JPH0579404B2 - - Google Patents

Info

Publication number
JPH0579404B2
JPH0579404B2 JP63317226A JP31722688A JPH0579404B2 JP H0579404 B2 JPH0579404 B2 JP H0579404B2 JP 63317226 A JP63317226 A JP 63317226A JP 31722688 A JP31722688 A JP 31722688A JP H0579404 B2 JPH0579404 B2 JP H0579404B2
Authority
JP
Japan
Prior art keywords
rolling
titanium
temperature
sizer
seamless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63317226A
Other languages
Japanese (ja)
Other versions
JPH02160103A (en
Inventor
Shigemitsu Kimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP31722688A priority Critical patent/JPH02160103A/en
Priority to EP89311895A priority patent/EP0369795B1/en
Priority to US07/437,273 priority patent/US4991419A/en
Priority to DE89311895T priority patent/DE68909176T2/en
Priority to CA 2003244 priority patent/CA2003244C/en
Publication of JPH02160103A publication Critical patent/JPH02160103A/en
Publication of JPH0579404B2 publication Critical patent/JPH0579404B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Metal Extraction Processes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、純チタンまたはチタン合金からなる
継目無管の製造方法に関し、更に詳しくは、穿孔
圧延・延伸圧延・定径圧延からなるマンネスマン
製管プロセスによる連続製管方法に関する。 〔従来の技術〕 チタンは純チタンと、α型、α+β型等のチタ
ン合金とに分類される。α型のチタン合金として
は、Ti−0.15Pd、Ti−0.8Ni−0.3Mo、Ti−5Al
−2.5Snなどがある。α+β型のチタン合金とし
てはTi−8Al−1Mo−1V、Ti−3Al−2.5V、Ti
−6Al−4V、Ti−6Al−6V−2Sn、Ti−6Al−
2Sn−4Zr−6Mo、Ti−6Al−2Sn−4Zr−2Moな
どがあり、Ti−3Al−2.5Vは冷間加工が可能な合
金として知られている。本発明書において、チタ
ンとはこれらを総称したものである。 これらのチタンは軽量、高耐食性を有し、特に
その継目無管は化学プラント、航空機用油圧配管
への適用が期待されている。 このようなチタン継目無管は、従来は、JIS−
H4630に規定されるように、熱間押出し法と冷間
引抜き法との組合せによつて製造されるのが一般
的とされている。これはチタンは本質的に熱間加
工性が悪く、その管は周方向剪断歪を生じやすい
とされているからである。 〔発明が解決しようとする課題〕 ところが、熱間押出し法は他の熱間製管法に比
べて能率が低く、長尺管を造ることもむつかし
い。また、冷間引抜き法も寸法精度等を向上させ
るのには有効であるが、能率は低い。したがつ
て、このような方法の組合せで製造される従来の
チタン継目無管は、高コストとならざるを得な
い。 本発明は、チタン継目無管を低コストで、しか
も品質よく製造するチタン継目無管の製造方法を
提供することを目的とする。 〔課題を解決するための手段〕 継目無管を高能率、経済的に製造するだけであ
れば、マンネスマンピアサーに代表される傾斜ロ
ール穿孔圧延機を含む継目無管連続製造ラインを
適用するのが良い。これによると、継目無管が次
の順序で製造される。 先ず、傾斜ロール穿孔圧延機で加熱ビレツトを
穿孔圧延して中空のホローピースとなる。得られ
たホローピースは、引き続きマンドレルミルまた
はプラグミルで延伸圧延されてホローシエルとさ
れる。延伸圧延にマンドレルミルが使用された場
合は、ホローシエルは必要に応じて再加熱後、ス
トレツチレデユーサで絞り圧延され、プラグミル
で延伸圧延が行われた場合は、必要により再加熱
後、サイザで定径圧延される。 本発明者らは、このような継目無管連続製造ラ
インでのチタン継目無管の製造について研究を続
けており、その過程で今回、定径圧延に関して次
のような知見を得た。 定径圧延は、上述したように、傾斜ロール穿孔
圧延機を含む継目無管連続ラインの最終工程に位
置する。したがつて、この定径圧延は、製品の表
面性状を決定する。チタンは本質的に熱間加工性
が悪く、また温度により特性が大きく変化するの
で、この定径圧延で必要な寸法精度を確保しよう
とすると、表面性状の悪化が懸念される。定形圧
延で表面性状が悪化すると、それはそのまま製品
の品質低下を意味し、たとえ定径圧延に至るまで
の穿孔圧延や延伸圧延で十分な品質が確保されて
いても、それは意味のないものになる。 本発明者らは、このような状況下でチタン製ホ
ローシエルの定径圧延条件について実験を繰り返
した結果、ホローシエルの定径圧延において、サ
イザ入側におけるホローシエル温度と外径圧下率
とを規定すれは、熱間押出し法と冷間引抜きとの
組合せでチタン継目無管を製造した場合に匹敵す
る特性および性状が得られることを知見した。 本発明は、このような知見に基づきなされたも
ので、純チタンまたはチタン合金からなる継目無
管を熱間で穿孔圧延、プラグミルによる延伸圧
延、サイザによる定径圧延の各工程を経て連続的
に製造する際に、延伸圧延で得られたホローシエ
ルを450℃以上に冷却することなく圧延機入側温
度が550〜1150℃、外径圧下率が3〜15%の条件
で定径圧延することを特徴とするチタン継目無管
の製造方法を要旨とする。 〔作用〕 本発明によれば、その定径圧延条件を規定した
ことにより、高品質のチタン継目無管が穿孔圧
延・延伸圧延・定径圧延の連続プロセスにより得
られる。なお、延伸圧延後の材料を450℃以下に
一旦冷却し、その後再加熱して定径圧延を行え
ば、チタン継目無管の製品品質が更に向上するこ
とは既に本出願人が提案するところであるが(特
