JPH058013A - Method for casting with inserted ceramic - Google Patents
Method for casting with inserted ceramicInfo
- Publication number
- JPH058013A JPH058013A JP16065791A JP16065791A JPH058013A JP H058013 A JPH058013 A JP H058013A JP 16065791 A JP16065791 A JP 16065791A JP 16065791 A JP16065791 A JP 16065791A JP H058013 A JPH058013 A JP H058013A
- Authority
- JP
- Japan
- Prior art keywords
- sintered body
- mold
- cast
- temp
- molten metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Ceramic Products (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、セラミックスと金属の
複合体を形成するための、セラミックスの鋳ぐるみ方法
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of casting a ceramic to form a composite of ceramic and metal.
【0002】[0002]
【従来の技術】セラミックスは、耐熱性、耐磨耗性、耐
食性などに極めて優れているが、反面靱性に劣り脆いと
いう欠点がある。そこでセラミックスの長所を生かしつ
つその欠点を補うために、セラミックス焼結体を金属で
鋳ぐるんだ複合体として用いることが行われている。2. Description of the Related Art Ceramics are extremely excellent in heat resistance, abrasion resistance, corrosion resistance, etc., but on the other hand, they have the drawback of being poor in toughness and brittle. Therefore, in order to make the best use of the advantages of ceramics and to make up for the drawbacks, ceramics sintered bodies have been used as a composite body formed by casting metal.
【0003】このセラミックスの鋳ぐるみ方法は、筒状
のセラミックス焼結体を鋳型内に配置し、セラミックス
焼結体の外周側に金属溶湯を鋳込む。そして金属溶湯を
凝固・冷却させた後、鋳ぐるみ成形体を取り出してい
る。この鋳ぐるみ成形体は例えばエキゾーストマニホー
ルドなどに用いられ、セラミックス焼結体の熱伝導率の
低さを利用して内部を流れる排気ガスの温度低下を防
ぎ、排気ガス浄化触媒の活性を高めている。そして外側
の鋳ぐるみ金属によりセラミックス焼結体の破損が防止
され、かつ装着を容易としている。[0003] In this method for casting ceramics, a cylindrical ceramics sintered body is placed in a mold, and a molten metal is cast on the outer peripheral side of the ceramics sintered body. Then, the solidified metal is solidified and cooled, and then the cast-molded body is taken out. This cast body is used for, for example, an exhaust manifold, etc., and the low thermal conductivity of the ceramic sintered body is used to prevent the temperature of the exhaust gas flowing inside from being lowered and to enhance the activity of the exhaust gas purification catalyst. .. The cast metal on the outside prevents damage to the ceramic sintered body and facilitates mounting.
【0004】ところで金属とセラミックスには熱膨張率
に大きな差がある。すなわち金属の方が熱膨張率が大き
いので、膨張・収縮時の体積変化がセラミックスより格
段に大きい。したがって鋳込み後の凝固時には筒状の鋳
ぐるみ金属の収縮量がセラミックス焼結体のそれよりも
大きくなり、筒状のセラミックス焼結体には外周側から
内側に向かって大きな応力が作用する。そのため脆いセ
ラミックス焼結体はその応力に耐えきれず、破損やクラ
ックが生じる場合がある。By the way, there is a large difference in the coefficient of thermal expansion between metal and ceramics. That is, since the coefficient of thermal expansion of metal is larger, the volume change during expansion and contraction is significantly larger than that of ceramics. Therefore, at the time of solidification after casting, the shrinkage amount of the cylindrical cast metal becomes larger than that of the ceramic sintered body, and a large stress acts on the cylindrical ceramic sintered body from the outer peripheral side toward the inner side. Therefore, the brittle ceramics sintered body cannot withstand the stress and may be damaged or cracked.
【0005】このような不具合を防止するために、鋳ぐ
るみ金属の収縮時の応力を緩衝する方法が種々提案さ
れ、例えば特開平2−255263号公報には、外周に
ガラスが被覆されたセラミックス焼結体を用いて鋳ぐる
む方法が開示されている。この方法によれば、凝固時に
は軟化したガラス層が緩衝層として機能して応力を吸収
するため、セラミックス焼結体に応力が作用するのを防
止できる。また同様な目的で、セラミックス焼結体の外
周に金属テープ、金属ワイヤを巻き付ける方法なども提
案されている。In order to prevent such a problem, various methods for buffering the stress during shrinkage of the cast metal have been proposed. For example, Japanese Patent Laid-Open No. 2-255263 discloses a ceramic calcination whose outer periphery is covered with glass. A method of casting around using a bonded body is disclosed. According to this method, since the softened glass layer functions as a buffer layer and absorbs stress during solidification, it is possible to prevent stress from acting on the ceramic sintered body. For the same purpose, a method of winding a metal tape or a metal wire around the outer periphery of the ceramics sintered body has been proposed.
