JPH0580029A - Continuous flow type water analysis method and apparatus - Google Patents

Continuous flow type water analysis method and apparatus

Info

Publication number
JPH0580029A
JPH0580029A JP17730091A JP17730091A JPH0580029A JP H0580029 A JPH0580029 A JP H0580029A JP 17730091 A JP17730091 A JP 17730091A JP 17730091 A JP17730091 A JP 17730091A JP H0580029 A JPH0580029 A JP H0580029A
Authority
JP
Japan
Prior art keywords
sample
reagent
water
flow
sampled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17730091A
Other languages
Japanese (ja)
Inventor
Katsuyoshi Tadenuma
克嘉 蓼沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP17730091A priority Critical patent/JPH0580029A/en
Publication of JPH0580029A publication Critical patent/JPH0580029A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PURPOSE:To enable adaption to a wide range of concentration of water while achieving automation and continuation of a quantitative analysis of by applying a water quantitative analysis method by a Karl Fischer(KF) technique for a continuous flow analysis method (FIA method). CONSTITUTION:A KF reagent is injected into a flow of a carrier solution while a specimen desired to measure a specified volume of is sampled and the specimen sampled is injected into a steady flow as mentioned above to let the specimen react with a KF reagent. Then, a reaction product produced by this reaction is detected with a detector to determine water from an output thereof. With the operation of a pump, a flow rate of the KF reagent or electrolytic level is changed thereby varying quantitative sensitivity of the water.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、カールフィッシャー法
により、試料中に含まれる水分を定量分析する方法と装
置に関し、特に連続流れ方式を用いた水分分析方法と装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for quantitatively analyzing water contained in a sample by the Karl Fischer method, and more particularly to a method and apparatus for water analysis using a continuous flow method.

【0002】[0002]

【従来の技術】カールフィッシャー(以下、「KF」と
称す)法による水分の定量は今や最も信頼の高い水分定
量法として広く用いられ、KF法を原理とする水分定量
装置は既に産業分野で広く利用されている。KF法によ
る水分定量の原理は1935年にカールフィッシャー
(Karl Fischer)によって発見され、以下の反応式
(1)〜(2)に示すようにKF試薬(ヨウ素、二酸化
硫黄、ピリジン及びメタノールからなる)が水と選択的
に定量的に反応する性質を利用している。 H2O +I2 +SO2 +3C55N→ 2(C55+H)I-+C55N・SO3 (1) C55N・SO3 +CH3OH →(C55+H)O-SO2 ・OCH3 (2)
2. Description of the Related Art The quantification of water by the Karl Fischer (hereinafter referred to as "KF") method is now widely used as the most reliable method for quantifying water, and a water quantification device based on the KF method is already widely used in industrial fields. It's being used. The principle of water determination by the KF method was discovered by Karl Fischer in 1935, and KF reagent (comprising iodine, sulfur dioxide, pyridine and methanol) as shown in the following reaction formulas (1) to (2) Utilizes the property of selectively reacting quantitatively with water. H 2 O + I 2 + SO 2 + 3C 5 H 5 N → 2 (C 5 H 5 N + H) I + C 5 H 5 N · SO 3 (1) C 5 H 5 N · SO 3 + CH 3 OH → (C 5 H 5 N + H) O - SO 2 · OCH 3 (2)

【0003】この方法の滴定終点の決定には、目視法、
光度法及び電気的方法が有り、後者のほうが試料の着色
に影響されない安定した結果を得ることができる。電気
的方法には、電位差滴定方法、定電圧分極電流滴定方法
及び電量滴定方法が用いられ、式(1)〜(2)の反応
に基づく電位差滴定方法及び定電圧分極電流滴定方法で
は、終点までに滴加したKF試薬の量から水分量を求め
る。
[0003] The titration end point of this method is determined by a visual method,
There are a photometric method and an electric method, and the latter can obtain stable results which are not affected by the coloring of the sample. As the electrical method, a potentiometric titration method, a constant voltage polarized amperometric titration method and a coulometric titration method are used. In the potentiometric titration method and the constant voltage polarized amperometric titration method based on the reactions of the formulas (1) and (2), The amount of water is obtained from the amount of the KF reagent added dropwise to.

【0004】一方、電量滴定方法は、I2 の代わりにI
- (よう素イオン)を混合したKF試薬を用い、電気分
解によってI2 を発生させる。このI2 が水と定量的に
反応するため、電気分解に要した電気量を測定し水分量
を求める。 2I- →I2 +2e- (3) このKF法による水分定量法は、国際規格ISOや各国
の規格標準試験法(ASTM、DIN、BS等)、及び
我国ではJIS、JAS、日本薬局方、石油学会規格、
食品添加物公定法など、多くの分野における標準分析法
として定められ利用されている。
On the other hand, the coulometric titration method uses I 2 instead of I 2.
- (iodine ions) using a KF reagent mixing, to generate I 2 by electrolysis. Since this I 2 reacts quantitatively with water, the amount of electricity required for electrolysis is measured to obtain the amount of water. 2I → I 2 + 2e (3) The water content determination method by the KF method is the international standard ISO or the standard test method (ASTM, DIN, BS, etc.) of each country, and in Japan, JIS, JAS, Japanese Pharmacopoeia, petroleum Academic standards,
It is defined and used as a standard analysis method in many fields, including the official method of food additives.