願昭63−263650号)、用途によつてはそのような
高品質を必要としない場合も多く、そのような場
合には本発明で充分に対応できる。むしろ、本発
明では延伸圧延と定径圧延の間で積極的な冷却を
行わないので、熱経済性が良く、製管能率が高
い。 本発明が採用する穿孔圧延・延伸圧延・定径圧
延の連続製管プロセスは、素材が鋼の場合は代表
的な継目無管製造プロセスの一つであるが、チタ
ンには適用されていない。これは、チタンと鋼の
特性が大きく異なるからに他ならない。例えば従
来、チタンの熱間加工性が非常に悪いため、その
熱間圧延管が製品規格を満足するとは考えられて
いなかつた。このような状況下で、本発明者らは
チタンの特性研究と種々の実験を積み重ね、本発
明を完成させるに至つた。 参考のため、鋼の定径圧延とチタンの定径圧延
に対する認識の相違を説明し、合わせてチタンの
定径圧延に対する常識的な考えと本発明者らの実
験研究の成果とを説明する。 普通鋼の場合、サイザ入側温度の低温側は、ロ
ールエツジ焼付き疵発生による品質悪化の問題か
ら、一般には650℃以下は好ましくないとされて
いる。一方、チタンの場合は、βトランザス(チ
タン合金で約990℃)以下の温度域では、温度降
下と共に変形抵抗の増加が著しいことから、常識
的にはサイザ入側温度は高くすべきとされ、普通
鋼の下限温度よりかなり高くする必要がある。し
かし、本発明者らの実験研究によれば、550℃と
いう普通鋼の下限温度より更に低い温度域での圧
延が可能であつた。 外径圧下率については、通常サイザは5〜7ス
タンドで構成されており、この場合、普通鋼では
外径精度およびロールエツジ焼付きの点から、通
常は12%以下に抑えるべきと考えられている。一
方、チタンの場合は、上述した特性から類推し
て、少なくとも普通鋼なみの外径圧下率で圧下す
るのが常識的である。しかるに、本発明者らの実
験研究によれば、最大15%という大きな外径圧下
率のもとでも、表面品質および寸法精度ともに良
好なサイザ定径圧延が可能であることが知見され
た。 このように、鋼の定径圧延とチタンの定径圧延
に対する認識の違いは大きく、しかも、その認識
を覆す新しい知見を基礎として本発明は完成され
た。 本発明における圧延条件限定理由は、次のとお
りである。 チタンは温度により特性が大きく変化し、特に
サイザ入側温度が550℃未満で定径圧延すると、
変形能が低下していることから、ロール焼付きに
よる被れ状疵、筋疵、エツジマーク、穴あき等の
疵が発生し、場合によつては圧延自体が不可能に
なる。またチタン合金においては、α/β相の界
面に両者の変形能の差により変形を受けた際にボ
イドと呼ばれる空〓が発生する。逆に、サイザ入
側温度が1150℃超で圧延されると、圧延後の冷却
により粗大な針状晶が生成する。この針状晶は変
形能が低く、製品の機械的性質を低下させる。し
たがつて、サイザ入側におけるホローシエル温度
は550〜1150℃とする。 外径圧下率については、これが3%未満では、
定径圧延の目的を達成することができず、製品の
寸法精度が悪化する。逆に、15%を超えると、ロ
ール焼付きによる筋疵、エツジマーク等の外面疵
が発生し、製品の表面性状を悪化させる。したが
つて、定径圧延における外径圧下率は3〜15%と
する。 〔実施例〕 以下に本発明の実施例を説明する。 第1表に示す組成を有する工業用純チタン
(JIS−H4630−3種)からなる外径173mm、長さ
2040mmの中実ビレツトを、2ロール傾斜穿孔圧延
機(ピアサー)にて圧延機入側温度990〜1250℃
で、外径178mm、肉厚40mm、長さ2710mmの中空素
管とし、これをエロンゲータにて圧延機入側温度
880〜1200℃で外径190mm、肉厚19.5mm、長さ4500
mmのホローピースに寸法調整した。 引き続き、得られたホローピースをプラグミル
にて圧延機入側温度600〜1150℃で延伸圧延して、
外径183mm、肉厚15mm、長さ5940mmのホローシエ
ルとした。このときの延伸比は1.3である。 次に、得られたホローシエルを450℃以下に強
制冷却することなく種々の温度に再加熱後、外径
圧下率を変えながら2ロール、7スタンドのサイ
ザにより定径圧延した。定径圧延後の純チタン継
目無管の性状および750℃で1時間で焼鈍した後
の室温特性を調査した結果を第3表に示す。ま
た、参考のため、第3表には熱間押出し法と冷間
引抜き法との組合せで製造した同一グレード品に
対するJIS−H4630−3種の規格値とを示してい
る。 No.1では、サイザ入側温度が低いために、継目
無管表面に疵が生じ、機械的性質を論じる以前に
製品価値を失つた。No.6では、サイザ入側温度が
高すぎるために、表面性状は良好なものの、伸び
が著しく悪化した。No.8では、サイザ入側温度が
適性であるが、外径圧下率不足のため、所定の寸
法精度が確保できなかつた。No.10では、外径圧下
率が過剰のため、表面疵が生じ、製品価値を失つ
た。 以上の比較例に対し、本発明例であるNo.2〜
5、7、9では表面性状が良好で、しかも機械的
特性は、熱間押出しと冷間引抜きとの組合せによ
る場合の規格値を全て満足している。 次に、第3表に示す組成を有するTi−6Al−
4V系合金について上記と同一の試験を実施した。
結果を第4表に示す。 第4表から明らかなように、本発明は、チタン
合金製ホローシエルの製造に対しても有効であ
る。 このように、本発明は定径圧延条件を規定した
ことにより、チタン継目無管を穿孔圧延・延伸圧
延・定径圧延の連続プロセスで品質よく製造でき
る。なお、定径圧延後の管には必要に応じて切削
による表面仕上げ加工を施すことができる。
[Industrial Field of Application] The present invention relates to a method for manufacturing seamless pipes made of pure titanium or titanium alloys, and more specifically, a continuous pipe manufacturing method using the Mannesmann pipe manufacturing process consisting of piercing rolling, elongation rolling, and diameter rolling. Regarding. [Prior Art] Titanium is classified into pure titanium and titanium alloys such as α-type and α+β-type. α-type titanium alloys include Ti-0.15Pd, Ti-0.8Ni-0.3Mo, Ti-5Al
-2.5Sn etc. α+β type titanium alloys include Ti-8Al-1Mo-1V, Ti-3Al-2.5V, Ti
