275℃×30secの加熱後の導電率が40
%IACS以下、望ましくは35%IACS以下であるこ
とが求められ、可視光線の全波長域に亘つて良好
な反射率が要求される。従来の銅合金材料や鉄系
材料で銅メツキの施されているものの場合、可視
光線の短波長側で反射率が劣り、そのため銀メツ
キが施されているが、上記のような本発明のもの
は良好な反射特性を有している。即ち0.38〜
0.77μmの波長範囲において普通仕上げ板で65〜
75%、光輝仕上げ板で75〜80%を得ることができ
る。 更に上記した製造例および比較例のものについ
てハンダづけの評価のために、ハンダとしてSn
−Pb系の共晶ハンダを用い、超音波ハンダ付け
およびフラツクスを用いたデイツプ式のハンダ付
けを行い、その評価をなした結果は第3表の如く
である。
[Table] When used as a lead frame for LED,
The frame has a conductivity of 40 after heating at 275℃ x 30sec.
%IACS or less, preferably 35%IACS or less, and good reflectance over the entire wavelength range of visible light is required. Conventional copper alloy materials and iron-based materials that are plated with copper have poor reflectance on the short wavelength side of visible light, so they are plated with silver, but the material of the present invention as described above has good reflective properties. i.e. 0.38~
65~ for a normal finish plate in the wavelength range of 0.77μm
75%, and 75-80% can be obtained with bright finish board. Furthermore, for the soldering evaluation of the above-mentioned production examples and comparative examples, Sn was used as solder.
-Using Pb-based eutectic solder, ultrasonic soldering and dip-type soldering using flux were performed, and the evaluation results are as shown in Table 3.

【表】 「発明の効果」 以上説明したような本発明によれば、この種リ
ードフレームとして要求される耐熱性、特に強
度、硬度および曲げ性において好ましいバランス
を採つて安定状態に優れ、しかもハンダ付け性な
ども良好であるから工業的にその効果の大きい発
明である。
[Table] "Effects of the Invention" According to the present invention as explained above, the heat resistance required for this type of lead frame, especially the strength, hardness, and bendability, are achieved in a favorable balance, and the stable state is excellent. Since the adhesive properties are also good, this invention is industrially very effective.

Claims (1)

【特許請求の範囲】 1 Cu:3.0〜6.5wt%、Mg:0.02〜1.7wt%、
Si:0.02〜0.5wt% を含有し、しかも Mn:0.20〜1.0wt%、Cr:0.10〜0.30wt%、
Zr:0.05〜0.25wt%、V:0.05〜0.20wt% の1種又は2種以上を添加し、残部がAlと不可
避的不純物より成ることを特徴とするリードフレ
ーム用アルミニウム合金。
[Claims] 1 Cu: 3.0 to 6.5 wt%, Mg: 0.02 to 1.7 wt%,
Contains Si: 0.02-0.5wt%, Mn: 0.20-1.0wt%, Cr: 0.10-0.30wt%,
An aluminum alloy for lead frames, characterized in that one or more of Zr: 0.05 to 0.25 wt% and V: 0.05 to 0.20 wt% are added, and the remainder consists of Al and inevitable impurities.
JP23638285A 1985-10-24 1985-10-24 Aluminum alloy for lead frame Granted JPS6296644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23638285A JPS6296644A (en) 1985-10-24 1985-10-24 Aluminum alloy for lead frame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23638285A JPS6296644A (en) 1985-10-24 1985-10-24 Aluminum alloy for lead frame

Publications (2)

Publication Number Publication Date
JPS6296644A JPS6296644A (en) 1987-05-06
JPH0580540B2 true JPH0580540B2 (en) 1993-11-09

Family

ID=16999956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23638285A Granted JPS6296644A (en) 1985-10-24 1985-10-24 Aluminum alloy for lead frame

Country Status (1)

Country Link
JP (1) JPS6296644A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6389640A (en) * 1986-10-01 1988-04-20 Sky Alum Co Ltd Conductive parts material for electronic and electrical equipment
JPH0674479B2 (en) * 1986-10-09 1994-09-21 スカイアルミニウム株式会社 Conductive rolled material for leadframes, connectors or switches
US20160099200A1 (en) * 2014-10-01 2016-04-07 Stmicroelectronics S.R.L. Aluminum alloy lead frame for a semiconductor device and corresponding manufacturing process

Also Published As

Publication number Publication date
JPS6296644A (en) 1987-05-06

Similar Documents

Publication Publication Date Title
JPS63149344A (en) High strength copper alloy having high electrical conductivity
JP2542370B2 (en) Copper alloy for semiconductor leads
JPS61183426A (en) High strength, highly conductive heat resisting copper alloy
US4908078A (en) Material for conductive parts of electronic or electric devices
JPS63143230A (en) Precipitation strengthening high tensile copper alloy having high electrical conductivity
JPH0555582B2 (en)
KR950013291B1 (en) Material for conductive parts of electronic and electric appliances
JP3049137B2 (en) High strength copper alloy excellent in bending workability and method for producing the same
US4687633A (en) Lead material for ceramic package IC
JPS6254852B2 (en)
JPH0580540B2 (en)
JPH0571656B2 (en)
JPH0788549B2 (en) Copper alloy for semiconductor equipment and its manufacturing method
JPH0572455B2 (en)
JPH0440417B2 (en)
JPH10183274A (en) Copper alloy for electronic equipment
JP4132451B2 (en) High strength and high conductivity copper alloy with excellent heat resistance
JPH0717982B2 (en) Conductive rolled material for leadframes, connectors or switches
JPS6311418B2 (en)
JPS63109132A (en) High-strength conductive copper alloy and its production
KR100267810B1 (en) The manufacturing method of cu-alloy with lead frame material
JPH0380856B2 (en)
JP2576853B2 (en) Copper alloy for electronic equipment with excellent solder joint strength and its manufacturing method
JPH0699791B2 (en) Manufacturing method of metal plate for high strength and high conductivity type lead frame
JPH0518892B2 (en)