JPH0580379A - Second higher harmonic generation device - Google Patents

Second higher harmonic generation device

Info

Publication number
JPH0580379A
JPH0580379A JP27005091A JP27005091A JPH0580379A JP H0580379 A JPH0580379 A JP H0580379A JP 27005091 A JP27005091 A JP 27005091A JP 27005091 A JP27005091 A JP 27005091A JP H0580379 A JPH0580379 A JP H0580379A
Authority
JP
Japan
Prior art keywords
resonator
semiconductor laser
light
mirror
emitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27005091A
Other languages
Japanese (ja)
Inventor
Hideyuki Nonaka
英幸 野中
Tadao Toda
忠夫 戸田
Kazushi Mori
和思 森
Mitsuharu Matsumoto
光晴 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP27005091A priority Critical patent/JPH0580379A/en
Publication of JPH0580379A publication Critical patent/JPH0580379A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To stabilize the frequency of laser light as a fundamental wave projected from a semiconductor laser element. CONSTITUTION:A 2nd higher harmonic generating element 13 is arranged in the optical path of the laser light emitted from the front end surface of the semiconductor laser element 11 between a 1st resonator 12 and the resonator mirrors 12a, 12b of the 1st resonator 12, and a 2nd resonator 17 which has the same resonator length with the 1st resonator 12 and has resonator mirrors 17a, 17b lower in refractive index to the laser light emitted by the semiconductor laser element 11 than the resonator mirrors 12a, 12b of the 1st resonator 12 is arranged in the optical path of laser light emitted from the rear end surface; and the laser light emitted from the rear end surface of the semiconductor laser element 11 is resonated by the 2nd resonator 17 and then fed back to the semiconductor laser element 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体レーザ素子と共振
器及び第2高調波発生素子とを組み合わせた第2高調波
発生装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a second harmonic generation device in which a semiconductor laser device, a resonator and a second harmonic generation device are combined.

【0002】[0002]

【従来の技術】CD(Compact Disc)等の記憶装置における
記憶容量を増大するに必要とされる短波長光を得るた
め、近年近赤外域(800nm帯) の半導体レーザ (以下LDと
称す) 光の波長を第2高調波発生(Second Harmonic Gen
eration,以下SHG と称する) 素子を用いて半分の波長の
青色レーザ光に変換する第2高調波発生装置の研究が進
められている。
2. Description of the Related Art Recently, in order to obtain a short wavelength light required to increase the storage capacity of a storage device such as a CD (Compact Disc), semiconductor laser (hereinafter referred to as LD) light in the near infrared region (800 nm band) Second harmonic generation (Second Harmonic Gen
The second harmonic generation device that converts the laser light into a blue laser beam with a half wavelength using an eration (hereinafter referred to as SHG) element is under study.

【0003】この第2高調波発生装置に用いるSHG 素子
の構造には種々のものがあるが、大別するとバルク結晶
型と、導波路型とになる。ところで第2高調波を効率よ
く発生させる方法の1つとして基本波であるLD光のエネ
ルギー密度を高める方法があるが、導波路型SHG 素子で
は導波路内の狭い領域にLD光を閉じ込めることにより高
効率化を図っており、またバルク結晶型SHG 素子では図
1に示す如き共振器構造が採られている。
There are various structures of the SHG element used in this second harmonic generation device, and they are roughly classified into a bulk crystal type and a waveguide type. By the way, there is a method of increasing the energy density of the LD light, which is the fundamental wave, as one of the methods to efficiently generate the second harmonic, but in the waveguide type SHG element, by confining the LD light in a narrow area in the waveguide, In order to improve efficiency, the bulk crystal type SHG element has a resonator structure as shown in FIG.