−6Al−4V, Ti−6Al−6V−2Sn, Ti−6Al−
There are 2Sn-4Zr-6Mo, Ti-6Al-2Sn-4Zr-2Mo, etc., and Ti-3Al-2.5V is known as an alloy that can be cold worked. In the present invention, titanium is a general term for these. These titanium materials are lightweight and have high corrosion resistance, and their seamless pipes are particularly expected to be applied to chemical plants and aircraft hydraulic piping. Conventionally, such titanium seamless pipes meet the JIS-
As specified in H4630, it is generally manufactured by a combination of hot extrusion and cold drawing. This is because titanium inherently has poor hot workability, and tubes made from titanium are said to be susceptible to shear strain in the circumferential direction. [Problems to be Solved by the Invention] However, the hot extrusion method is less efficient than other hot tube manufacturing methods, and it is difficult to manufacture long tubes. Further, the cold drawing method is also effective in improving dimensional accuracy, etc., but the efficiency is low. Therefore, conventional titanium seamless pipes manufactured by a combination of such methods are inevitably high in cost. SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a titanium seamless pipe at low cost and with good quality. [Means for solving the problem] If seamless pipes are to be manufactured efficiently and economically, it is best to apply a continuous seamless pipe production line that includes an inclined roll perforating mill such as Mannesmann Piercer. good. According to this, seamless pipes are manufactured in the following order. First, a heated billet is pierced and rolled using an inclined roll pierce-rolling machine to form a hollow hollow piece. The obtained hollow piece is then elongated and rolled in a mandrel mill or a plug mill to form a hollow shell. If a mandrel mill is used for stretch rolling, the hollow shell is reheated if necessary and then reduced by a stretch reducer. If stretch rolling is performed by a plug mill, the hollow shell is reheated if necessary and then reduced by a sizer. Rolled to a fixed diameter. The present inventors have continued to study the production of titanium seamless pipes on such a continuous seamless pipe production line, and in the process, they have obtained the following findings regarding sizing rolling. As mentioned above, sizing rolling is located at the final step of a continuous seamless pipe line that includes an inclined roll piercing mill. Therefore, this diameter rolling determines the surface texture of the product. Since titanium inherently has poor hot workability and its properties change greatly depending on temperature, there is a concern that the surface quality will deteriorate if the necessary dimensional accuracy is to be ensured through this sizing rolling. If the surface quality deteriorates during size rolling, it directly means a decline in the quality of the product, and even if sufficient quality is ensured through piercing rolling and elongation rolling