JPH0579662A - Direct contact type air cooling device - Google Patents

Direct contact type air cooling device

Info

Publication number
JPH0579662A
JPH0579662A JP19223291A JP19223291A JPH0579662A JP H0579662 A JPH0579662 A JP H0579662A JP 19223291 A JP19223291 A JP 19223291A JP 19223291 A JP19223291 A JP 19223291A JP H0579662 A JPH0579662 A JP H0579662A
Authority
JP
Japan
Prior art keywords
cold water
air
heat exchanger
direct contact
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19223291A
Other languages
Japanese (ja)
Other versions
JP3251955B2 (en
Inventor
Morio Kubagawa
森男 久場川
Yoshihisa Agari
好央 上里
Yoshio Uchihara
良夫 宇地原
Teijiro Funatsu
貞二郎 船津
Tsutomu Tome
勉 当銘
Shigeru Sakashita
茂 坂下
Hiroshi Sato
浩 佐藤
Tomoiku Yoshikawa
朝郁 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OKINAWA DENRYOKU KK
Mayekawa Manufacturing Co
Original Assignee
OKINAWA DENRYOKU KK
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OKINAWA DENRYOKU KK, Mayekawa Manufacturing Co filed Critical OKINAWA DENRYOKU KK
Priority to JP19223291A priority Critical patent/JP3251955B2/en
Publication of JPH0579662A publication Critical patent/JPH0579662A/en
Application granted granted Critical
Publication of JP3251955B2 publication Critical patent/JP3251955B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

PURPOSE:To promote the cooling of indoor air and regulate the humidity of the same by a method wherein cold water is obtained by operating a refrigerating machine by night electric power and the indoor air is conducted against the cold water as a counter flow in a heat exchanger, accommodating filler, to contact them directly. CONSTITUTION:In a heat exchanger 13, indoor air is conducted by a fan 14 so as to form ascending stream (g) while cold water is conducted from a heat accumulating tank 6 by a circulating pump 7 so as to form descending stream (s). On the other hand, cold water in a cold water supplying pipe 15 is mixed with the cold water, whose heat is exchanged, from the bottom of an air cooler 11 through a cold water returning passage 17 to regulate the temperature of the cold water whereby the humidity of the indoor air is adjusted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、蓄熱式冷房装置におけ
る直接接触式空気冷却装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a direct contact type air cooling device in a heat storage type cooling device.

【0002】[0002]

【従来の技術】従来の蓄熱式冷房装置においては、安価
な夜間電力を用いて該冷房装置を運転し、蓄熱槽に冷水
または氷として冷熱の蓄熱を行い、昼間にその冷水を取
出して冷房に利用する。
2. Description of the Related Art In a conventional heat storage type cooling device, the cooling device is operated by using inexpensive nighttime electric power, cold heat is stored in a heat storage tank as cold water or ice, and the cold water is taken out in the daytime for cooling. To use.

【0003】そしてこの場合、空気の冷却は、冷水と室
内空気との間の間接的な熱交換によって行われている。
例えばコイル状のチューブ内には冷水を流し室内空気用
ファンで前記コイル状のチューブの表面に空気を流して
冷却するファン・コイル式の空気冷却装置が広く普及し
て利用されている。
In this case, air is cooled by indirect heat exchange between cold water and room air.
For example, a fan-coil type air cooling device in which cold water is caused to flow in a coiled tube and air is caused to flow on the surface of the coiled tube by an indoor air fan to cool it is widely used.

【0004】[0004]

【発明が解決しようとする課題】ファン・コイル式の空
気冷却装置を用いる従来技術では、コイルにおいて空気
が流れる側の熱伝達が水が流れる側のそれに比べて著し
く悪いので、コイルの空気側にフィン等を取付けて伝熱
面積の増加と伝熱促進を図る工夫がなされているが、空
気冷却装置が高価なものとなる。また同じ理由から空気
の流速を大きくする必要があるが、このためファンを駆
動する動力が増加し、ランニングコストの増加を招く。
In the prior art using the fan-coil type air cooling device, the heat transfer on the side where the air flows in the coil is significantly worse than that on the side where the water flows. Although fins and the like are attached to increase the heat transfer area and to promote heat transfer, the air cooling device becomes expensive. Further, for the same reason, it is necessary to increase the flow velocity of air, but this increases the power for driving the fan, which causes an increase in running cost.