【0004】図1は代表的なバルク結晶型SHG 素子を用
いた従来の第2高調波発生装置を示す模式図であり、図
中1は半導体レーザ素子、2は共振器、3はSHG 素子を
示している。半導体レーザ素子1から出射される基本波
たるレーザ(LD)光の光軸上に光アイソレータ4を介在
させて、共振器2,SHG 素子3が配設されており、半導
体レーザ素子1から発せられたLD光は光アイソレータ4
を経て共振器2に入射するようになっている。
FIG. 1 is a schematic diagram showing a conventional second harmonic generator using a typical bulk crystal type SHG element. In the figure, 1 is a semiconductor laser element, 2 is a resonator, and 3 is an SHG element. Shows. The resonator 2 and the SHG element 3 are arranged with the optical isolator 4 interposed on the optical axis of the fundamental laser (LD) light emitted from the semiconductor laser element 1. LD light is an optical isolator 4
The light is incident on the resonator 2 via the.

【0005】共振器2はSHG 素子3を挟んでその両側に
LD光に対し、高い反射率(90%以上) を有する共振器ミ
ラー2a,2b を対向配置して構成さており、光アイソレー
タ4を経た光は共振器ミラー2aを透過した後、共振器ミ
ラー2a,2b で反射されて共振器ミラー2a,2b にて繰り返
し反射され、共振器ミラー2a,2b 間を繰り返し往復して
共振され、エネルギー密度を高められて、SHG 素子3に
て第2高調波(SH波)に変換される。SH波は共振器ミラ
ー2bを透過し、更に同じ光軸上に光軸に対して所定角度
傾斜させて配置したダイクロイックミラー5を透過して
出射される。
The resonator 2 is provided on both sides of the SHG element 3 with the SHG element 3 interposed therebetween.
The resonator mirrors 2a and 2b having a high reflectance (90% or more) with respect to the LD light are arranged so as to face each other. The light passing through the optical isolator 4 is transmitted through the resonator mirror 2a, and then the resonator mirror 2a. , 2b and then repeatedly reflected by the resonator mirrors 2a, 2b, reciprocally reciprocated between the resonator mirrors 2a, 2b to resonate, the energy density is increased, and the SHG element 3 receives the second harmonic ( SH wave) is converted. The SH wave is transmitted through the resonator mirror 2b, further transmitted through the dichroic mirror 5 which is arranged on the same optical axis and inclined at a predetermined angle with respect to the optical axis, and is emitted.

【0006】一方SH波に変換されなかったLD光の一部は
ダイクロイックミラー5で反射されて全反射ミラー6,
7を経て光アイソレータ4の出光端側のミラーに入射
し、ここから光アイソレータ4を逆行して半導体レーザ
素子1に帰還入射される。これによって半導体レーザ素
子1自体から出射されるレーザ光の周波数の変動を抑制
し、半導体レーザ素子1から出射されるレーザ光の周波
数を安定維持するようになっている。
On the other hand, a part of the LD light which has not been converted into the SH wave is reflected by the dichroic mirror 5 and is reflected by the total reflection mirror 6.
After passing through 7, the light enters the mirror on the light output end side of the optical isolator 4, and from there, the optical isolator 4 travels backward and is fed back to the semiconductor laser device 1. As a result, fluctuations in the frequency of the laser light emitted from the semiconductor laser device 1 itself are suppressed, and the frequency of the laser light emitted from the semiconductor laser device 1 is maintained stable.

【0007】[0007]

【発明が解決しようとする課題】ところでこのような従
来の第2高調波発生装置にあっては共振器2における共
振器ミラー2a,2b はLD光を反射させ、共振させる必要
上、LD光に対する反射率が高く設定されているが、共振
器ミラー2a,2b の反射率が高い場合には共振器2におけ
る共振可能な周波数の幅(共振半値幅と称す)が狭くな
り、共振器2から出射されるLD光は図2に示す如くにな
る。
By the way, in such a conventional second harmonic generator, the resonator mirrors 2a and 2b in the resonator 2 are required to reflect the LD light and cause it to resonate. Although the reflectance is set high, when the reflectance of the resonator mirrors 2a and 2b is high, the width of the resonable frequency in the resonator 2 (referred to as the resonance half-value width) becomes narrow, and the light is emitted from the resonator 2. The emitted LD light is as shown in FIG.