【0006】[0006]
【発明が解決しようとする課題】ところが上記のように
緩衝層を形成する方法にあっては、緩衝層を形成する工
程が余分に必要となり、工数が多大となって生産性及び
コスト面で好ましくなかった。また複雑な形状のセラミ
ックス焼結体の場合には、緩衝層を均一に形成すること
が困難となり、緩衝作用が部分的にばらつくようにな
る。したがって局部的な破損をも防止する場合には、必
然的に緩衝層を厚く形成せざるを得ず、重量面、工数面
およびコスト面などに一層の不具合が生じている。However, in the method of forming the buffer layer as described above, an extra step of forming the buffer layer is required, which requires a large number of steps and is preferable in terms of productivity and cost. There wasn't. Further, in the case of a ceramics sintered body having a complicated shape, it becomes difficult to uniformly form the buffer layer, and the buffering function partially varies. Therefore, in order to prevent local damage, it is inevitable to form a thick buffer layer, which causes further problems in terms of weight, man-hours, cost, and the like.
【0007】本発明はこのような事情に鑑みてなされた
ものであり、緩衝層を設けることなく、鋳ぐるみ金属の
凝固時の応力を緩和することを目的とする。The present invention has been made in view of the above circumstances, and an object thereof is to alleviate the stress at the time of solidification of cast metal without forming a buffer layer.
【0008】[0008]
【課題を解決するための手段】上記課題を解決する本発
明のセラミックスの鋳ぐるみ方法は、筒状のセラミック
ス焼結体を鋳型内に配置しセラミックス焼結体の周囲に
金属溶湯を鋳込む鋳込み工程と、鋳型内のセラミックス
焼結体の軸方向に温度勾配を付与した状態で金属溶湯を
徐々に凝固させる凝固工程と、鋳込まれた金属溶湯全体
が凝固した後さらに室温まで冷却する冷却工程と、鋳型
内から鋳ぐるみ成形体を取り出す脱型工程と、を順に行
うことを特徴とする。In order to solve the above-mentioned problems, a method of casting a ceramics according to the present invention is a casting method in which a cylindrical ceramics sintered body is placed in a mold and a molten metal is cast around the ceramics sintered body. Process, solidification process of gradually solidifying the molten metal in a state where a temperature gradient is applied in the axial direction of the ceramics sintered body in the mold, and cooling process of further cooling to room temperature after the entire cast molten metal has solidified And a demolding step of removing the cast-in-mold body from the mold are performed in this order.
【0009】本発明に用いられるセラミックス焼結体と
しては、従来用いられている各種のセラミックス焼結体
を用いることができる。なかでも、Al2 TiO5 (チ
タン酸アルミニウム)、Be3 Al2 Si6 O18(ベリ
ル)、Mg2 Al3 Si5 AlO18(コージェライ
ト)、β−LiAlSi2 O6 (β−スポジューメ
ン)、Zr2 P2 O9 (リン酸ジルコニル)などの低膨
張材料から形成されたものが望ましい。またセラミック
ス焼結体の成形方法としては、スリップキャスティング
法、射出成形法、押出成形法など、公知の各種成形方法
を利用できる。As the ceramics sintered body used in the present invention, various conventionally used ceramics sintered bodies can be used. Among them, Al 2 TiO 5 (aluminum titanate), Be 3 Al 2 Si 6 O 18 (beryl), Mg 2 Al 3 Si 5 AlO 18 (cordierite), β-LiAlSi 2 O 6 (β-spodumene), Those formed from low expansion materials such as Zr 2 P 2 O 9 (zirconyl phosphate) are preferred. As the method for molding the ceramic sintered body, various known molding methods such as slip casting method, injection molding method and extrusion molding method can be used.