【0005】また、蓄熱槽が氷式であると、蓄熱槽から
取出される冷水温度は0℃近いので、空気の吹出し温度
を低くして、ファン動力の低減をねらっているが、間接
式熱交換であるため、前記吹出し温度の低下にも限界が
ある。
If the heat storage tank is of the ice type, the temperature of the cold water taken out from the heat storage tank is close to 0 ° C., so the temperature of the air blown out is lowered to reduce the fan power. Since it is exchange, there is a limit to the decrease in the blowout temperature.

【0006】更に空調機においては、空気温度とともに
空気湿度の調整も重要となるが、間接式熱交換であるた
め、冷却用コイルだけでは、十分な空気湿度のコントロ
ールを行うことができない。
Further, in an air conditioner, it is important to adjust not only the air temperature but also the air humidity, but since it is an indirect heat exchange, it is not possible to sufficiently control the air humidity only with a cooling coil.

【0007】[0007]

【課題を解決するための手段】本発明の直接接触式空気
冷却装置は、前記課題を解決するために、冷凍機ユニッ
ト、蓄熱槽、直接接触式の空気冷却器及び室内空気用フ
ァンを有し、前記蓄熱槽には前記冷凍機ユニットの蒸発
器が設置され、前記蓄熱槽と前記空気冷却器との間に冷
水を循環させる冷水供給管及び冷水返戻管を有し、前記
空気冷却器内に充填材を有する熱交換器及び冷水噴霧器
を有する(請求項1の発明)。
In order to solve the above problems, a direct contact type air cooling device of the present invention has a refrigerator unit, a heat storage tank, a direct contact type air cooler, and a room air fan. , The evaporator of the refrigerator unit is installed in the heat storage tank, has a cold water supply pipe and a cold water return pipe for circulating cold water between the heat storage tank and the air cooler, and in the air cooler It has a heat exchanger having a filler and a cold water atomizer (the invention of claim 1).

【0008】また本発明の直接接触式空気冷却装置は、
前記課題を解決するために、請求項1の発明において熱
交換器内に多数の充填材が充填され、この充填材の群に
よって形成される多数の間隙を室内空気が下方から上方
へ向けて上昇流となり、また冷水供給管から流入される
冷水が前記間隙を上方から下方へ向けて下降流となり、
前記の上昇流と下降流とが対向流となるように室内空気
用ファン及び冷水噴霧器が空気冷却器に対してそれぞれ
設けられ、空気冷却器からの冷水を循環ポンプを有する
冷水供給管の前記循環ポンプの吸入側に流入させる冷水
返戻用側路が設けられる(請求項2の発明)。
Further, the direct contact type air cooling device of the present invention comprises:
In order to solve the above-mentioned problems, in the invention of claim 1, a large number of fillers are filled in the heat exchanger, and indoor air rises upward from below in a large number of gaps formed by the group of the fillers. And the cold water flowing in from the cold water supply pipe becomes a downward flow from the upper part to the lower part of the gap,
An indoor air fan and a cold water sprayer are respectively provided for the air cooler so that the upflow and the downflow are opposite flows, and the cold water from the air cooler is circulated through a cold water supply pipe having a circulation pump. A cold water return side passage is provided for flowing into the suction side of the pump (the invention of claim 2).

【0009】なお、前記熱交換器は充填材が取付け取外
し自在に充填されるとともに冷水の流入口、流出口及び
室内空気の流入口、流出口を有するモジュールとするこ
とができる。
The heat exchanger may be a module which is removably filled with a filler and has an inlet and an outlet for cold water and an inlet and an outlet for indoor air.

【0010】[0010]

【作用】夜間電力を利用して冷凍機を運転し蓄熱槽に冷
熱を蓄え冷水を得る。空気冷却器内の熱交換器内に充填
された充填材に対し対向流が形成されるように室内空気
と冷凍機に冷却され蓄熱槽に蓄冷された冷水とを流通さ
せかつ室内空気と冷水とを直接接触させることにより冷
水から室内空気への冷熱の伝達が効率よく行われる。
[Operation] The nighttime electric power is used to operate the refrigerator to store cold heat in the heat storage tank to obtain cold water. The indoor air and the cold water cooled in the refrigerator and stored in the heat storage tank are circulated so that a counterflow is formed with respect to the filler filled in the heat exchanger in the air cooler, and the indoor air and the cold water are By directly contacting with each other, cold heat is efficiently transferred from cold water to room air.