leading up to size rolling, it will be meaningless. . As a result of repeated experiments on the sizing rolling conditions for titanium hollow shells under these circumstances, the present inventors found that in sizing rolling of hollow shells, it is necessary to specify the hollow shell temperature and outer diameter reduction rate at the entrance side of the sizer. It was discovered that properties and properties comparable to those obtained when seamless titanium pipes were manufactured by a combination of hot extrusion and cold drawing were obtained. The present invention was made based on this knowledge, and it is possible to continuously process seamless pipes made of pure titanium or titanium alloy through the following steps: hot piercing rolling, elongation rolling using a plug mill, and sizing rolling using a sizer. During production, the hollow shell obtained by elongation rolling is rolled to a fixed diameter under conditions of a rolling machine entrance temperature of 550 to 1150 °C and an outer diameter reduction of 3 to 15% without cooling it to 450 °C or higher. This article summarizes the manufacturing method of titanium seamless pipes. [Function] According to the present invention, by specifying the sizing rolling conditions, a high-quality titanium seamless pipe can be obtained through a continuous process of piercing rolling, elongation rolling, and sizing rolling. The applicant has already proposed that the product quality of titanium seamless pipes can be further improved by cooling the stretch-rolled material to 450°C or less, then reheating it and rolling it to a fixed diameter. (Japanese Patent Application No. 63-263650) However, such high quality is often not required depending on the application, and the present invention can adequately meet such cases. Rather, in the present invention, active cooling is not performed between elongation rolling and sizing rolling, so thermoeconomic efficiency is good and tube manufacturing efficiency is high. The continuous pipe manufacturing process of piercing rolling, elongation rolling, and diameter rolling employed in the present invention is one of the typical seamless pipe manufacturing processes when the material is steel, but it is not applied to titanium. This is simply because the properties of titanium and steel are significantly different. For example, in the past, titanium's hot workability was so poor that it was not thought that its hot rolled tubes would satisfy product standards. Under these circumstances, the present inventors conducted research on the characteristics of titanium and conducted various experiments, and finally completed the present invention. For reference, the difference in perception between sizing rolling of steel and sizing rolling of titanium will be explained, as well as common sense ideas regarding sizing rolling of titanium and the results of experimental research by the present inventors. In the case of ordinary steel, it is generally considered that a low temperature at the