【0010】また本発明に用いられる鋳ぐるみ用金属と
しては、アルミニウム、アルミニウム合金、鋳鉄、鋳鋼
など、公知の金属または合金を利用できる。鋳込み工程
では、筒状のセラミックス焼結体が鋳型内に配置され、
セラミックス焼結体の外周に金属溶湯が注湯される。こ
のときセラミックス焼結体内には金属溶湯は侵入しない
ようにされる。As the metal for cast metal used in the present invention, known metals or alloys such as aluminum, aluminum alloy, cast iron and cast steel can be used. In the casting process, a cylindrical ceramics sintered body is placed in the mold,
Molten metal is poured onto the outer periphery of the ceramic sintered body. At this time, molten metal is prevented from entering the ceramic sintered body.
【0011】本発明の最大の特徴は、鋳込まれた金属溶
湯の凝固工程にある。すなわち、鋳型内のセラミックス
焼結体の軸方向に温度勾配を付与した状態で、金属溶湯
を徐々に凝固させるところに特色がある。これにより、
径方向の収縮応力が低減されセラミックス焼結体の破損
が防止される。これは金属組織が焼結体の軸方向に配向
することに起因するものと推察されている。このように
温度勾配を付与するには、鋳型全体を温度勾配が形成さ
れた炉内に配置して冷却するのが簡単な方法である。The most important feature of the present invention is the solidification process of the cast metal melt. That is, a characteristic is that the molten metal is gradually solidified in a state where a temperature gradient is applied in the axial direction of the ceramics sintered body in the mold. This allows
Radial shrinkage stress is reduced and damage to the ceramic sintered body is prevented. It is speculated that this is due to the orientation of the metal structure in the axial direction of the sintered body. In order to apply the temperature gradient as described above, it is a simple method to place the entire mold in a furnace in which the temperature gradient is formed and cool it.
【0012】凝固時の温度勾配は、セラミックス焼結体
の形状や種類によって異なるが、小さ過ぎると効果がみ
られず、大き過ぎると逆に軸方向の応力の勾配が大きく
なってセラミックス焼結体に破損が生じるようになる。
鋳込まれた金属溶湯全体が凝固すると、さらに室温まで
冷却され次いで脱型工程で鋳ぐるみ成形体が脱型され
る。この冷却工程は上記凝固工程のように温度勾配下で
行う必要はなく、従来と同様に行うことができるが、炉
内に配置して徐々に冷却することが望ましい。The temperature gradient during solidification varies depending on the shape and type of the ceramics sintered body, but if it is too small, the effect is not seen, and if it is too large, the axial stress gradient becomes large and the ceramics sintered body has a large gradient. Will be damaged.
When the entire cast metal melt is solidified, it is further cooled to room temperature, and then the cast body is demolded in the demolding step. This cooling step does not need to be performed under a temperature gradient as in the solidification step described above, and can be performed in the same manner as in the conventional case, but it is desirable to place it in a furnace and gradually cool it.
【0013】[0013]
【発明の作用及び効果】本発明のセラミックスの鋳ぐる
み方法では、金属溶湯の凝固工程において、鋳型内のセ
ラミックス焼結体の軸方向に温度勾配を付与した状態
で、金属溶湯は徐々に凝固される。これにより、鋳ぐる
み金属にセラミックス焼結体の軸方向に沿う配向が生じ
るものと推察され、結果的にセラミックス焼結体の破損
やクラックの発生が防止できる。According to the method of casting cast metal of the present invention, in the solidification process of the molten metal, the molten metal is gradually solidified with a temperature gradient being applied in the axial direction of the ceramic sintered body in the mold. It As a result, it is presumed that the cast metal is oriented along the axial direction of the ceramic sintered body, and as a result, the ceramic sintered body can be prevented from being damaged or cracked.
【0014】すなわち本発明のセラミックスの鋳ぐるみ
方法によれば、従来のように応力緩和のための緩衝層を
設ける必要なく、冷却条件を変更するだけでセラミック
ス焼結体の破損を防止することができる。したがって工
数を低減することができ、生産性が向上するとともにコ
ストの低減を図ることができる。That is, according to the method of cast iron of ceramics of the present invention, it is possible to prevent the ceramics sintered body from being damaged only by changing the cooling condition without providing a buffer layer for stress relaxation as in the conventional case. it can. Therefore, the number of steps can be reduced, productivity can be improved, and cost can be reduced.