【0011】また、室内空気との熱交換を終え空気冷却
器の下部に溜り温度が上昇した冷水を冷水供給管の循環
ポンプの吸入側に導入することにより空気冷却器に供給
される冷水の温度が調整されその結果として空気の湿度
が調整される。
The temperature of the cold water supplied to the air cooler is introduced by introducing the cold water, which has accumulated in the lower part of the air cooler after the heat exchange with the room air and the temperature of which has risen, to the suction side of the circulation pump of the cold water supply pipe. Is adjusted, and as a result, the humidity of the air is adjusted.

【0012】[0012]

【実施例】本発明の第1の実施例を図1によって説明す
る。Aは室外熱源機部であって、圧縮機1、空冷コンデ
ンサ2、受液器3、膨脹弁4等からなる冷凍機ユニット
と蒸発器5を内蔵する蓄熱水槽6、循環ポンプ7等から
なる。Bは室内器部であって、冷水噴霧器12、熱交換器
13を内蔵する空気冷却器11と室内空気用ファン14等から
なる。また、蓄熱水槽6と空気冷却器11とは冷水供給管
15、冷水返戻管16、冷水返戻用側路17により連結されて
おり、冷水返戻用側路17が冷水供給管15と接続する循環
ポンプ7の吸入側のところに三方切換弁8を有してい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described with reference to FIG. A outdoor heat source unit includes a refrigerator unit including a compressor 1, an air-cooling condenser 2, a liquid receiver 3, an expansion valve 4 and the like, a heat storage water tank 6 containing an evaporator 5, a circulation pump 7 and the like. B is an indoor unit, a cold water sprayer 12, a heat exchanger
An air cooler 11 having a built-in 13 and an indoor air fan 14 are included. The heat storage water tank 6 and the air cooler 11 are cold water supply pipes.
15, a chilled water return pipe 16 and a chilled water return side passage 17 are connected, and a chilled water return side passage 17 has a three-way switching valve 8 at the suction side of the circulation pump 7 connected to the chilled water supply pipe 15. There is.

【0013】圧縮機1により圧縮された冷媒は空冷コン
デンサ2により凝縮液化し、受液器3、膨脹弁4を経て
蒸発器5に導入され、ここで蒸発し蓄熱水槽6の水を冷
却する。冷凍機ユニットを安価な夜間電力を利用して運
転すれば蓄熱水槽6に冷熱を蓄えることができる。
The refrigerant compressed by the compressor 1 is condensed and liquefied by the air-cooled condenser 2 and introduced into the evaporator 5 through the liquid receiver 3 and the expansion valve 4, where it is evaporated and the water in the heat storage water tank 6 is cooled. If the refrigerator unit is operated by using inexpensive nighttime electric power, cold heat can be stored in the heat storage water tank 6.

【0014】室内冷房は次のように行われる。循環ポン
プ7により蓄熱水槽6内の冷水を冷水供給管15を経て空
気冷却器11内の冷水噴霧器12から熱交換器13の上方全面
に噴霧させる。熱交換器13内には図3に示すような多数
の充填材が充填されており前記の冷水噴霧により充填材
の全表面が冷水に濡れる。熱交換器13内をS方向に向け
て下降流となって流下した冷水は空気冷却器11内の底部
に溜り、冷水返戻管16を経て蓄熱水槽6に戻る。
Indoor cooling is performed as follows. The circulation pump 7 sprays the cold water in the heat storage water tank 6 through the cold water supply pipe 15 from the cold water sprayer 12 in the air cooler 11 onto the entire upper surface of the heat exchanger 13. The heat exchanger 13 is filled with a large number of fillers as shown in FIG. 3, and the entire surface of the filler is wet with cold water by the cold water spraying. The cold water that has flowed down as a downward flow in the heat exchanger 13 in the S direction is collected at the bottom of the air cooler 11 and returns to the heat storage water tank 6 via the cold water return pipe 16.