【0008】図2は共振器2から出射されてくるLD光に
ついての揺らぎ幅Δfと共振器出力Pt との関係を示す
グラフであり、横軸に揺らぎ幅Δfを、また縦軸に共振
器出力Pt をとって示してある。このグラフから明らか
なように非常に狭い揺らぎ幅Δf内でのみ共振状態の出
射光が得られることとなる。
FIG. 2 is a graph showing the relationship between the fluctuation width Δf of the LD light emitted from the resonator 2 and the resonator output P t. The fluctuation width Δf is plotted on the horizontal axis and the resonator is plotted on the vertical axis. The output P t is shown. As is clear from this graph, the emitted light in the resonance state can be obtained only within the very narrow fluctuation width Δf.

【0009】このため、例えば半導体レーザ素子1から
出射されるLD光の周波数が外乱によって共振半値幅以上
に大きく揺らいだ場合には共振器2からLD光が出射され
ず、半導体レーザ素子1に対し帰還させるべき共振状態
のLD光が得られないこととなり、半導体レーザ素子1か
らの出射光特性を安定させることが出来ず、揺らぎが一
層大きくなるという悪循環が生じ、安定したSH波が得ら
れなくなるという問題があった。
For this reason, for example, when the frequency of the LD light emitted from the semiconductor laser element 1 fluctuates significantly by the disturbance over the resonance half-width, the LD light is not emitted from the resonator 2 and the semiconductor laser element 1 is not emitted. Since the LD light in the resonance state to be returned cannot be obtained, the emission light characteristic from the semiconductor laser device 1 cannot be stabilized, and a vicious cycle in which fluctuations become even larger occurs, and stable SH waves cannot be obtained. There was a problem.

【0010】本発明はかかる事情に鑑みなされたもので
あって、その目的とするところは半導体レーザ素子に対
する帰還のための光が確実に得られ、ひいては安定した
第2高調波が得られるようにした第2高調波発生装置を
提供するにある。
The present invention has been made in view of the above circumstances, and an object thereof is to surely obtain light for feedback to a semiconductor laser device and to obtain a stable second harmonic. Another object of the present invention is to provide a second harmonic generation device.

【0011】[0011]

【課題を解決するための手段】本発明に係る第2高調波
発生装置は、半導体レーザ素子と、半導体レーザ素子
と、共振器ミラーを相対向させて構成され、前記半導体
レーザ素子から出射された基本波を共振させる共振器
と、該共振器の共振器ミラー間に配設され、共振器にて
共振された基本波を第2高調波に変換する第2高調波発
生素子とを有する第2高調波発生装置において、前記共
振器と同じ共振器長を有し、基本波に対する反射率が前
記共振器の共振器ミラーの反射率よりも低い共振器ミラ
ーを有し、前記半導体レーザ素子から出射された基本波
を共振させて前記半導体レーザ素子に帰還させる他の共
振器を備えることを特徴とする。
A second harmonic generating device according to the present invention comprises a semiconductor laser element, a semiconductor laser element, and a resonator mirror, which face each other, and is emitted from the semiconductor laser element. A second resonator having a resonator for resonating the fundamental wave and a second harmonic wave generating element arranged between the resonator mirrors of the resonator and converting the fundamental wave resonated by the resonator into the second harmonic wave In the harmonic generator, a resonator mirror having the same resonator length as the resonator and having a reflectance with respect to a fundamental wave lower than that of the resonator mirror of the resonator is emitted from the semiconductor laser device. Another resonator for resonating the generated fundamental wave and returning it to the semiconductor laser device is provided.