【0005】[0005]

【発明が解決しようとしている課題】従来のKF式水分
定量法は非連続方式(バッチ式)であり、このため上記
規格標準試験法、市販の装置は全て非連続式となってい
る。非連続方式であるため、比較的多くの試料量や試薬
量が必要となること、更に作業性の悪さや計測に要する
時間が長いことなど、従来のKF式水分定量法には、多
くの問題が有った。また現在市販のKF式水分定量装置
は、人為誤差の入りにくい自動化が進んでいるものの、
その基本操作は図2に示すように、数段の分析操作が必
要で、それら自動定量装置もその分析ステップに従って
動作するようになっている。
The conventional KF water content determination method is a discontinuous method (batch method), and therefore the standard test method described above and the commercially available apparatus are all discontinuous methods. Since it is a non-continuous method, it requires a relatively large amount of sample and reagent, poor workability, and a long time required for measurement. There was. In addition, the currently commercially available KF-type moisture quantification device is being automated with less human error,
As shown in FIG. 2, the basic operation thereof requires several steps of analysis operation, and these automatic quantification devices also operate according to the analysis step.

【0006】また、従来のバッチ式のKF式水分定量法
では、試料の水分値に合った力価のKF溶液を使用する
必要がある。このため、水分値の予想がつかない未知試
料の場合には、先ずその未知試料中の水分値のオーダー
分析を行うために適当な力価のKF溶液で試験を行な
い、その結果から試料量を調整し、更に定量感度の適し
た力価のKF溶液を使用して再度定量操作を行なう必要
が有った。
Further, in the conventional batch-type KF water content determination method, it is necessary to use a KF solution having a titer suitable for the water content of the sample. For this reason, in the case of an unknown sample whose water content cannot be predicted, a KF solution having an appropriate titer is first tested for order analysis of the water content in the unknown sample, and the sample amount is determined from the result. It was necessary to adjust and further carry out the quantitative operation again using a KF solution having a titer suitable for quantitative sensitivity.

【0007】更に、カールフィッシャー法の定量原理か
ら、例えば還元性物質、カルボニル化合物、ある種の無
機塩類等の測定には大きな測定誤差を伴い、その他測定
が困難あるいは不可能な物質も有る。まず、還元性物質
は、次式のようにI2 を還元し消費する反応が起こるた
め、正の妨害が起こる。 2NH2OH +3I2 +2SO2 +2CH3OH → 6HI+2HSO4CH3+N2 (4) カルボニル化合物は、メタノールと反応し次式のように
水を生成するため、やはり正の妨害が起こる。 R2CO +2CH3OH →R2C(OCH32 +H2O (5) RCHO+2CH3OH →RCH(OCH32+H2O (6) 一方、アルデヒドは次式のように水を奪う負の妨害反応
も起こす。 RCHO+C55N・SO2 +H2O→ C55N・HSO3CH(OH)R (7) (ただし、Rはアルキル基等の有機官能基を示す。)炭
酸塩や亜硫酸塩などの無機塩類は、I2 を消費するた
め、正の妨害が起こる。 Na2CO3+I2 +SO2 +CH3OH → 2NaI+CO2 +HSO4CH3 (8) Na2SO3+I2 +CH3OH →2NaI+HSO4CH3 (9)
Further, according to the Karl Fischer method's quantification principle, for example, measurement of reducing substances, carbonyl compounds, certain types of inorganic salts, etc. involves a large measurement error, and some other substances are difficult or impossible to measure. First, a reducing substance causes a reaction of reducing and consuming I 2 as shown in the following formula, so that positive interference occurs. 2NH 2 OH + 3I 2 + 2SO 2 + 2CH 3 OH → 6HI + 2HSO 4 CH 3 + N 2 (4) The carbonyl compound reacts with methanol to generate water as shown in the following formula, and thus positive interference also occurs. R 2 CO + 2CH 3 OH → R 2 C (OCH 3 ) 2 + H 2 O (5) RCHO + 2CH 3 OH → RCH (OCH 3 ) 2 + H 2 O (6) On the other hand, the aldehyde deprives water as shown in the following formula. It also causes a disturbing reaction. RCHO + C 5 H 5 N · SO 2 + H 2 O → C 5 H 5 N · HSO 3 CH (OH) R (7) (where R represents an organic functional group such as an alkyl group.) Carbonate, sulfite, etc. inorganic salts of, for consuming I 2, positive interference occurs. Na 2 CO 3 + I 2 + SO 2 + CH 3 OH → 2NaI + CO 2 + HSO 4 CH 3 (8) Na 2 SO 3 + I 2 + CH 3 OH → 2NaI + HSO 4 CH 3 (9)

【0008】これら従来の非連続式定量分析法の定量妨
害は、KF試薬と定量妨害物質との反応が起こるに充分
な時間が存在するために起こり得る現象である。換言す
ると、KF試薬と水との反応時間に比べてこれらの定量
妨害物質とKF試薬との反応は一般に遅いが、従来のバ
ッチ方式では、この遅れて起こる定量妨害となる反応を
回避することができない。
Quantitative interference in these conventional discontinuous quantitative analytical methods is a phenomenon that can occur because there is sufficient time for the reaction between the KF reagent and the quantitative interfering substance to occur. In other words, the reaction between these quantitative interfering substances and the KF reagent is generally slow compared to the reaction time between the KF reagent and water, but in the conventional batch system, this delayed interfering quantitative reaction can be avoided. Can not.

【0009】このように、従来のKF式水分定量装置で
は非連続式であることから、様々な問題が有った。本発
明は、連続的に水分の定量分析が可能であり、もって前
記の諸問題点を解消できる水分分析方法と装置を提供す
ることを目的とする。
As described above, the conventional KF type water quantification device has various problems because it is a discontinuous type. It is an object of the present invention to provide a moisture analysis method and apparatus capable of continuously quantitatively analyzing moisture and thus solving the above problems.