【0015】室内の空気は、室内空気用ファン14により
空気冷却器11の下方のP方向から導入され下方から上方
へ向けてq方向へ上昇流となって熱交換器13内を流通す
る。したがって空気は冷水と直接接触するとともに冷水
の下降流とは流動方向が逆となり、対向流となるため、
冷水と空気との間の熱伝達が大きくなり冷水及び空気そ
れぞれの出入口の温度差が大きくなる。すなわち、従来
技術の間接接触式であると冷水は4℃→12℃となり空
気は24℃→16℃となるに対し、本実施例の直接接触
式によると冷水は4℃→18℃となり空気は24℃→1
0℃となり従来技術より低温度まで空気が冷却できるこ
とになる。冷却された空気はr方向から再び室内に流出
し循環する。
The indoor air is introduced from the P direction below the air cooler 11 by the indoor air fan 14 and flows upward in the q direction from the lower direction to the upper direction to flow in the heat exchanger 13. Therefore, the air is in direct contact with the cold water, and the flow direction is opposite to the downward flow of the cold water, and the air flows in the opposite direction.
The heat transfer between the cold water and the air increases, and the temperature difference between the inlet and the outlet of the cold water and the air increases. That is, in the case of the indirect contact type of the prior art, cold water becomes 4 ° C. → 12 ° C. and air becomes 24 ° C. → 16 ° C., whereas according to the direct contact type of the present embodiment, cold water becomes 4 ° C. → 18 ° C. 24 ° C → 1
The temperature becomes 0 ° C., which means that the air can be cooled to a lower temperature than the conventional technique. The cooled air again flows into the room from the r direction and circulates.

【0016】前記のように冷水と空気とは対向流となり
しかも直接接触するので、空気は冷水温度に相当する飽
和水蒸気量まで除湿されることになる。そのため空気は
冷却されるとともに除湿が行われる。したがって、冷水
温度や空気流量を変えることによって室内空気の湿度の
調整を容易に行うことができる。例えば、空気の湿度調
整を行なうときは、熱交換の結果、温度が上り空気冷却
器11の底部に溜った冷水の一部を三方切換弁8を切換え
ることにより冷水返戻用側路17を経て循環ポンプ7の吸
入側へ導入し、蓄熱水槽6から流出する冷水と混合し適
宜調温された冷水として冷水供給管15を経て空気冷却器
11に流入させる。これにより前記調温された冷水の温度
に相当する飽和水蒸気量まで除湿されることになるので
調湿を行うことができる。
As described above, since the cold water and the air are in counterflow and are in direct contact with each other, the air is dehumidified to the saturated water vapor amount corresponding to the cold water temperature. Therefore, the air is cooled and dehumidified. Therefore, the humidity of the indoor air can be easily adjusted by changing the cold water temperature and the air flow rate. For example, when adjusting the humidity of the air, as a result of heat exchange, the temperature rises and a part of the cold water accumulated at the bottom of the air cooler 11 is circulated through the cold water return side passage 17 by switching the three-way switching valve 8. An air cooler is introduced into the suction side of the pump 7 and mixed with cold water flowing out from the heat storage water tank 6 to obtain appropriately adjusted cold water via a cold water supply pipe 15.
Inflow to 11. As a result, the amount of saturated steam corresponding to the temperature of the adjusted cold water is dehumidified, so that the humidity can be adjusted.

【0017】本発明の第2の実施例を図2によって説明
する。Cは冷凍機ユニットであり、9は水冷コンデン
サ、10は圧縮機1駆動用の原動機、18はアイスバンク式
蓄熱槽、21は直接接触式の空気冷却器、22は室内空気用
ファン、23は空気流出管、24は充填材内蔵の熱交換器で
ある。この実施例は氷蓄熱式の空気冷却装置に関するも
のであり、図1と同一符号の箇所は同一の構成からなる
のでその説明を省略する。
A second embodiment of the present invention will be described with reference to FIG. C is a refrigerator unit, 9 is a water-cooled condenser, 10 is a prime mover for driving the compressor 1, 18 is an ice bank type heat storage tank, 21 is a direct contact type air cooler, 22 is an indoor air fan, and 23 is The air outflow pipe, 24 is a heat exchanger with a built-in filler. This embodiment relates to an ice heat storage type air cooling device, and the portions denoted by the same reference numerals as those in FIG.

【0018】アイスバンク式蓄熱槽18内の0℃の冷水
は、循環ポンプ7により冷水供給管15を経て空気冷却器
21に導入され熱交換器24を下降流として流れた後、冷水
返戻管16を経てアイスバンク式蓄熱槽18内へ戻され、循
環を繰返す。一方室内空気は、室内空気用ファン22によ
り空気冷却器21に導入され熱交換器24を上昇しつつ冷水
と対向流となりこれと直接接触しつつ熱交換した後、空
気流出管23から室内に戻り、循環を繰返す。冷凍機サイ
クルは図1と全く同様であるから説明を省略する。
The cold water of 0 ° C. in the ice bank type heat storage tank 18 is circulated by the circulation pump 7 through the cold water supply pipe 15 and the air cooler.
After being introduced into 21 and flowing through the heat exchanger 24 as a downward flow, it is returned to the inside of the ice bank type heat storage tank 18 through the cold water return pipe 16 and repeated circulation. On the other hand, the indoor air is introduced into the air cooler 21 by the indoor air fan 22 and rises in the heat exchanger 24 to form a counterflow with the cold water to directly exchange heat with the cold water and then return to the room from the air outflow pipe 23. , Repeat the circulation. The refrigerator cycle is exactly the same as in FIG.