entrance of the sizer below 650°C is undesirable due to the problem of quality deterioration due to the occurrence of roll edge seizure defects. On the other hand, in the case of titanium, in the temperature range below the β transus (approximately 990°C for titanium alloys), the deformation resistance increases significantly as the temperature drops, so common sense suggests that the sizer entrance temperature should be high. It is necessary to raise the temperature considerably higher than the lower limit temperature of ordinary steel. However, according to the experimental research conducted by the present inventors, it was possible to perform rolling at a temperature range of 550°C, which is lower than the lower limit temperature of ordinary steel. Regarding the outer diameter reduction ratio, a sizer is usually composed of 5 to 7 stands, and in this case, it is thought that for ordinary steel, it should be kept to 12% or less from the viewpoint of outer diameter accuracy and roll edge seizure. . On the other hand, in the case of titanium, by analogy with the above-mentioned characteristics, it is common sense to reduce the outer diameter at least as much as ordinary steel. However, according to the experimental research conducted by the present inventors, it has been found that sizer constant diameter rolling with good surface quality and dimensional accuracy is possible even under a large outer diameter reduction ratio of up to 15%. As described above, there is a large difference in perception between sizing rolling of steel and sizing rolling of titanium, and the present invention was completed based on new knowledge that overturns this perception. The reason for limiting the rolling conditions in the present invention is as follows. The properties of titanium change greatly depending on the temperature, especially when it is rolled to a fixed diameter at a sizer entry temperature of less than 550℃.
Since the deformability is reduced, defects such as burrs, streaks, edge marks, and holes occur due to roll seizure, and in some cases, rolling itself becomes impossible. Furthermore, in titanium alloys, when the α/β phase is deformed due to the difference in deformability between the two, vacancies called voids are generated. On the other hand, when rolling is performed at a sizer entrance temperature of over 1150°C, coarse acicular crystals are produced by cooling after rolling. These needles have low deformability and reduce the mechanical properties of the product. Therefore, the hollow shell temperature at the input side of the sizer is 550 to 1150°C. Regarding the outer diameter reduction rate, if this is less than 3%,
The purpose of sizing rolling cannot be achieved and the dimensional accuracy of the product deteriorates. On the other hand, if it exceeds 15%, external flaws such as streaks and edge marks will occur due to roll seizure, and the surface quality of the product will deteriorate. Therefore, the outer diameter reduction ratio in constant diameter rolling is set to 3 to 15%. [Example] Examples of the present invention will be described below. Made of industrially pure titanium (JIS-H4630-Type 3) with the composition shown in Table 1, outer diameter 173 mm, length