【0012】[0012]

【作用】本発明にあっては共振器ミラー間に第2高調波
発生素子を配し、基本波を共振状態にして第2高調波を
発生させる一の共振器とは別に、基本波に対する反射率
が前記共振器の共振器ミラーよりも小さい共振器ミラー
を備え、基本波を共振させて半導体レーザ素子に帰還入
射させる他の共振器を設けたから、他の共振器における
共振半値幅は反射率を小さくした分だけ前記一の共振器
の共振半値幅よりも広くなり、半導体レーザ素子から出
射されるレーザ光が揺らいでも確実に帰還のための光が
得られ、安定して第2高調波を発生させ得ることとな
る。
According to the present invention, the second harmonic wave generating element is arranged between the resonator mirrors to reflect the fundamental wave separately from the one resonator for generating the second harmonic wave by putting the fundamental wave into a resonance state. The resonator has a resonator mirror whose ratio is smaller than that of the resonator, and another resonator that resonates the fundamental wave to make it enter the semiconductor laser element by feedback is provided. Is smaller than the full width at half maximum of the resonance of the one resonator by a smaller value, and even if the laser light emitted from the semiconductor laser element fluctuates, the light for feedback can be reliably obtained and the second harmonic wave can be stably generated. It can be generated.

【0013】[0013]

【実施例】以下本発明をその実施例を示す図面に基づき
具体的に説明する。図3は本発明に係る第2高調波発生
装置の模式図であり、図中11は半導体レーザ素子、12は
第1共振器、17は第2共振器を示している。半導体レー
ザ素子11の前部端面から出射された基本波たるレーザ光
(LD光) の光軸上に光アイソレータ14を隔てて第1共振
器12及び該第1共振器12の共振器ミラー12a,12b 間に位
置するバルク結晶型の第2高調波発生素子(SHG素子とい
う) 13が配設されており、LD光は光アイソレータ14を通
過して第1共振器12に入射する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the drawings showing the embodiments. FIG. 3 is a schematic diagram of a second harmonic generation device according to the present invention, in which 11 is a semiconductor laser element, 12 is a first resonator, and 17 is a second resonator. Laser light as a fundamental wave emitted from the front end face of the semiconductor laser device 11.
A bulk crystal type second harmonic generation element (SHG) located between the first resonator 12 and the resonator mirrors 12a and 12b of the first resonator 12 with an optical isolator 14 interposed on the optical axis of (LD light). An element) 13 is provided, and the LD light passes through the optical isolator 14 and enters the first resonator 12.

【0014】第1共振器12は一対の凹面鏡等で構成され
た共振器ミラー12a,12b を相対向させて構成されてお
り、共振器ミラー12aを透過したLD光は共振器ミラー12
a,12b間で繰り返し反射されてエネルギー密度を高めら
れ、第2高調波発生素子13にて第2高調波 (SH波) に変
換され、基本波とSH波とが混在した状態で第1共振器12
から出射され、フィルタ15にてLD光を除去され、SH波の
みが取り出されるようになっている。
The first resonator 12 comprises resonator mirrors 12a and 12b, which are composed of a pair of concave mirrors, facing each other, and the LD light transmitted through the resonator mirror 12a receives the resonator mirror 12a.
The energy density is increased by being repeatedly reflected between a and 12b, converted into the second harmonic (SH wave) by the second harmonic generation element 13, and the first resonance occurs when the fundamental wave and SH wave are mixed. Bowl 12
The LD light is emitted by the filter 15, the LD light is removed by the filter 15, and only the SH wave is extracted.