【0019】前記図1及び図2の何れの実施例の場合に
おいても、熱交換器13及び24内に充填される充填材の形
状、構造及び配置は対向流となって流れる冷水と空気と
の間の熱交換の度合に影響するところが大きい。図3は
充填材の種々の形状、構造の具体例を示すものである。
aはラシヒリング、bはインタロックスサドル、cはテ
ラレッド、dはポールリングである。これらの充填材は
いずれも化学プラントの蒸留塔等で使用されているもの
であって、充填密度〔単位体積当りの質量〕、比表面積
〔単位体積当りの表面積〕が大きく空気と冷水との接触
表面積が大きくとれるので熱伝達率が向上する。前記の
充填材の特性を表1に示す。
In any of the embodiments shown in FIGS. 1 and 2, the shape, structure and arrangement of the fillers filled in the heat exchangers 13 and 24 are such that the cold water and the air flowing in the counterflow form. It greatly affects the degree of heat exchange between them. FIG. 3 shows specific examples of various shapes and structures of the filler.
a is a Raschig ring, b is an interlocks saddle, c is terra red, and d is a pole ring. All of these packing materials are used in distillation towers of chemical plants, etc., and have a large packing density (mass per unit volume) and specific surface area (surface area per unit volume), and contact between air and cold water. Since the surface area is large, the heat transfer coefficient is improved. The characteristics of the filler are shown in Table 1.

【0020】[0020]

【表1】 [Table 1]

【0021】これによりファン動力を増加させることが
なく空気と冷水との直接接触が促進され、装置の低コス
ト化、省スペース化が可能となる。充填材は取付け取外
しが自在にモジュール中に充填されるので、適宜交換す
ることもでき、また汚れた場合には取外して清掃を行う
こともできる。
As a result, direct contact between air and cold water is promoted without increasing the fan power, and the cost and space of the device can be reduced. Since the filling material can be freely attached and detached in the module, the filling material can be replaced as appropriate, and when it becomes dirty, it can be removed and cleaned.

【0022】また、室内空気中に含まれる微細な埃(ほ
こり)等は冷水との直接接触時に、冷水に捕集されるた
め空気を清浄にする効果がある。また図1の実施例にお
いては室内空気用ファン14の吸込側に空気清浄のための
フィルターを設ける必要があるが、前記ファンを吸込み
式として空気冷却器11の上部の空気流出側に設ければ前
記の清浄効果を利用して前記フィルターを不要とするこ
とができる。このような吸込み式のファンを使用すれば
厨房や工場等の塵埃を多く含む空気の冷却装置として有
効である。
Further, fine dust (dust) contained in the indoor air is collected by the cold water when it comes into direct contact with the cold water, so that it has an effect of cleaning the air. Further, in the embodiment of FIG. 1, it is necessary to provide a filter for air cleaning on the suction side of the indoor air fan 14, but if the fan is of the suction type and is provided on the air outflow side of the upper part of the air cooler 11. The filter can be eliminated by utilizing the cleaning effect. If such a suction type fan is used, it is effective as a cooling device for air containing much dust such as in kitchens and factories.

【0023】なお、前記実施例において充填材に冷水を
散布するに際しては、吹出し空気中に水の飛沫が同伴さ
れないこと及び充填材の層に均一に水が分配されるよう
にすることに留意する必要がある。このためには冷水噴
霧器に例えば次のような手段を施すことが考えられる。
すなわち、(イ)多孔質体とし、冷水を滲み出させる、
(ロ)管に孔をあけて、そこから冷水を滴下させる、
(ハ)スプレーノズルにより冷水を散布させる、(ニ)
ノズルを流体エネルギーを用いて旋回させ冷水を散布す
る(クーリングタワー方式)。
It should be noted that when spraying cold water to the filler in the above embodiment, it should be noted that water droplets are not entrained in the blown air and that water is evenly distributed in the filler layer. There is a need. For this purpose, it is considered that the cold water sprayer is provided with the following means, for example.
That is, (a) a porous body is used to exude cold water,
(B) Make a hole in the tube and let cold water drop from it.
(C) Spray cold water with a spray nozzle, (D)
The nozzle is swirled using fluid energy to spray cold water (cooling tower method).