A 2040mm solid billet is rolled using a two-roll inclined piercing rolling mill (piercer) at a temperature of 990 to 1250℃ at the entrance of the rolling mill.
A hollow tube with an outer diameter of 178 mm, a wall thickness of 40 mm, and a length of 2,710 mm was made into a hollow tube.
880~1200℃, outer diameter 190mm, wall thickness 19.5mm, length 4500
The dimensions were adjusted to a mm hollow piece. Subsequently, the obtained hollow piece was stretched and rolled in a plug mill at a rolling machine entrance temperature of 600 to 1150°C.
It is a hollow shell with an outer diameter of 183 mm, a wall thickness of 15 mm, and a length of 5940 mm. The stretching ratio at this time was 1.3. Next, the obtained hollow shells were reheated to various temperatures without forced cooling below 450° C., and then rolled to a fixed diameter using a 2-roll, 7-stand sizer while changing the outside diameter reduction ratio. Table 3 shows the results of investigating the properties of the pure titanium seamless pipe after diameter rolling and the room temperature characteristics after annealing at 750°C for 1 hour. For reference, Table 3 shows the JIS-H4630-3 standard values for the same grade products manufactured by a combination of hot extrusion and cold drawing. In No. 1, due to the low temperature at the entrance of the sizer, flaws occurred on the surface of the seamless pipe, and the product value was lost even before mechanical properties were discussed. In No. 6, the temperature at the entrance of the sizer was too high, so although the surface quality was good, the elongation deteriorated significantly. In No. 8, although the sizer inlet temperature was appropriate, the required dimensional accuracy could not be ensured due to an insufficient reduction rate of the outside diameter. In No. 10, the outer diameter reduction ratio was excessive, resulting in surface flaws and loss of product value. In contrast to the above comparative examples, Nos. 2 to 2, which are examples of the present invention,
Samples Nos. 5, 7, and 9 had good surface properties, and their mechanical properties all satisfied the standard values for a combination of hot extrusion and cold drawing. Next, Ti-6Al- having the composition shown in Table 3
The same test as above was conducted for 4V alloy.
The results are shown in Table 4. As is clear from Table 4, the present invention is also effective for manufacturing titanium alloy hollow shells. As described above, in the present invention, by specifying the sizing rolling conditions, a titanium seamless tube can be manufactured with good quality through a continuous process of piercing rolling, elongation rolling, and sizing rolling. Note that the tube after being rolled to a fixed diameter may be subjected to a surface finishing process by cutting, if necessary.