【0015】一方半導体レーザ素子11の後部端面から出
射される基本波たるLD光の光軸上には光アイソレータ16
及び第2共振器17が配設されており、LD光は光アイソレ
ータ16を通過して第2共振器17に入射される。第2共振
器17は前記した第1共振器12の共振器ミラー12a,12b よ
りも夫々LD光に対する反射率が若干低い共振器ミラー17
a,17b を対向させて構成されており、これに入射した光
は共振器ミラー17a,17b にて繰り返し反射されて共振器
ミラー17a,17b 間を往復し、共振せしめられてエネルギ
ー密度を高められた後、共振器ミラー17b を透過して全
反射ミラー18に入射する。
On the other hand, an optical isolator 16 is placed on the optical axis of the LD light which is the fundamental wave emitted from the rear end face of the semiconductor laser device 11.
Also, the second resonator 17 is provided, and the LD light passes through the optical isolator 16 and is incident on the second resonator 17. The second resonator 17 has a slightly lower reflectance for LD light than the resonator mirrors 12a and 12b of the first resonator 12 described above.
a and 17b are made to face each other, and the light incident on this is repeatedly reflected by the resonator mirrors 17a and 17b, reciprocates between the resonator mirrors 17a and 17b, and is resonated to increase the energy density. After that, the light passes through the resonator mirror 17b and enters the total reflection mirror 18.

【0016】全反射ミラー18,19,20は夫々相互に所定角
度傾斜させて配設されており、第2共振器12から出射さ
れた共振状態のLD光は全反射ミラー18,19,20を経て再び
光アイソレータ16に戻り光アイソレータ16を経て半導体
レーザ素子11に帰還入射せしめ、半導体レーザ素子11か
ら発振されるLD光の発振波長を固定するようになってい
る。
The total reflection mirrors 18, 19, 20 are arranged so as to be inclined with respect to each other by a predetermined angle, and the LD light in the resonant state emitted from the second resonator 12 is reflected by the total reflection mirrors 18, 19, 20. After that, it returns to the optical isolator 16 and is fed back to the semiconductor laser device 11 via the optical isolator 16 to fix the oscillation wavelength of the LD light oscillated from the semiconductor laser device 11.

【0017】而してこのような本発明装置にあっては、
第2共振器17の共振器ミラー17a,17b のLD光に対する反
射率は第1共振器12の共振器ミラー12a,12b 夫々の反射
率に比較して小さく設定されているから、第2共振器17
にて共振せしめられて出射されてくるLD光の出力は図4
に示す如くになる。
Thus, in such a device of the present invention,
The reflectance of the second resonator 17 of the resonator mirrors 17a and 17b with respect to the LD light is set smaller than the reflectance of the resonator mirrors 12a and 12b of the first resonator 12, respectively. 17
The output of the LD light emitted after being resonated at
As shown in.

【0018】図4に示すグラフは横軸に周波数の揺らぎ
幅Δfを、また縦軸に第2共振器出力Pt をとって示し
てある。このグラフから明らかなように、図2に示す従
来の場合に比較して揺らぎ幅Δfの共振半値幅が著しく
広くなっており、半導体レーザ素子11から出射されたLD
光が外乱によって多少揺らいでも、安定した第2共振器
17の出力、換言すれば共振状態のLD光が得られ、半導体
レーザ素子11に対しLD光を確実に帰還させることが出来
て、半導体レーザ素子11から出射されるLD光の周波数を
安定させ得ることとなる。
In the graph shown in FIG. 4, the horizontal axis represents the frequency fluctuation width Δf, and the vertical axis represents the second resonator output P t . As is clear from this graph, the resonance half width of the fluctuation width Δf is remarkably wider than that of the conventional case shown in FIG. 2, and the LD emitted from the semiconductor laser device 11 is
Stable second resonator even if light fluctuates slightly due to disturbance
The output of 17, in other words, the LD light in the resonance state can be obtained, the LD light can be reliably returned to the semiconductor laser element 11, and the frequency of the LD light emitted from the semiconductor laser element 11 can be stabilized. It will be.

【0019】これを具体的に数値を掲げて以下に説明す
る。第1共振器12, 第2共振器17の共振半値幅Δνは夫
々のモード間周波数間隔FSR,共振器のフィネスFを用い
て下記(1) 式であらわせる。
This will be described below with specific numerical values. The resonance half-width Δν of the first resonator 12 and the second resonator 17 is expressed by the following equation (1) using the frequency spacing FSR between modes and the finesse F of the resonator.