【0015】[0015]
【実施例】以下、実施例により具体的に説明する。 (実施例1)チタン酸アルミニウム粉末からスリップキ
ャスティング法にて成形され、乾燥・焼結された二股筒
状のセラミックス焼結体1を用意し、図2に示すように
鋳型2内に配置する。このセラミックス焼結体1は主筒
部10と、主筒部10から二股に分岐する2つの副筒部
11とから構成され、主筒部10が上方に副筒部11が
下方となるように、軸方向が上下方向に配置される。焼
結体1の内部は、予め中子で閉塞されている。また鋳型
2は、縦30cm、横50cm、深さ60cmの箱形状
である。EXAMPLES The present invention will be specifically described below with reference to examples. (Example 1) A bifurcated cylindrical ceramics sintered body 1 molded from aluminum titanate powder by a slip casting method, dried and sintered is prepared and placed in a mold 2 as shown in FIG. The ceramic sintered body 1 is composed of a main tubular portion 10 and two sub-cylindrical portions 11 bifurcated from the main tubular portion 10, so that the main tubular portion 10 is on the upper side and the sub-cylindrical portion 11 is on the lower side. The axial direction is arranged vertically. The inside of the sintered body 1 is previously closed with a core. The mold 2 has a box shape with a length of 30 cm, a width of 50 cm, and a depth of 60 cm.
【0016】次に約750℃に加熱溶融されたアルミニ
ウム溶湯3をセラミックス焼結体1の周囲の鋳型2内に
注湯する。注湯深さは主筒部10の開口から僅かに下方
の位置までとされる。そして鋳型2全体を炉4内に配置
する。ここで炉4内には、上下方向に駆動可能な炉床4
0が設けられている。そして炉壁には上下方向に複数の
ヒータ41が設けられ、加熱温度を上下方向に自由に設
定可能となっている。本実施例では、図1、図2に示す
ようにヒータ41の上側半分を750℃一定に設定し、
下側半分は最上部を650℃とし下部に向かうにつれて
0.17℃/cmずつ低下するように設定した。すなわ
ち上側半分が均一加熱部42を構成し、下側半分が温度
勾配部43を構成している。Next, the aluminum melt 3 heated and melted to about 750 ° C. is poured into the mold 2 around the ceramic sintered body 1. The pouring depth is set to a position slightly below the opening of the main tubular portion 10. Then, the entire mold 2 is placed in the furnace 4. Here, in the furnace 4, a hearth 4 that can be driven vertically
0 is provided. A plurality of heaters 41 are provided on the furnace wall in the vertical direction, and the heating temperature can be freely set in the vertical direction. In this embodiment, as shown in FIGS. 1 and 2, the upper half of the heater 41 is set to a constant temperature of 750 ° C.
The upper half of the lower half was set to 650 ° C., and the lower half was set to decrease by 0.17 ° C./cm toward the lower part. That is, the upper half constitutes the uniform heating section 42, and the lower half constitutes the temperature gradient section 43.
【0017】焼結体1及び溶湯3をもつ鋳型2は、図2
に示すように先ず均一加熱部42に配置される。そして
30分加熱された。ここで30分加熱したのは、焼結体
1と溶湯3の温度を同一とし、部分的な凝固などがない
均質な溶湯3とするためである。次に炉床40を下降さ
せ、図1に示すように鋳型2を温度勾配部43に配置す
る。このとき鋳型2の上部が650℃雰囲気に位置して
いる。そして鋳型2の下部から溶湯3を徐々に凝固さ
せ、鋳型2の上部の溶湯まで完全に凝固した後、ヒータ
41を全部OFFとし、その位置で鋳型2を放置して室
温まで炉冷した。The mold 2 having the sintered body 1 and the molten metal 3 is shown in FIG.
First, as shown in FIG. Then it was heated for 30 minutes. The heating for 30 minutes here is to make the temperature of the sintered body 1 and that of the molten metal 3 the same, and to make the molten metal 3 homogeneous without partial solidification. Next, the hearth 40 is lowered, and the mold 2 is placed in the temperature gradient part 43 as shown in FIG. At this time, the upper part of the mold 2 is located in the 650 ° C. atmosphere. Then, the molten metal 3 was gradually solidified from the lower part of the mold 2, and the molten metal in the upper part of the mold 2 was completely solidified. Then, all the heaters 41 were turned off, and the mold 2 was left at that position to cool to room temperature.