【0010】[0010]

【課題を解決するための手段】すなわち、前記目的を達
成するため、本発明では、KF法により、試料中の水分
を定量分析する方法において、キャリア溶液の流れにK
F試薬を流量可変にあるいは電解量を変化させて注入す
ると共に、所定容積の水分を測定すべき試料をサンプリ
ングし、サンプリングされた試料を前記カールフッシャ
ー試薬に反応させ、該反応により生成した反応生成物を
検出器で検出し、前記KF試薬の流量の変化あるいは電
解量の変化により、前記水分の定量感度を可変すること
を特徴とする連続流れ方式水分分析方法を提供する。さ
らに、KF法により、試料中の水分を定量分析する装置
において、キャリア溶液の流れを形成する流路と、該流
路にKF試薬を流量可変に導入する試薬注入用のポンプ
あるいは電解量を変化させる電解部と、水分を測定すべ
き試料をサンプリングし、サンプリングされた試料を前
記流路に注入する試料注入部と、カールフッシャー試薬
と試料との反応生成物を検出し、かつその定量に応じた
出力を得る検出部とを備えることを特徴とする連続流れ
方式水分分析装置を提供する。
[Means for Solving the Problems] That is, in order to achieve the above-mentioned object, in the present invention, in the method for quantitatively analyzing water in a sample by the KF method, K
Injecting the F reagent with variable flow rate or changing the amount of electrolysis, sampling a sample of which a predetermined volume of water should be measured, reacting the sampled sample with the Karl-Fusher reagent, and the reaction generated by the reaction There is provided a continuous flow method moisture analysis method characterized in that the product is detected by a detector and the quantitative sensitivity of the moisture is varied by changing the flow rate of the KF reagent or the amount of electrolysis. Further, in the apparatus for quantitatively analyzing the water content in the sample by the KF method, the flow passage forming the flow of the carrier solution and the reagent injection pump or the electrolysis amount for introducing the KF reagent into the flow passage at a variable flow rate are changed. An electrolysis section for sampling, a sample injection section for sampling a sample whose water content is to be measured, and injecting the sampled sample into the flow path, and a reaction product of the Karl-Fisher reagent and the sample are detected and quantified. A continuous flow type moisture analyzer is provided, which is provided with a detection unit that obtains a corresponding output.

【0011】[0011]

【作用】前記本発明による方法と装置では、KF試薬と
試料中との水分とが滴定終点に至るまで反応させること
なく、その反応量と時間との関係で試料中の水分を定量
分析するため、試料を連続的かつ短時間に分析すること
ができる。また、KF試薬と試料中の水分との反応開始
直後の短時間の反応により定量分析するため、定量妨害
反応に邪魔されず、正確な定量が可能となる。さらに、
KF試薬の流量をポンプにより変化させて、流れの中で
のKF試薬の濃度を変化させることで、広い範囲の水分
濃度の試料を適切なレンジで検出、測定することができ
る。
In the method and apparatus according to the present invention, since the KF reagent and the water in the sample do not react until the titration end point, the water in the sample is quantitatively analyzed by the relationship between the reaction amount and the time. The sample can be analyzed continuously and in a short time. Further, since the quantitative analysis is performed by the reaction in a short time immediately after the reaction between the KF reagent and the water in the sample, the quantitative interfering reaction is not hindered, and the accurate quantification is possible. further,
By changing the flow rate of the KF reagent with a pump to change the concentration of the KF reagent in the flow, it is possible to detect and measure a sample having a wide range of water concentration in an appropriate range.

【0012】[0012]

【実施例】次に、本発明の実施例について具体的かつ詳
細に説明する。本発明の水分定量方法の操作手順を図1
に示す。何れも、KF試薬の流れを形成しておき、その
中に無水メタノールをキャリアとする所定濃度の試料を
注入する。これにより、KF試薬と試料中の水分とを反
応させ、その反応生成物を検出器で電気信号として取り
出し、電気信号の出力と時間との関係で水分値を定量す
る。
EXAMPLES Next, examples of the present invention will be described concretely and in detail. The operation procedure of the water content determination method of the present invention is shown in FIG.
Shown in. In either case, a flow of KF reagent is formed in advance, and a sample having a predetermined concentration with anhydrous methanol as a carrier is injected into the flow. As a result, the KF reagent reacts with water in the sample, the reaction product is taken out as an electric signal by the detector, and the water value is quantified by the relationship between the output of the electric signal and time.

【0013】図2の従来法の定量操作手順に比べ極めて
簡略化されており、水分定量は試料注入だけの操作であ
る。この試料注入操作は、オンラインで一定量の試料を
連続的に装置に注入する方法、あるいは切換えコックを
用いて一定量の試料を半連続的に装置に注入する方法の
いずれも可能である。このため本発明の水分定量装置
は、同一試料の水分変化をモニターする連続的な使い
方、あるいは半連続的に使う場合はオートサンプラーと
の連動により多試料の試料を短時間に測定することが可
能である。
Compared with the conventional quantitative operation procedure of FIG. 2, it is extremely simplified, and the quantitative determination of water is an operation of only sample injection. This sample injection operation can be either a method of continuously injecting a fixed amount of sample into the device online or a method of injecting a constant amount of sample into the device semi-continuously using a switching cock. Therefore, the moisture quantification device of the present invention can continuously measure the moisture change of the same sample, or, when used semi-continuously, can measure multiple samples in a short time by interlocking with an autosampler. Is.

【0014】これらの本発明の水分定量分析方法を実施
するための装置の例を、図3〜図5に示す。何れの場合
も、キャリアとなる無水アルコールで試料を搬送し、こ
れをKF試薬と合流させて反応させるか、或は試料とK
F試薬とを検出器に注入し、そこで反応、検出する。こ
れらの図において、Pは、ポンプ、Coilは混合コイ
ル、RCは反応コイル、EDは、電位差検出計、PDは
吸光々度計、Cは、切換えコック、Rは、レコーダを各
々示す。また、v1 は、KF試薬の流量、v2は、キャ
リア溶液である無水メタノールの流量、v3 は、試料の
流量を示し、各々の装置における流量条件を図中に示し
てある。
An example of an apparatus for carrying out the moisture quantitative analysis method of the present invention is shown in FIGS. In either case, the sample is transported with anhydrous alcohol as a carrier, and this is combined with the KF reagent for reaction, or the sample and K are mixed.
F reagent is injected into the detector, where it reacts and is detected. In these figures, P is a pump, Coil is a mixing coil, RC is a reaction coil, ED is a potentiometer, PD is an absorptiometer, C is a switching cock, and R is a recorder. Further, v 1 is the flow rate of the KF reagent, v 2 is the flow rate of anhydrous methanol as a carrier solution, v 3 is the flow rate of the sample, and the flow rate conditions in each device are shown in the figure.