【0020】Δν=FSR/F …(1)Δν = FSR / F (1)

【0021】(1) 式中のモード間周波数間隔FSR はc/2L
(c:光速,L:共振器長(光路長))で、また共振器の
フィネスFはπR1/2 (1−R)(R:共振器ミラーの
反射率)で与えられる。
The frequency spacing FSR between modes in the equation (1) is c / 2L
(C: speed of light, L: resonator length (optical path length)), and the finesse F of the resonator is given by πR 1/2 (1-R) (R: reflectance of resonator mirror).

【0022】いま、例えば第1,第2共振器12,17 の共
振器長を10mm、第1共振器の共振器ミラー反射率を95
%、第2共振器の共振器ミラー反射率を60%とすると、
モード間周波数間隔FSR =15GHz 、第1共振器のフィネ
スF1 =61、第2共振器17のフィネスF2 =6.1 とな
る。従って第1共振器の共振半値幅Δν1 は216MHz、第
2共振器の共振半値幅Δν2 は2.46GHz となり、第2共
振器の共振半値幅は第1共振器のそれに比べ10倍近くに
なる。換言すれば第2共振器17から半導体レーザ素子11
へ帰還させるべき光は半導体レーザ素子11から出射され
たレーザ光(LD光)の周波数の揺らぎΔfに対して広い
範囲で得ることが可能となる。
Now, for example, the resonator length of the first and second resonators 12 and 17 is 10 mm, and the resonator mirror reflectance of the first resonator is 95.
%, And the resonator mirror reflectance of the second resonator is 60%,
The inter-mode frequency interval FSR = 15 GHz, the finesse F 1 = 61 of the first resonator, and the finesse F 2 = 6.1 of the second resonator 17. Therefore, the resonance half-value width Δν 1 of the first resonator is 216 MHz, the resonance half-value width Δν 2 of the second resonator is 2.46 GHz, and the resonance half-value width of the second resonator is nearly 10 times that of the first resonator. .. In other words, from the second resonator 17 to the semiconductor laser device 11
The light to be returned to can be obtained in a wide range with respect to the frequency fluctuation Δf of the laser light (LD light) emitted from the semiconductor laser element 11.

【0023】また半導体レーザ素子11へ帰還させるべき
光の強度は半導体レーザ素子端面の光出力の1〜0.1 %
程度で良いから、第1共振器12側の前部端面の光出力が
100mW である半導体レーザ素子11を用いた場合、1〜0.
1mW 程度の出力の光を帰還入射させればよいこととな
る。
The intensity of light to be returned to the semiconductor laser device 11 is 1 to 0.1% of the light output from the end face of the semiconductor laser device.
The optical output of the front end face on the first resonator 12 side is
When using the semiconductor laser device 11 of 100 mW, 1 to 0.
Light with an output of about 1 mW should be returned and incident.

【0024】実施例の如く第2共振器17側へのレーザ光
を半導体レーザ素子11の後部端面から得るものとする
と、前部端面の光出力が100mW の場合、後部端面からの
光出力は通常約5mW程度である。従って第2共振器17の
出射側から得られる光は内部損失を(1−A)とした場
合、下記(2) 式で与えられる。
Assuming that the laser light to the second resonator 17 side is obtained from the rear end face of the semiconductor laser element 11 as in the embodiment, when the optical output of the front end face is 100 mW, the optical output from the rear end face is usually It is about 5 mW. Therefore, the light obtained from the emission side of the second resonator 17 is given by the following equation (2) when the internal loss is (1-A).