【0018】その後脱型して鋳ぐるみ成形体を取り出
し、X線透過法と切断断面の目視観察によって焼結体1
の破損状態を調査した。上記鋳ぐるみは10個の焼結体
1について行い、それぞれの鋳ぐるみ成形体の焼結体1
の破損状態を調査した。その破損割合を表1に示すよう
に、10個全部が良品であった。 (実施例2)温度勾配部43の温度勾配を0.5℃/c
mとしたこと以外は実施例1と同様にして鋳ぐるみを行
った。そして10個の鋳ぐるみ成形体の焼結体1につい
て破損状態を調査し、結果を表1に示す。 (実施例3)温度勾配部43の温度勾配を0.83℃/
cmとしたこと以外は実施例1と同様にして鋳ぐるみを
行った。そして10個の鋳ぐるみ成形体の焼結体1につ
いて破損状態を調査し、結果を表1に示す。 (実施例4)温度勾配部43の温度勾配を1.17℃/
cmとしたこと以外は実施例1と同様にして鋳ぐるみを
行った。そして10個の鋳ぐるみ成形体の焼結体1につ
いて破損状態を調査し、結果を表1に示す。 (実施例5)温度勾配部43の温度勾配を1.67℃/
cmとしたこと以外は実施例1と同様にして鋳ぐるみを
行った。そして10個の鋳ぐるみ成形体の焼結体1につ
いて破損状態を調査し、結果を表1に示す。 (比較例1)均一加熱部42で30分加熱後、ヒータ4
1をOFFとしてその位置で室温まで炉冷したこと以外
は実施例1と同様にして鋳ぐるみを行った。すなわち凝
固時に温度勾配は付与していない。そして10個の鋳ぐ
るみ成形体の焼結体1について破損状態を調査し、結果
を表1に示す。 (比較例2)炉4を用いずに、室温雰囲気で注湯し自然
冷却したこと以外は実施例1と同様にして鋳ぐるみを行
った。すなわち凝固時に温度勾配は付与していない。そ
して10個の鋳ぐるみ成形体の焼結体1について破損状
態を調査し、結果を表1に示す。After that, the molded product is taken out of the mold and taken out, and the sintered product 1 is obtained by an X-ray transmission method and visual observation of the cut cross section.
The damage state was investigated. The above-mentioned cast body is performed on ten sintered bodies 1, and the sintered body 1 of each of the cast bodies is formed.
The damage state was investigated. As shown in Table 1 for the breakage rate, all 10 pieces were good products. (Example 2) The temperature gradient of the temperature gradient part 43 is set to 0.5 ° C / c.
Casting was performed in the same manner as in Example 1 except that m was used. Then, the damage state of the sintered bodies 1 of 10 cast-in-mold bodies was investigated, and the results are shown in Table 1. (Example 3) The temperature gradient of the temperature gradient section 43 was set to 0.83 ° C /
Casting was performed in the same manner as in Example 1 except that the thickness was cm. Then, the damage state of the sintered bodies 1 of 10 cast-in-mold bodies was investigated, and the results are shown in Table 1. (Example 4) The temperature gradient of the temperature gradient part 43 was set to 1.17 ° C /
Casting was performed in the same manner as in Example 1 except that the thickness was cm. Then, the damage state of the sintered bodies 1 of 10 cast-in-mold bodies was investigated, and the results are shown in Table 1. (Example 5) The temperature gradient of the temperature gradient part 43 is set to 1.67 ° C /
Casting was performed in the same manner as in Example 1 except that the thickness was cm. Then, the damage state of the sintered bodies 1 of 10 cast-in-mold bodies was investigated, and the results are shown in Table 1. (Comparative Example 1) After heating in the uniform heating unit 42 for 30 minutes, the heater 4
Casting was performed in the same manner as in Example 1 except that 1 was turned off and the furnace was cooled to room temperature at that position. That is, no temperature gradient is applied during solidification. Then, the damage state of the sintered bodies 1 of 10 cast-in-mold bodies was investigated, and the results are shown in Table 1. (Comparative Example 2) Casting was performed in the same manner as in Example 1 except that the furnace 4 was not used and the mixture was poured in a room temperature atmosphere and naturally cooled. That is, no temperature gradient is applied during solidification. Then, the damage state of the sintered bodies 1 of 10 cast-in-mold bodies was investigated, and the results are shown in Table 1.