【0024】図4、図5により本発明の熱交換器の実施
例を説明する。本発明の熱交換器は従来技術のように熱
交換コイル(伝熱管)等を使用して間接的に熱交換を行
うものではなく、多数の充填材を充填し空気と冷水との
直接接触による熱交換を行うものであるから、形状に制
約されるこが少なく種々の形状の熱交換器を用いること
ができる。換言すれば、熱交換器のモジュール化が可能
となる。
An embodiment of the heat exchanger of the present invention will be described with reference to FIGS. 4 and 5. The heat exchanger of the present invention does not indirectly perform heat exchange by using a heat exchange coil (heat transfer tube) or the like as in the prior art, but a large number of fillers are filled and direct contact between air and cold water Since heat is exchanged, there are few restrictions on the shape, and heat exchangers of various shapes can be used. In other words, the heat exchanger can be modularized.

【0025】すなわち、図4のa,bまたはcのように
熱交換器を種々の形のモジュール27,28,29とすること
ができる。図中の矢印は冷風の吹出し状態を示すもので
ある。図5は図4aのモジュール27を2組用いて一つの
熱交換器を組立てた場合の実施例であり、このようにし
た組立体を図1または図2の実施例の熱交換器13または
24とすることができる。図5中のsは冷水の下降流を示
し、pは室内空気用ファンにより熱交換器用のモジュー
ルに流入するときの空気流の方向を示し、qは空気の上
昇流を示し、rは前記モジュールから流出するときの空
気流の方向を示すものであって図1の室内器部Bに記入
されたp、q、r,sにそれぞれ対応している。
That is, the heat exchangers can be modules 27, 28 and 29 of various shapes as shown in a, b or c of FIG. The arrow in the figure indicates the state in which cold air is blown out. FIG. 5 shows an embodiment in which one heat exchanger is assembled by using two sets of the modules 27 of FIG. 4a. The assembly thus constructed is used as the heat exchanger 13 of the embodiment of FIG. 1 or FIG.
It can be 24. In FIG. 5, s indicates the downflow of cold water, p indicates the direction of the air flow when flowing into the heat exchanger module by the indoor air fan, q indicates the upflow of air, and r indicates the module. It shows the direction of the air flow when it flows out from, and corresponds to p, q, r, and s written in the indoor unit B of FIG. 1, respectively.

【0026】なお、本発明の空気冷却装置は、新しい付
加価値して芳香を与えることが可能である。例えば、蓄
熱槽の冷水に適当な香料を混入することにより空気冷却
器11から吹出す冷風に芳香をもたせることができる。
The air cooling device of the present invention can add a new value and give an aroma. For example, by mixing an appropriate fragrance into the cold water in the heat storage tank, the cold air blown out from the air cooler 11 can have an aroma.

【0027】また本発明の空気冷却装置は図1の室内器
部Bの構造から明らかなように冷水の配管だけの工事で
簡単に工事ができ、空気冷却器11内の熱交換器のモジュ
ールは自由に設置できるので室内取付工事をコスト安く
実施することができる。
Further, as is clear from the structure of the indoor unit B of FIG. 1, the air-cooling device of the present invention can be easily constructed by constructing only the piping of cold water, and the module of the heat exchanger in the air-cooling unit 11 is Since it can be installed freely, indoor installation work can be performed at low cost.

【0028】[0028]

【発明の効果】安価な夜間電力を利用して冷凍機を運転
して蓄熱槽に冷熱を多量に蓄えて利用することができ
る。空気冷却器内の熱交換器内に充填された充填材に対
し対向流が形成されるように室内空気と冷凍機に冷却さ
れ蓄熱槽に蓄冷された冷水とが流通されかつ室内空気と
冷水とが直接接触されるので冷水から室内空気への冷熱
の伝達が効率よく行われる。
EFFECTS OF THE INVENTION It is possible to operate a refrigerator using inexpensive nighttime electric power and store a large amount of cold heat in a heat storage tank for use. The indoor air and the cold water cooled in the refrigerator and stored in the heat storage tank are circulated so that a counterflow is formed with respect to the filler filled in the heat exchanger in the air cooler, and the indoor air and the cold water are Are directly contacted with each other, so that cold heat can be efficiently transferred from cold water to indoor air.