【0025】 Pt /Pi =(1−R)2 A/(1−RA)2 …(2) 但し、Pt :第2共振器を透過する光強度 Pi :第2共振器に入射する光強度P t / P i = (1-R) 2 A / (1-RA) 2 (2) where P t : light intensity transmitted through the second resonator P i : incident on the second resonator Light intensity

【0026】例えば第2共振器におけるミラー反射率R
を60%、(1−A)=2%とすると、Pt /Pi =92%
となる。 従って、第2共振器17への入射光強度が5mWあれば最大
出力約4.5mW の光を帰還させ得ることとなり、第2共振
器17を用いて半導体レーザ素子11の発振周波数を安定さ
せることが十分可能となる。
For example, the mirror reflectance R in the second resonator
Is 60% and (1-A) = 2%, Pt / Pi = 92%
Becomes Therefore, if the intensity of the incident light on the second resonator 17 is 5 mW, it is possible to return the light with the maximum output of about 4.5 mW, and the oscillation frequency of the semiconductor laser device 11 can be stabilized by using the second resonator 17. It is possible enough.

【0027】なお上述の実施例は、第2共振器17へ入射
するLD光を半導体レーザ素子11の後部端面から得る構成
を説明したが、半導体レーザ素子11の前部端面から出射
されたレーザ光をビームスプリッタによって分割し、そ
の一部を第2共振器17へ入射せしめ共振させた後、同じ
く前部端面に帰還させることとしてもよいことは勿論で
ある。
In the above embodiment, the LD light incident on the second resonator 17 is obtained from the rear end face of the semiconductor laser device 11, but the laser light emitted from the front end face of the semiconductor laser device 11 is described. Needless to say, the beam may be split by a beam splitter, and a part of the beam may be incident on the second resonator 17 to resonate, and then returned to the front end face.

【0028】[0028]

【発明の効果】以上の如く本発明装置にあっては、共振
器ミラー間に第2高調波発生素子を配して構成され、半
導体レーザ素子から出射された基本波を共振させてエネ
ルギー密度を高め、第2高調波に変換して出射する一の
共振器と同じ共振器長を有し、基本波に対する共振器ミ
ラーの反射率が一の共振器のミラーの反射率よりも低
く、基本波を共振させて半導体レーザ素子に帰還入射さ
せる他の共振器を備えるから、半導体レーザ素子から出
射される基本波の周波数の揺らぎが他の共振器の共振半
値幅以内であれば基本波を安定させることが可能とな
り、外乱に対して強い安定性が得られる等本発明は優れ
た効果を奏するものである。
As described above, in the device of the present invention, the second harmonic generating element is arranged between the resonator mirrors, and the fundamental wave emitted from the semiconductor laser element is resonated to increase the energy density. The resonator has the same resonator length as that of the one resonator that is output after being converted to the second harmonic, and the reflectance of the resonator mirror with respect to the fundamental wave is lower than the reflectance of the mirror of the one resonator. Since another resonator that resonates the laser beam and makes it return and enter the semiconductor laser element is provided, the fundamental wave is stabilized if the fluctuation of the frequency of the fundamental wave emitted from the semiconductor laser element is within the resonance half-value width of the other resonator. The present invention has excellent effects such as high stability against external disturbances.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来装置の模式図である。FIG. 1 is a schematic diagram of a conventional device.

【図2】共振器からの出射光出力を示すグラフである。FIG. 2 is a graph showing an output light output from a resonator.

【図3】本発明装置の模式図である。FIG. 3 is a schematic diagram of the device of the present invention.

【図4】第2共振器からの出射光出力を示すグラフであ
る。
FIG. 4 is a graph showing an output light output from the second resonator.