【0019】[0019]
【表1】 (評価)表1より明らかに、温度勾配を付与していない
比較例では10個全部に焼結体1の破損が生じている。
しかし実施例の方法では明らかに改善され、温度勾配が
0.83℃/cm以下のものでは焼結体1の破損は皆無
である。また実施例の方法で得られた鋳ぐるみ成形体に
ついて、鋳ぐるみアルミニウムの微構造をSEM(走査
型電子顕微鏡)で観察したところ、鋳ぐるみ時の上下方
向に配向した一方向凝固特有の組織となっていた。した
がってこのような配向組織により、焼結体1の径方向に
作用する応力が緩和されたものと考えられる。 (他の実施例)図3に本実施例に用いたセラミックス焼
結体1’を示す。この焼結体1’は実施例1と同様の材
質から形成されているが、断面がネガティブカーブとな
っている。このようなネガティブカーブを有する焼結体
は、鋳ぐるみ時に極めて損傷し易いことが知られてい
る。しかし部品によってはその基本性能を維持するため
に、ネガティブカーブを有する形状とせざるを得ない場
合もある。そこで本実施例では、このようなネガティブ
カーブを有する焼結体1’を用いて鋳ぐるみ試験を行っ
た。[Table 1] (Evaluation) It is apparent from Table 1 that in all of the comparative examples in which the temperature gradient is not applied, the sintered bodies 1 are broken in all 10.
However, the method of the example clearly improves, and if the temperature gradient is 0.83 ° C./cm or less, the sintered body 1 is not damaged at all. Further, with respect to the cast-gurged molded body obtained by the method of the example, when the microstructure of cast-curved aluminum was observed with a SEM (scanning electron microscope), it was found that a structure unique to unidirectional solidification oriented vertically in the cast-gurg Was becoming. Therefore, it is considered that the stress acting in the radial direction of the sintered body 1 was relaxed by such an oriented structure. (Other Embodiments) FIG. 3 shows a ceramic sintered body 1'used in this embodiment. This sintered body 1'is made of the same material as in Example 1, but has a negative curve in cross section. It is known that a sintered body having such a negative curve is extremely likely to be damaged during casting. However, depending on the part, in order to maintain the basic performance, there is a case where the shape must have a negative curve. Therefore, in this example, a cast-gurgling test was performed using the sintered body 1 ′ having such a negative curve.
【0020】すなわち、上記焼結体1’を用い、温度勾
配部43の温度勾配を種々変更したこと以外は実施例1
と同様にして鋳ぐるみ成形を行った。その結果、10℃
/cmの温度勾配下で凝固させることにより、ネガティ
ブカーブを有する焼結体であっても、損傷なく鋳ぐるむ
ことができた。That is, Example 1 was used except that the above-mentioned sintered body 1'was used and the temperature gradient of the temperature gradient section 43 was changed variously.
In the same manner as described above, cast molding was performed. As a result, 10 ℃
By solidifying under a temperature gradient of / cm, even a sintered body having a negative curve could be cast without damage.
【図1】実施例において凝固工程を行っている状態を示
す説明図である。FIG. 1 is an explanatory diagram showing a state in which a solidification step is performed in an example.
【図2】実施例において炉内で加熱している状態を示す
説明図である。FIG. 2 is an explanatory diagram showing a state of heating in a furnace in the examples.
【図3】他の実施例で用いたセラミックス焼結体の斜視
図である。FIG. 3 is a perspective view of a ceramics sintered body used in another example.