【0015】気体試料の場合は、試料を切換えコックC
から導入し、吸湿性の強い無水メタノールに水分を吸収
させる。この試料ガス中の水分を吸収した一定量のメタ
ノールを連続して試料ラインあるいは切換えコックCか
ら半連続的に水分定量装置に注入し、定量する。
In the case of a gas sample, the cock C is used to switch the sample.
Water is absorbed by anhydrous methanol, which is highly hygroscopic. A fixed amount of methanol, which has absorbed the water in the sample gas, is continuously and semi-continuously injected from the sample line or the switching cock C into the water quantification device for quantification.

【0016】また、固体試料の場合は、小型の処理ルー
プに計り取り、試料中の水分を溶解させるためのメタノ
ール溶液を一定量フローし、同時に試料中の水分が完全
にこのメタノールキャリア溶液に抽出溶解するようマイ
クロ波や超音波で処理する。この処理によって、例えば
固体試料の水分定量を行なう場合に、従来では固体試料
中の水分を加熱気化して無水メタノール溶液に溶解させ
る操作が必要であったが、本発明の試料前処理装置を用
いれば試料を加熱する必要がないため、従来水分定量が
困難な熱的に不安定なあるいは変質する固体試料に対し
ても精度良く短時間でしかも繁雑な操作の必要が無い。
更に、図3〜図5に示す流量v1、v2、v3 を変化させ
ることによって、簡易にKF濃度を変えることができ、
水分値の予想のつかない未知試料への対応、すなわち装
置コンディショニングも簡易に行える。
Further, in the case of a solid sample, it is weighed into a small processing loop and a fixed amount of a methanol solution for dissolving the water in the sample is flowed, and at the same time, the water in the sample is completely extracted into this methanol carrier solution. Treat with microwaves or ultrasonic waves to dissolve. By this treatment, for example, when the moisture content of a solid sample is determined, conventionally, it was necessary to heat and vaporize the moisture in the solid sample to dissolve it in an anhydrous methanol solution, but the sample pretreatment device of the present invention is used. For example, since it is not necessary to heat a sample, it is not necessary to perform a complicated operation in a short time with high accuracy even for a thermally unstable or denatured solid sample which is conventionally difficult to quantify water content.
Furthermore, the KF concentration can be easily changed by changing the flow rates v 1 , v 2 , and v 3 shown in FIGS.
Correspondence to an unknown sample whose moisture content cannot be predicted, that is, device conditioning can be easily performed.

【0017】図3は、本発明の連続水分定量分析装置の
ポテンショメトリー法の場合の基本システムである。電
位検出セルの対象側を出たKF溶液がメタノールキャリ
アの試料と混合する構造であり、常に一定の電位差を示
す。このため、ベースラインが安定した試料水分値が得
られる。。図4と図5は、水分定量範囲が可変でき、そ
れぞれ検出方式が吸光々度方式2の場合とポテンショメ
トリー法3の場合のシステムである。特に、I- タイプ
KF溶液の場合にはKF溶液及び希釈液のポンプ流量を
変化させずに電解量の変化によって水分定量範囲を可変
できる。
FIG. 3 shows a basic system in the potentiometric method of the continuous moisture quantitative analyzer of the present invention. It has a structure in which the KF solution exiting the target side of the potential detection cell mixes with the sample of the methanol carrier and always shows a constant potential difference. Therefore, a sample moisture value with a stable baseline can be obtained. .. 4 and 5 are systems in which the quantitative range of water content can be varied, and the detection method is the absorbance method 2 and the potentiometry method 3, respectively. In particular, in the case of the I - type KF solution, the moisture quantitative range can be changed by changing the amount of electrolysis without changing the pump flow rates of the KF solution and the diluent.

【0018】本発明の方式によれば、従来のバッチ方式
に比べ必要な試料量は従来の10〜100分の1で同程
度の感度の水分定量が可能であり、必要とされる試薬量
もこれまでの1試料当りに必要な量の5〜20分の1程
度と非常に少量で定量が可能である。また、本発明の水
分定量装置はKF溶液濃度(I2 濃度)を自由に設定で
きるため、未知試料の定量操作も従来法に比べ非常に簡
便である。
According to the method of the present invention, the amount of sample required is 10 to 1/100 of that of the conventional batch method, and it is possible to quantify the water content with the same sensitivity, and the required amount of reagent is also increased. Quantification is possible with a very small amount of about 5 to 1/20 of the amount required per sample so far. Further, since the KF solution concentration (I 2 concentration) can be freely set in the moisture quantification device of the present invention, the quantification operation of an unknown sample is much simpler than the conventional method.

【0019】本発明の定量装置による1試料当りの定量
に要する時間は、従来装置に比べ10分の1以下で、1
時間当り50〜100試料の定量が可能で、従来の10
倍以上の分析能力が有る。さらに、本発明による方法で
は、分析操作が簡素化され、試料の断続または連続的な
注入による分析が可能であるため、自動化に適し、オン
ラインモニターとしての利用が可能である。以上の諸点
を含め、表1に本発明と従来法との比較を示してある。
The time required for quantification per sample by the quantification device of the present invention is 1/10 or less as compared with the conventional device and is 1
It is possible to quantify 50 to 100 samples per hour, and
Has more than double the analytical ability. Further, the method according to the present invention is suitable for automation and can be used as an online monitor because the analysis operation is simplified and the analysis can be performed by intermittent or continuous injection of the sample. Including the above points, Table 1 shows a comparison between the present invention and the conventional method.