【0029】また、室内空気との熱交換を終えて空気冷
却器の下部に溜った冷水の温度は上昇しているので、こ
れを空気冷却器に供給される冷水中に適宜混合すること
により冷水の温度を調整することができ、これにより室
内空気中の湿度を調整することができる。
Further, since the temperature of the cold water accumulated in the lower part of the air cooler after the heat exchange with the room air is completed, the cold water is appropriately mixed with the cold water supplied to the air cooler. The temperature of the room can be adjusted, and thus the humidity in the room air can be adjusted.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例のフローシートダイヤグ
ラムである。
FIG. 1 is a flow sheet diagram of a first embodiment of the present invention.

【図2】本発明の第2の実施例のフローシートダイヤグ
ラムである。
FIG. 2 is a flow sheet diagram of a second embodiment of the present invention.

【図3】本発明の熱交換器に用いられる種々の充填材の
実施例である。
FIG. 3 is an example of various fillers used in the heat exchanger of the present invention.

【図4】a,b,cは本発明の熱交換器をモジュールと
して形成した場合の3個の実施例である。
4A, 4B, and 4C are three examples when the heat exchanger of the present invention is formed as a module.

【図5】図4のモジュールを組立てた場合の実施例であ
る。
FIG. 5 is an embodiment when the module of FIG. 4 is assembled.

【符号の説明】[Explanation of symbols]

5 蒸発器 6 蓄熱槽としての蓄熱水槽 7 循環ポンプ 11 空気冷却器 12 冷水噴霧器 13 熱交換器 14 室内空気用ファン 15 冷水供給管 16 冷水返戻管 17 冷水返戻用側路 18 蓄熱槽としてのアイスバンク式蓄熱槽 21 空気冷却器 22 室内空気用ファン 24 熱交換器 27,28,29 モジュール 5 Evaporator 6 Heat storage water tank as heat storage tank 7 Circulation pump 11 Air cooler 12 Cold water atomizer 13 Heat exchanger 14 Fan for indoor air 15 Cold water supply pipe 16 Cold water return pipe 17 Cold water return side passage 18 Ice bank as heat storage tank Storage tank 21 Air cooler 22 Fan for indoor air 24 Heat exchanger 27, 28, 29 modules

───────────────────────────────────────────────────── フロントページの続き (72)発明者 船津 貞二郎 東京都目黒区平町二丁目21番4号 ドルフ 都立大905号 (72)発明者 当銘 勉 沖縄県宜野湾市長田303番地 グリーンマ ンシヨン2ーD (72)発明者 坂下 茂 東京都練馬区高松三丁目18番10号 (72)発明者 佐藤 浩 千葉県市川市高谷1630番地ー1 藤美荘 103号 (72)発明者 吉川 朝郁 千葉県我孫子市台田三丁目15番20号 ジユ ネパレス我孫子第3ー207号 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Teijiro Funazu No. 21-4 Hiramachi 2-chome, Meguro-ku, Tokyo Dorf Metropolitan University No. 905 (72) Inventor Tsutomu Tsukuba 303 Nagata, Ginowan City, Okinawa Prefecture Greenma 2D (72) Inventor Shigeru Sakashita 3-18-10 Takamatsu, Nerima-ku, Tokyo (72) Inventor Hiroshi Sato 1630 Takatani, Ichikawa-shi, Chiba No. 103 Fujimiso 103 (72) Inventor Asahi Yoshikawa Iku 3-15-20, Taeda, Abiko-shi, Chiba Jiune Palace Abiko No. 3-207