1:セラミックス焼結体 2:鋳型 3:
アルミニウム溶湯 4:炉 42:均一加熱部 43:
温度勾配部1: Ceramics sintered body 2: Mold 3:
Aluminum melt 4: Furnace 42: Uniform heating part 43:
Temperature gradient part
Claims (1)
置し該セラミックス焼結体の周囲に金属溶湯を鋳込む鋳
込み工程と、該鋳型内の該セラミックス焼結体の軸方向
に温度勾配を付与した状態で該金属溶湯を徐々に凝固さ
せる凝固工程と、鋳込まれた該金属溶湯全体が凝固した
後さらに室温まで冷却する冷却工程と、該鋳型内から鋳
ぐるみ成形体を取り出す脱型工程と、を順に行うことを
特徴とするセラミックスの鋳ぐるみ方法。Claims: 1. A casting process in which a cylindrical ceramics sintered body is placed in a mold, and a molten metal is cast around the ceramics sintered body, and the ceramics sintered body in the mold. Solidification step of gradually solidifying the molten metal in the state where a temperature gradient is applied in the axial direction, a cooling step of further cooling to room temperature after the entire cast molten metal is solidified, and a casting A method of casting a ceramic body, which comprises sequentially performing a step of removing a molded body from a mold.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16065791A JPH058013A (en) | 1991-07-01 | 1991-07-01 | Method for casting with inserted ceramic |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16065791A JPH058013A (en) | 1991-07-01 | 1991-07-01 | Method for casting with inserted ceramic |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH058013A true JPH058013A (en) | 1993-01-19 |
Family
ID=15719677
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16065791A Pending JPH058013A (en) | 1991-07-01 | 1991-07-01 | Method for casting with inserted ceramic |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH058013A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5965193A (en) * | 1994-04-11 | 1999-10-12 | Dowa Mining Co., Ltd. | Process for preparing a ceramic electronic circuit board and process for preparing aluminum or aluminum alloy bonded ceramic material |
CN102310183A (en) * | 2011-09-06 | 2012-01-11 | 扬州电力设备修造厂 | High wear resisting iron-based composite material and preparation method thereof |
CN115368150A (en) * | 2022-08-11 | 2022-11-22 | 洛阳大洋高性能材料有限公司 | Components of low-stripping electric smelting alumina brick, casting process and device |
-
1991
- 1991-07-01 JP JP16065791A patent/JPH058013A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5965193A (en) * | 1994-04-11 | 1999-10-12 | Dowa Mining Co., Ltd. | Process for preparing a ceramic electronic circuit board and process for preparing aluminum or aluminum alloy bonded ceramic material |
US6183875B1 (en) | 1994-04-11 | 2001-02-06 | Dowa Mining Co., Ltd. | Electronic circuit substrates fabricated from an aluminum ceramic composite material |
CN102310183A (en) * | 2011-09-06 | 2012-01-11 | 扬州电力设备修造厂 | High wear resisting iron-based composite material and preparation method thereof |
CN115368150A (en) * | 2022-08-11 | 2022-11-22 | 洛阳大洋高性能材料有限公司 | Components of low-stripping electric smelting alumina brick, casting process and device |
CN115368150B (en) * | 2022-08-11 | 2023-08-15 | 洛阳大洋高性能材料有限公司 | Components of low-flaking-property electrofusion alumina brick and casting process and device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11014143B2 (en) | Casting mold, method of manufacturing same, TiAl alloy cast product, and method of casting same | |
HU185397B (en) | Heat-proof details and method for producing same | |
JP2001509083A (en) | Integrated crucible and mold for low cost γ-TiAl casting | |
US4890663A (en) | Method for producing a ceramic-coated metallic component | |
JPH058013A (en) | Method for casting with inserted ceramic | |
EP1440748B1 (en) | Method of die casting spheroidal graphite cast iron | |
JPH1034280A (en) | Mold for precision molding of single crystal | |
US5048732A (en) | Transfer tube | |
EP0191008B1 (en) | Shell or tubular object and method to manufacture the same | |
RU2142352C1 (en) | Method for investment casting | |
JPH10156484A (en) | Mold for precision casting | |
JP2002336954A (en) | Cylinder liner enveloped casting method | |
JP3691399B2 (en) | Method for producing hot-worked aluminum alloy powder | |
CN117884609A (en) | Forming method of high-temperature alloy thin-wall variable-section casting | |
JPH0337818B2 (en) | ||
JPH0647148B2 (en) | Mold | |
JPS59174265A (en) | Mold for casting and unidirectional solidifying method | |
JPH05302104A (en) | Production of aluminum or aluminum alloy composite material | |
JPS6127452B2 (en) | ||
JPH05123857A (en) | Method for casting bent pipe | |
JPH02169171A (en) | Production of fiber reinforced metal body | |
JPS60118366A (en) | Production of joined body between oxide ceramics and copper or alloy thereof | |
JPS61209750A (en) | Heated casting mold | |
JPH02295665A (en) | Manufacture of short fiber reinforced metal composite material | |
JPH0275462A (en) | Method for casting ceramic as internal chill |