【0020】[0020]

【表1】 水分定量方法と装置の比較 ────────────────────────────────── 項目 本発明(FIA方式) 従来法(バッチ方式) ────────────────────────────────── 定量所要時間 0.5〜1分 5〜10分 時間当り定量可能試料数 50〜100 試料 5〜10 KF試薬 I2 −KF試薬又はI- KF試薬のいずれか KF試薬濃度の可変性 可能 不可(マニュアル操作) 1試料当りKF試薬必要量 約1〜4ml 約20ml 1試料当り試料必要量 0.1〜1ml 〜10ml 水分検出定量範囲 3ppm〜5vol.% 10ppm〜5vol.% 妨害物質の影響 ケトン系、アルテ゛ヒト゛系 なし 大 還元性物質、その他 小 大 定量操作の作業性 連続式:操作の必要なし 自動化装置は作業性良好 半連続式:試料注入のみ (バッチ方式) 検出方法 吸光々度法 目視 電位差滴定法 電位差滴定法 定電圧分極電流滴定法 定電圧分極電流滴定法 電量滴定法 装置の利用 オンラインモニターとして利用可 ラホ゛専用 ラホ゛用として利用可 ────────────────────────────────── [Table 1] Comparison of water quantification method and device ────────────────────────────────── Item Present invention (FIA) Method) Conventional method (batch method) ────────────────────────────────── Quantitative required time 0.5 to 1 per minute 5 to 10 minutes time quantifiable sample number 50-100 samples 5-10 KF reagent I 2 -KF reagents or I - variable can not in any KF reagent concentration of KF reagent (manual operation) 1 sample per KF reagent Required amount Approximately 1 to 4 ml Approximately 20 ml Sample required amount per sample 0.1 to 1 ml to 10 ml Moisture detection quantitative range 3 ppm to 5 vol.% 10 ppm to 5 vol.% Influence of interfering substances Ketone type, aldeptic type None Large reducing substance, Other Small Large Workability of quantitative operation Continuous type: No need for operation Automated device has good workability Semi-continuous type: Sample injection Only (batch method) Detection method Absorbance spectrophotometry Visual potentiometric titration Potentiometric titration constant voltage polarization amperometric titration Constant voltage polarization amperometric titration Coulometric titration method Use of device Available as online monitor Available for exclusive use of robot ── ────────────────────────────────

【0021】次に、本発明の装置の性能等を確認した実
験結果について示す。 (実験1)試料中の微量水分の定量性の確認のための実
験を行なった。この結果の実測チャートを、図6に、検
量線を図7に各々示す。この結果から、従来法で必要な
初期添加メタノール(脱水溶剤という)にKF溶液を添
加して水分ゼロ状態とする操作が不必要であることが明
かとなった。
Next, experimental results for confirming the performance of the apparatus of the present invention will be shown. (Experiment 1) An experiment was conducted to confirm the quantitativeness of a trace amount of water in a sample. An actual measurement chart of this result is shown in FIG. 6, and a calibration curve is shown in FIG. From this result, it became clear that the operation of adding the KF solution to the initially added methanol (referred to as dehydrated solvent) required in the conventional method to make the water content zero is unnecessary.

【0022】(実験2)KF溶液中のI2 濃度を変化さ
せることによって、広範囲な水分濃度の測定が可能であ
ることの確認を行なった。具体的には、試料として水分
濃度が既知の模擬試料(一定濃度の標準水を含有するメ
タノール溶液)を用い、I2 濃度を変化させた時の電位
差値を測定した。この結果を図8に示す。この結果か
ら、用いるKF溶液中のI2 濃度を変化させることによ
り、水分の広範囲な試料に対し、装置のシステム、ライ
ン等を変化させず水分の定量が可能であることが分かっ
た。この結果は、本発明の定量装置が有効であること、
特に電解法(I- 添加KF溶液法)の場合に特に有効と
なり、キャリア溶液の電解量を変えるだけでppmオー
ダーから%オーダーの水分定量が可能となることを示し
ている。
(Experiment 2) It was confirmed that a wide range of water concentrations can be measured by changing the I 2 concentration in the KF solution. Specifically, a simulated sample having a known water concentration (a methanol solution containing a standard concentration of water) was used as a sample, and the potential difference value when the I 2 concentration was changed was measured. The result is shown in FIG. From this result, it was found that by changing the I 2 concentration in the KF solution to be used, it is possible to quantify the water content for a wide range of water samples without changing the system or line of the apparatus. This result shows that the quantification device of the present invention is effective,
Especially, it is particularly effective in the case of the electrolysis method (I - added KF solution method), and it has been shown that it is possible to quantify water in the ppm order to the% order by simply changing the electrolysis amount of the carrier solution.

【0023】(実験3)連続分析、プロセスモニターと
しての可能性の検討を行なった。実験を行なった装置構
成は、基本的には図5に示すものであるが、サンプリン
グ用のコックCには、複数のポートを備える切換えコッ
クを接続し、その各ポートから一定水分を含有する液体
試料(ここでは燈油を用いた)を順次導入し、その時の
電位変化を連続して測定した。その結果が図9のチャー
トである。この実験で、試料中の水分に比例した電位信
号が連続して得られ、本発明の水分定量装置が連続分
析、プロセスモニターとして有効であることが確認でき
た。
(Experiment 3) The possibility of continuous analysis and process monitoring was examined. The configuration of the apparatus used for the experiment is basically as shown in FIG. 5, but a switching cock having a plurality of ports is connected to the sampling cock C, and a liquid containing a constant water content is supplied from each port. Samples (here, kerosene was used) were successively introduced, and the potential change at that time was continuously measured. The result is the chart of FIG. In this experiment, a potential signal proportional to the water content in the sample was continuously obtained, and it was confirmed that the water quantification device of the present invention is effective as a continuous analysis and process monitor.