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 冷凍機ユニット、蓄熱槽、直接接触式の
空気冷却器及び室内空気用ファンを有し、前記蓄熱槽に
は前記冷凍機ユニットの蒸発器が設置され、前記蓄熱槽
と前記空気冷却器との間に冷水を循環させる冷水供給管
及び冷水返戻管を有し、前記空気冷却器内に充填材を有
する熱交換器及び冷水噴霧器を有する直接接触式空気冷
却装置。
1. A refrigerator unit, a heat storage tank, a direct contact type air cooler, and an indoor air fan, wherein an evaporator of the refrigerator unit is installed in the heat storage tank, and the heat storage tank and the air are installed. A direct contact air cooling device having a cold water supply pipe and a cold water return pipe for circulating cold water to and from a cooler, and having a heat exchanger having a filler in the air cooler and a cold water atomizer.
【請求項2】 熱交換器内に多数の充填材が充填され、
この充填材の群によって形成される多数の間隙を室内空
気が下方から上方へ向けて上昇流となり、また冷水供給
管から流入される冷水が前記間隙を上方から下方へ向け
て下降流となり、前記の上昇流と下降流とが対向流とな
るように室内空気用ファン及び冷水噴霧器が空気冷却器
に対してそれぞれ設けられ、空気冷却器からの冷水を循
環ポンプを有する冷水供給管の前記循環ポンプの吸入側
に流入させる冷水返戻用側路が設けられた請求項1記載
の直接接触式空気冷却装置。
2. A plurality of fillers are filled in the heat exchanger,
The room air flows upward from below in a large number of gaps formed by the group of fillers, and the cold water flowing from the cold water supply pipe flows downward from above into the gaps, The indoor air fan and the cold water sprayer are respectively provided to the air cooler so that the upward flow and the downward flow of the air flow are opposite flows, and the circulating pump of the cold water supply pipe has a circulating pump for the cold water from the air cooler. 3. The direct contact air cooling device according to claim 1, further comprising a cold water return side passage for allowing the cold water to flow into the suction side.
【請求項3】 充填材が取付け取外し自在に充填される
とともに冷水の流入口、流出口及び室内空気の流入口、
流出口を有するモジュールによって熱交換器が形成され
ている請求項1または2記載の直接接触式空気冷却装
置。
3. A cold water inflow port, an outflow port, and an indoor air inflow port, in which a filler is removably attached and detached.
3. The direct contact air cooling device according to claim 1, wherein the heat exchanger is formed by a module having an outlet.
JP19223291A 1991-07-31 1991-07-31 Direct contact air cooling system Expired - Fee Related JP3251955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19223291A JP3251955B2 (en) 1991-07-31 1991-07-31 Direct contact air cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19223291A JP3251955B2 (en) 1991-07-31 1991-07-31 Direct contact air cooling system

Publications (2)

Publication Number Publication Date
JPH0579662A true JPH0579662A (en) 1993-03-30
JP3251955B2 JP3251955B2 (en) 2002-01-28

Family

ID=16287858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19223291A Expired - Fee Related JP3251955B2 (en) 1991-07-31 1991-07-31 Direct contact air cooling system

Country Status (1)

Country Link
JP (1) JP3251955B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017072300A (en) * 2015-10-06 2017-04-13 安郎 小泉 Gas-liquid contact device and air conditioning system
WO2023047259A1 (en) * 2021-09-22 2023-03-30 Haddadi Ali Reza Two-stage fresh air rooftop package

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017072300A (en) * 2015-10-06 2017-04-13 安郎 小泉 Gas-liquid contact device and air conditioning system
WO2023047259A1 (en) * 2021-09-22 2023-03-30 Haddadi Ali Reza Two-stage fresh air rooftop package

Also Published As

Publication number Publication date
JP3251955B2 (en) 2002-01-28

Similar Documents

Publication Publication Date Title
RU2125693C1 (en) Method of heat exchanger and device for realization of this method
US2798570A (en) Air conditioning
US7765827B2 (en) Multi-stage hybrid evaporative cooling system
US6595011B1 (en) Water cooled air conditioner
CN206670134U (en) Double low-temperature receiver plate-sheet-type evaporative condenser all-in-ones
KR830009450A (en) Pre-cooling / vehicle cooling system and condenser for it
US4467623A (en) Counterflow absorber for an absorption refrigeration system
US2353233A (en) Heat exchanger
US3707277A (en) Combination cross flow and counter flow cooling tower
US6050101A (en) High EER air conditioning apparatus with special heat exchanger
CN112960715A (en) High-temperature sewage self-desalting multi-effect distillation equipment
US3316727A (en) Absorption refrigeration systems
CN215048825U (en) High-temperature sewage self-desalting multi-effect distillation equipment
CN109764435A (en) A kind of cooling water cooler cooling system of the evaporation with cold recovery
JPH07504741A (en) Air conditioning systems and related cooling storage systems that instantly improve heat quality
CN209672658U (en) A kind of curved surface plate evaporative condenser
CN112229236A (en) Cooling tower and refrigeration system
CN215982922U (en) Evaporative cooling device, outdoor unit and air conditioning system
JPH0579662A (en) Direct contact type air cooling device
CN113701256A (en) Evaporative cooling device, outdoor unit and air conditioning system
CN212962168U (en) Condensed water energy recovery device for air-cooled water chilling unit
US3561227A (en) Absorption refrigeration system, method and apparatus for external circulation of absorbent
US3962887A (en) Industrial refrigeration plants of the absorption type
CN207214501U (en) Transpiration-cooled centrifugal refrigerating machines and its system
JPH0363428A (en) Cooled air supply facility for parked aircraft

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20081116

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20091116

LAPS Cancellation because of no payment of annual fees