【符号の説明】[Explanation of symbols]

11 半導体レーザ素子 12 第1共振器 12a,12b 共振器ミラー 13 第2高調波発生素子 14 光アイソレータ 15 フィルタ 16 光アイソレータ 17 第2共振器 17a,17b 共振器ミラー 18,19,20 全反射ミラー 11 Semiconductor laser device 12 First resonator 12a, 12b Resonator mirror 13 Second harmonic generation device 14 Optical isolator 15 Filter 16 Optical isolator 17 Second resonator 17a, 17b Resonator mirror 18, 19, 20 Total reflection mirror

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松本 光晴 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Mitsuharu Matsumoto 2-18 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体レーザ素子と、共振器ミラーを相
対向させて構成され、前記半導体レーザ素子から出射さ
れた基本波を共振させる共振器と、該共振器の共振器ミ
ラー間に配設され、共振器にて共振された基本波を第2
高調波に変換する第2高調波発生素子とを有する第2高
調波発生装置において、前記共振器と同じ共振器長を有
し、基本波に対する反射率が前記共振器の共振器ミラー
の反射率よりも低い共振器ミラーを有し、前記半導体レ
ーザ素子から出射された基本波を共振させて前記半導体
レーザ素子に帰還させる他の共振器を備えることを特徴
とする第2高調波発生装置。
1. A semiconductor laser device and a resonator mirror are arranged to face each other, and a resonator for resonating a fundamental wave emitted from the semiconductor laser device is disposed between the resonator mirror and the resonator mirror. , The second fundamental wave resonated by the resonator
In a second harmonic generation device having a second harmonic generation element for converting into a harmonic, the resonator has the same resonator length as the resonator, and the reflectance for the fundamental wave is the reflectance of the resonator mirror of the resonator. A second harmonic generation device having another resonator having a lower resonator mirror and resonating the fundamental wave emitted from the semiconductor laser element and returning it to the semiconductor laser element.
JP27005091A 1991-09-20 1991-09-20 Second higher harmonic generation device Pending JPH0580379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27005091A JPH0580379A (en) 1991-09-20 1991-09-20 Second higher harmonic generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27005091A JPH0580379A (en) 1991-09-20 1991-09-20 Second higher harmonic generation device

Publications (1)

Publication Number Publication Date
JPH0580379A true JPH0580379A (en) 1993-04-02

Family

ID=17480830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27005091A Pending JPH0580379A (en) 1991-09-20 1991-09-20 Second higher harmonic generation device

Country Status (1)

Country Link
JP (1) JPH0580379A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008003317A (en) * 2006-06-22 2008-01-10 Sony Corp Wavelength conversion device and wavelength conversion method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008003317A (en) * 2006-06-22 2008-01-10 Sony Corp Wavelength conversion device and wavelength conversion method

Similar Documents

Publication Publication Date Title
KR100195769B1 (en) Solid laser device
JPH11502369A (en) Techniques for locking a laser diode to a passive optical cavity
JP3423761B2 (en) Optical wavelength converter
Kozlovsky et al. Blue light generation by resonator‐enhanced frequency doubling of an extended‐cavity diode laser
EP0563779A2 (en) Laser light beam generating apparatus
JP3211448B2 (en) Laser light source device
JP2849233B2 (en) Optical wavelength converter with bulk resonator structure
US6295305B1 (en) Second harmonic, single-mode laser
JPH0580379A (en) Second higher harmonic generation device
JP3584508B2 (en) Short wavelength light source
US5960015A (en) Two mode amplitude-stable intracavity-doubled laser and method
JPH0534746A (en) Optical wavelength conversion device
JPH06196779A (en) Light generator
JP3282221B2 (en) Laser light generator
JPH065962A (en) Laser light generator
JP2670637B2 (en) Laser diode pumped solid state laser
JPH04338736A (en) Light wavelength conversion device in resonator structure
JPH0715061A (en) Wavelength converter for laser
JP3170851B2 (en) Laser light generator
JPH07106684A (en) Solid state laser
JP2670638B2 (en) Laser diode pumped solid state laser
JPH09307160A (en) Laser equipment
JPH08171107A (en) Optical wavelength conversion device
JPH0527284A (en) Third higher harmonic generation device
JPH09283851A (en) Wavelength conversion laser device