【0024】(実験4)従来の水分定量方法において妨
害となる物質中の水分の定量を本発明方法で定量分析を
行なった。この実測チャートを図10に示す。また、従
来装置と本発明装置を比較した結果を表2に示す。この
結果から、本発明装置で採用した反応速度を利用したF
IA法の長所によって、従来装置では妨害となっていた
試料中の水分が精度良く定量できることの確認ができ
た。
(Experiment 4) Quantitative analysis of water in a substance which interferes with the conventional method for quantifying water was carried out by the method of the present invention. This actual measurement chart is shown in FIG. Table 2 shows the results of comparison between the conventional device and the device of the present invention. From this result, it was found that F using the reaction rate adopted in the device of the present invention
Due to the advantages of the IA method, it was confirmed that the water content in the sample, which was a hindrance in the conventional apparatus, could be accurately quantified.

【0025】[0025]

【表2】 反応妨害物質測定時の本法と従来法の比較 ────────────────────────────── 本発明法 従来法 従来法における妨害物質 (流れ分析法) (バッチ法) ────────────────────────────── アセトン 妨害ほとんど無し 正の妨害大きい メチルイソブチルケトン 〃 〃 アセトフェノン 〃 〃 アセトアルデヒド 正の妨害(微) 妨害大(測定不可) アクロレイン 〃(〃) 同上 ────────────────────────────── [Table 2] Comparison of this method and conventional method when measuring reaction interfering substances ────────────────────────────── Conventional method Interfering substances in conventional method (Flow analysis method) (Batch method) ────────────────────────────── Acetone Almost no interference Positive interference is large Methyl isobutyl ketone 〃 〃 Acetophenone 〃 〃 Acetaldehyde Positive interference (fine) Large interference (not measurable) Acrolein 〃 (〃) Same as above ─────────────────── ───────────

【0026】(実験5)気体試料及び固体試料を用いて
自動試料処理装置の有効性の検討及び水分定量装置との
連動性の確認実験を行なった。この結果を表3に示す。
この結果から、固体試料では従来加熱気化法によって試
料中水分をメタノール中に回収溶解した後、水分定量を
する必要があったのが、本発明装置によれば極めて短時
間で定量することができ、その得られた水分値も従来法
と同等の結果であった。
(Experiment 5) Using a gas sample and a solid sample, an examination of the effectiveness of the automatic sample processing device and an experiment for confirming the interlocking with the moisture quantification device were conducted. The results are shown in Table 3.
From this result, in the case of the solid sample, it was necessary to quantify the water content after recovering and dissolving the water content in the sample in methanol by the conventional heating vaporization method, but the apparatus of the present invention can quantify in an extremely short time. The obtained water content was also the same as that of the conventional method.

【0027】[0027]

【表3】 ─────────────────────────────────── 試料前処理装置試験結果 試料名 理論値 従来法(バッチ式) 本発明法(KF-FIA方式) (自動試料処理) ─────────────────────────────────── (1)固体試料(無機塩水和物) (加熱気化法) (高周波/超音波処理) BaCl2.2H2O 2.0 1.95〜1.98 1.97〜2.02 (mol-H2O/mol) (mol-H2O/mol) (mol-H2O/mol) CaCl2.6H2O 6.0 5.79〜5.98 5.87〜6.03 (mol-H2O/mol) (mol-H2O/mol) (mol-H2O/mol) CaSO4.2H2O 2.0 1.35〜1.47 1.44〜1.52 (mol-H2O/mol) (mol-H2O/mol) (mol-H2O/mol) TiO2 unknown 0.55wt% 0.51〜0.58wt% CuSO4.5H2O 36.0wt% 34.9〜36.1wt% 35.5〜36.1wt% (2)固体試料(人工物、自然物) (高周波/超音波処理) 尿素試料 unknown (加熱気化法)1.44wt% 1.67〜1.74wt% (分散溶解法)1.61wt% カオリン unknown (加熱気化法)8.50wt% 14.0〜15.3wt% (分散溶解法)12.4wt% (3)気体試料 (バッチ吸収法) (自動試料水分吸収法) プロパンガス unknown 48〜61vol.ppm 52〜56vol.ppm LPガス unknown 71〜95vol.ppm 83〜88vol.ppm 窒素ガス unknown 30〜54vol.ppm 74〜86vol.ppm ─────────────────────────────────── [Table 3] ─────────────────────────────────── Sample pretreatment device test results Sample name Theoretical value Conventional Method (batch method) Method of the present invention (KF-FIA method) (Automatic sample processing) ──────────────────────────────── ──── (1) a solid sample (inorganic salt hydrate) (heating vaporization method) (RF / sonication) BaCl 2 .2H 2 O 2.0 1.95~1.98 1.97~2.02 (mol-H 2 O / mol) ( mol-H 2 O / mol) (mol-H 2 O / mol) CaCl 2 .6H 2 O 6.0 5.79~5.98 5.87~6.03 (mol-H 2 O / mol) (mol-H 2 O / mol) (mol -H 2 O / mol) CaSO 4 .2H 2 O 2.0 1.35~1.47 1.44~1.52 (mol-H 2 O / mol) (mol-H 2 O / mol) (mol-H 2 O / mol) TiO 2 unknown 0.55wt% 0.51~0.58wt% CuSO 4 .5H 2 O 36.0wt% 34.9~36.1wt% 35.5~36.1wt% (2) solid sample (artifacts, natural objects) (RF / sonication) urea samples unknown (heating Vaporization method) 1.44wt% 1.6 7 to 1.74wt% (Dispersion dissolution method) 1.61wt% Kaolin unknown (Heating vaporization method) 8.50wt% 14.0 to 15.3wt% (Dispersion dissolution method) 12.4wt% (3) Gas sample (Batch absorption method) (Automatic sample moisture) Absorption method) Propane gas unknown 48 to 61vol.ppm 52 to 56vol.ppm LP gas unknown 71 to 95vol.ppm 83 to 88vol.ppm Nitrogen gas unknown 30 to 54vol.ppm 74 to 86vol.ppm ───────── ────────────────────────────

【0028】[0028]

【発明の効果】以上示したように、本発明によれば、極
めて少ない試料量と試薬量で高感度で広範囲な水分定量
が連続的に可能となり、また従来法では化学的な妨害の
ため測定できなかった物質でも水分定量が可能となり、
更に操作性の向上及び測定時間の大幅な短縮並びに測定
感度など、多くの特性が向上した。本発明の水分測定装
置は、ラボ用水分定量装置としてのみならず、プロセス
オンラインモニターとして利用すれば、石油化学工場等
の水分管理を必要とする原料や中間物、製品等の品質管
理を連続的に行なうことができるため、これまでのバッ
チ式KF法(KF式水分測定装置)に比べ、省力化や短
時間連続計測による製造ライン等へのリアルタイムフィ
ードバックなど、従来のバッチ式水分定量装置に比べは
るかに多くの利点が見込める。
As described above, according to the present invention, highly sensitive and wide-range water determination can be continuously performed with an extremely small sample amount and reagent amount, and in the conventional method, measurement is performed due to chemical interference. It is possible to quantify the water content of substances that could not be
Furthermore, many characteristics such as improved operability, drastically shortened measurement time, and measurement sensitivity were improved. The moisture measuring device of the present invention can be used not only as a moisture measuring device for laboratories but also as a process online monitor for continuous quality control of raw materials, intermediates, and products that require moisture control in petrochemical plants. Compared with the conventional batch-type moisture quantification device, it can save time, compared with the conventional batch-type KF method (KF-type moisture measurement device), and has real-time feedback to the production line by short-time continuous measurement. Much more benefits can be expected.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の連続流れ方式水分分析方法のプロセス
を示すブロック図である。
FIG. 1 is a block diagram showing a process of a continuous flow moisture analysis method of the present invention.

【図2】従来の非連続水分分析方法のプロセスを示すブ
ロック図である。
FIG. 2 is a block diagram showing a process of a conventional discontinuous moisture analysis method.

【図3】本発明の連続流れ方式水分分析装置の例を示す
系統図である。
FIG. 3 is a system diagram showing an example of a continuous flow moisture analyzer of the present invention.

【図4】本発明の連続流れ方式水分分析装置の他の例を
示す系統図である。
FIG. 4 is a system diagram showing another example of the continuous flow moisture analyzer of the present invention.

【図5】本発明の連続流れ方式水分分析装置のさらに他
の例を示す系統図である。
FIG. 5 is a system diagram showing still another example of the continuous flow moisture analyzer of the present invention.

【図6】本発明の方法により、試料中の微量水分の定量
性の確認した実験の実測チャートである。
FIG. 6 is an actual measurement chart of an experiment in which the quantification of trace water in a sample was confirmed by the method of the present invention.

【図7】本発明の方法により、試料中の微量水分の定量
性の確認した実験の検量線図である。
FIG. 7 is a calibration curve diagram of an experiment in which the quantitativeness of a trace amount of water in a sample was confirmed by the method of the present invention.

【図8】本発明の方法により、I2 濃度を変化させて電
位差値を測定した結果の例を示すグラフである。
FIG. 8 is a graph showing an example of the result of measuring the potential difference value by changing the I 2 concentration by the method of the present invention.

【図9】本発明の方法により、一定水分を含有する液体
試料を順次導入し、その時の電位変化を連続して測定し
た実験の実測チャートである。
FIG. 9 is an actual measurement chart of an experiment in which a liquid sample containing a fixed amount of water was sequentially introduced by the method of the present invention, and the potential change at that time was continuously measured.

【図10】従来の水分定量方法では定量妨害物質となる
試料を本発明方法で定量分析を行なった実験の実測チャ
ートである。
FIG. 10 is an actual measurement chart of an experiment in which a sample that becomes a quantification interfering substance in the conventional water quantification method is quantitatively analyzed by the method of the present invention.

【符号の説明】[Explanation of symbols]

P ポンプ ED 電位差計 PD 吸光々度計 RC 反応コイル R レコーダ P pump ED potentiometer PD absorptiometer RC reaction coil R recorder

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成3年8月19日[Submission date] August 19, 1991

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】全図[Correction target item name] All drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

【図2】 [Fig. 2]

【図3】 [Figure 3]

【図4】 [Figure 4]

【図5】 [Figure 5]

【図6】 [Figure 6]

【図7】 [Figure 7]

【図8】 [Figure 8]

【図9】 [Figure 9]

【図10】 [Figure 10]

Claims (3)

【整理番号】 0910094−02 【特許請求の範囲】[Reference number] 0910094-02 [Claims] 【請求項1】 カールフィッシャー法により、試料中の
水分を定量分析する方法において、キャリア溶液の流れ
にカールフィッシャー試薬を流量可変にあるいは電解量
を変化させて注入すると共に、所定容積の水分を測定す
べき試料をサンプリングし、サンプリングされた試料を
前記カールフッシャー試薬に反応させ、該反応により生
成した反応生成物を検出器で検出し、前記カールフィッ
シャー試薬の流量の変化あるいは電解量の変化により、
前記水分の定量感度を可変することを特徴とする連続流
れ方式水分分析方法。
1. A method for quantitatively analyzing water in a sample by the Karl Fischer method, in which a Karl Fischer reagent is injected into a flow of a carrier solution while varying a flow rate or changing an electrolysis amount and measuring a predetermined volume of water. A sample to be sampled is sampled, the sampled sample is reacted with the Karl-Fisher reagent, the reaction product produced by the reaction is detected by a detector, and the change in the flow rate of the Karl Fischer reagent or the change in the amount of electrolysis is performed. ,
A continuous flow type moisture analysis method, wherein the quantitative sensitivity of moisture is varied.
【請求項2】 カールフィッシャー法により、試料中の
水分を定量分析する装置において、キャリア溶液の流れ
を形成する流路と、該流路にカールフィッシャー試薬を
流量可変に導入する試薬注入用のポンプあるいは電解量
を変化させる電解部と、水分を測定すべき試料をサンプ
リングし、サンプリングされた試料を前記流路に注入す
る試料注入部と、カールフッシャー試薬と試料との反応
生成物を検出し、かつその定量に応じた出力を得る検出
部とを備えることを特徴とする連続流れ方式水分分析装
置。
2. A device for quantitatively analyzing water in a sample by the Karl Fischer method, a flow path forming a flow of a carrier solution, and a reagent injection pump for introducing a Karl Fischer reagent into the flow path at a variable flow rate. Alternatively, an electrolysis unit that changes the amount of electrolysis, a sample injection unit that samples a sample whose water content is to be measured and injects the sampled sample into the flow path, and a reaction product of the Karl-Fusher reagent and the sample are detected. And a detector for obtaining an output according to the quantification thereof, a continuous flow type moisture analyzer.
【請求項3】 前記請求項2において、試料注入部は、
試料中の水分をオンラインでサンプリングし、流路に注
入するものであることを特徴とする連続流れ方式水分分
析装置。
3. The sample injection unit according to claim 2,
A continuous flow type moisture analyzer characterized in that moisture in a sample is sampled online and injected into a flow channel.
JP17730091A 1991-06-22 1991-06-22 Continuous flow type water analysis method and apparatus Pending JPH0580029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17730091A JPH0580029A (en) 1991-06-22 1991-06-22 Continuous flow type water analysis method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17730091A JPH0580029A (en) 1991-06-22 1991-06-22 Continuous flow type water analysis method and apparatus

Publications (1)

Publication Number Publication Date
JPH0580029A true JPH0580029A (en) 1993-03-30

Family

ID=16028592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17730091A Pending JPH0580029A (en) 1991-06-22 1991-06-22 Continuous flow type water analysis method and apparatus

Country Status (1)

Country Link
JP (1) JPH0580029A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2711802A1 (en) * 1993-10-28 1995-05-05 Rhone Poulenc Nutrition Animal Water analyser
JP2015179057A (en) * 2014-03-18 2015-10-08 平沼産業株式会社 Moisture measuring method and moisture measuring device using karl fischer reagent

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2711802A1 (en) * 1993-10-28 1995-05-05 Rhone Poulenc Nutrition Animal Water analyser
JP2015179057A (en) * 2014-03-18 2015-10-08 平沼産業株式会社 Moisture measuring method and moisture measuring device using karl fischer reagent

Similar Documents

Publication Publication Date Title
Pasquini et al. Flow-injection determination of ammonia in Kjeldahl digests by gas diffusion and conductometry
Růžička et al. Recent developments in flow injection analysis: gradient techniques and hydrodynamic injection
US5364510A (en) Scheme for bath chemistry measurement and control for improved semiconductor wet processing
Bell et al. In situ determination of total dissolved inorganic carbon by underwater membrane introduction mass spectrometry
Malik et al. Quantification of nickel, cobalt, and manganese concentration using ultraviolet-visible spectroscopy
BR112020020717B1 (en) AUTOMATED TITRATION SYSTEM, AND, METHOD FOR QUANTIFYING A TARGET ANALYTE CONCENTRATION IN A SAMPLE STREAM
US20100204926A1 (en) System and method for determining impurity content in a liquid
Sode Simultaneous determination of peracetic acid and acetic acid by titration with NaOH
Trushina et al. Determination of nitrite and nitrate reduction by capillary ion electrophoresis
Xie et al. Determination of iodate in iodized edible salt based on a headspace gas chromatographic technique
Vallejo et al. Determination of sulphide in liquid and solid samples by integrated pervaporation–potentiometric detection
KR100764892B1 (en) Quantitative method of chloride ion by 35-Chloride Nuclear Magnetic Resonance
US11397171B2 (en) Adaptive range flow titration systems and methods with sample conditioning
Kargosha et al. Vapour phase Fourier transform infrared spectrometric determination of thiourea
Cai et al. Kinetic analysis of consecutive reactions using a non-linear least-squares error-compensation algorithm
JPH0580029A (en) Continuous flow type water analysis method and apparatus
Forteza et al. Specific thermometric determination of trace vanadium in steel based on its catalytic effect on the oxidation of gallic acid by bromate
US4798803A (en) Method for titration flow injection analysis
Johansson et al. Automatic titration by stepwise addition of equal volumes of titrant. Part III. Use of linear equations to calculate equivalence volumes in acid-base titrations
Márquez et al. Direct rate measurements on millisecond reactions by continuous addition of reagent for routine analysis
AU2006218103A1 (en) Method and device for determining the concentration of organically bound halogens
Chai et al. Determination of acidic and basic species by headspace gas chromatography
EP3472597B1 (en) A method for measuring the concentration of a chemical species using a reagent baseline
Shishehbore et al. Kinetic determination of thiocyanate on the basis of its catalytic effect on the oxidation of methylene blue with potassium bromate
Afkhami et al. Simultaneous kinetic-spectrophotometric determination of hydrazine and acetylhydrazine in micellar media using the H-point standard addition method