【表】【table】

【表】 * 本発明範囲外
[Table] *Outside the scope of the present invention

【表】【table】

【表】【table】

【表】 * 本発明範囲外
〔発明の効果〕 本発明のチタン継目無管の製造方法は、穿孔圧
延・延伸圧延・定径圧延の連続製管プロセスでチ
タン継目無管を製造する際に、定径圧延での品質
低下を抑え、熱間圧延仕上がりの製品に優れた品
質を与える。従つて、チタン継目無管の製造コス
ト低減に大きな効果を発揮する。
[Table] *Outside the scope of the present invention [Effects of the present invention] The method for producing a titanium seamless pipe of the present invention includes the following steps when producing a titanium seamless pipe through a continuous pipe-making process of piercing rolling, elongation rolling, and diameter rolling. Suppresses quality deterioration during diameter rolling and gives superior quality to hot-rolled products. Therefore, it is highly effective in reducing the manufacturing cost of titanium seamless pipes.

Claims (1)

【特許請求の範囲】[Claims] 1 純チタンまたはチタン合金からなる継目無管
を熱間で穿孔圧延、プラグミルによる延伸圧延、
サイザによる定径圧延の各工程を経て連続的に製
造する際に、延伸圧延で得られたホローシエル
を、450℃以上に冷却することなく圧延機入側温
度が550〜1150℃、外径圧下率が3〜15%の条件
で定径圧延することを特徴とするチタン継目無管
の製造方法。
1 Hot piercing rolling of a seamless pipe made of pure titanium or titanium alloy, elongation rolling with a plug mill,
When manufacturing continuously through each step of sizing rolling with a sizer, the hollow shell obtained by elongation rolling is maintained at a temperature at the entrance of the rolling machine of 550 to 1150°C and an outer diameter reduction rate without cooling to 450°C or higher. 1. A method for producing seamless titanium pipe, characterized by rolling to a fixed diameter under conditions of 3 to 15%.
JP31722688A 1988-11-18 1988-12-14 Method for sizing rolling titanium stock Granted JPH02160103A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP31722688A JPH02160103A (en) 1988-12-14 1988-12-14 Method for sizing rolling titanium stock
EP89311895A EP0369795B1 (en) 1988-11-18 1989-11-16 Method of manufacturing seamless tube formed of titanium material
US07/437,273 US4991419A (en) 1988-11-18 1989-11-16 Method of manufacturing seamless tube formed of titanium material
DE89311895T DE68909176T2 (en) 1988-11-18 1989-11-16 Process for manufacturing seamless titanium tubes.
CA 2003244 CA2003244C (en) 1988-11-18 1989-11-17 Method of manufacturing seamless tube formed of titanium material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31722688A JPH02160103A (en) 1988-12-14 1988-12-14 Method for sizing rolling titanium stock

Publications (2)

Publication Number Publication Date
JPH02160103A JPH02160103A (en) 1990-06-20
JPH0579404B2 true JPH0579404B2 (en) 1993-11-02

Family

ID=18085884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31722688A Granted JPH02160103A (en) 1988-11-18 1988-12-14 Method for sizing rolling titanium stock

Country Status (1)

Country Link
JP (1) JPH02160103A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6265037B2 (en) * 2014-05-01 2018-01-24 新日鐵住金株式会社 Titanium welded tube and manufacturing method thereof
CN107297450B (en) * 2017-06-26 2019-05-28 天津钢管集团股份有限公司 A kind of upset method of high-strength tenacity titanium alloy drilling rod material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02112804A (en) * 1988-10-19 1990-04-25 Sumitomo Metal Ind Ltd Production of seamless pipe consisting of alpha+beta type titanium alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02112804A (en) * 1988-10-19 1990-04-25 Sumitomo Metal Ind Ltd Production of seamless pipe consisting of alpha+beta type titanium alloy

Also Published As

Publication number Publication date
JPH02160103A (en) 1990-06-20

Similar Documents

Publication Publication Date Title
US7601232B2 (en) α-β titanium alloy tubes and methods of flowforming the same
US4991419A (en) Method of manufacturing seamless tube formed of titanium material
RU2339731C2 (en) Treatment of alloys titanium-aluminum-vanadium and product made by means of it
JP4019772B2 (en) Seamless pipe manufacturing method
JP3242521B2 (en) Manufacturing method of titanium alloy ring
JPH0234752A (en) Manufacture of seamless pipe made of pure titanium or titanium alloy
JPH0579404B2 (en)
JPH0520165B2 (en)
JPH0579401B2 (en)
JP2711129B2 (en) Manufacturing method of titanium seamless pipe
JPH0649202B2 (en) Titanium seamless pipe manufacturing method
JPH051082B2 (en)
JPH10286602A (en) Seamless tube made of titanium and manufacture thereof
JPH02137604A (en) Manufacture of seamless tube of alpha+beta type titanium alloy
JPH1094804A (en) Manufacture of seamless tube made of alpha type or alpha+beta type titanium alloy having small aeolotropy of material in longitudinal direction and peripheral direction and excellent in strength in thickness direction
JPH0692629B2 (en) Manufacturing method of α + β type titanium alloy seamless pipe
JPH02112804A (en) Production of seamless pipe consisting of alpha+beta type titanium alloy
JPH0741292B2 (en) Titanium seamless pipe manufacturing method
JPH02104404A (en) Manufacture of titanium seamless tube
JPH0579403B2 (en)
CN115815355A (en) Preparation method of TA18 titanium alloy small-caliber ultrafine-grain extruded tube
JPS6233010B2 (en)
JPS6092007A (en) Rolling method for seamless pipe
Loria P/M Alloy 718 Tubing Produced by Cold Radial Forging
JPH0696758B2 (en) Titanium seamless pipe manufacturing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees