JPH0579081B2 - - Google Patents

Info

Publication number
JPH0579081B2
JPH0579081B2 JP27254785A JP27254785A JPH0579081B2 JP H0579081 B2 JPH0579081 B2 JP H0579081B2 JP 27254785 A JP27254785 A JP 27254785A JP 27254785 A JP27254785 A JP 27254785A JP H0579081 B2 JPH0579081 B2 JP H0579081B2
Authority
JP
Japan
Prior art keywords
catalyst
diene polymer
nickel
group
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27254785A
Other languages
Japanese (ja)
Other versions
JPS62132902A (en
Inventor
Akihiro Misumi
Kohei Okamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP27254785A priority Critical patent/JPS62132902A/en
Publication of JPS62132902A publication Critical patent/JPS62132902A/en
Publication of JPH0579081B2 publication Critical patent/JPH0579081B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明はジエン系重合体の水素化方法に関し、
さらに詳しくは、とくに末端に水素基を有するジ
エン系重合体の水素化方法であつて、水素添加率
が高く、かつ、水素基の切断もしくは離脱を防止
しうる方法に関する。 [従来技術および発明が解決しようとする問題
点] 分子末端に水素基を有するジエン系重合体、例
えば、ブタジエン、イソプレンまたはクロロプレ
ン重合体はポリウレタンの原料などとして重用さ
れている。これらの重合体は耐候性や耐候性の向
上を図ることを目的として、例えば、触媒の存在
下で水素化することが一般的である。 このような水素化反応に使用する水素化用触媒
としては、シリカ、アルミナ、ケイソウ土、カー
ボン等の担体に、ニツケル、パラジウム、ルテニ
ウムまたはロジウムを担持せしめてなるものが知
られている。 ところが、ニツケル触媒は重合体の水素添加率
が低く、一方、パラジウム、ルテニウムおよびロ
ジウム触媒は重合体の末端水素基を脱離せしめて
しまうという問題がある。 本発明の目的は、従来のかかる問題を解消し、
水素基を有する重合体の水素基を切断・離脱せし
めることなく、高い水素添加率で該重合体を水素
化しうる方法の提供を目的とする。 [問題を解決するための手段] 本発明者らは、水素化反応に使用する触媒の組
成に焦点を絞つて鋭意研究を重ねた結果、従来の
ように担体に単一の金属を担持せしめた触媒では
なく、所定の2種の金属を担持せしめてなる触媒
を使用すると上記した目的を達成しうることを見
出して本発明を完成するに到つた。 すなわち、本発明のジエン系重合体の水素化方
法は、周期律表第族金属のうちニツケルを含む
2種を担体にせしめてなる触媒の存在下、水素基
を有するジエン系重合体を水素化することを特徴
とする。 [具体的説明] まず、本発明の水素化方法が適用されるジエン
系重合体は、水素基を有するものであればとくに
限定されるものではないが、なかでも、分子両末
端に水酸基を有するものであることが好ましく、
具体的には、次式:
[Industrial Application Field] The present invention relates to a method for hydrogenating diene polymers,
More specifically, the present invention relates to a method for hydrogenating a diene polymer having a hydrogen group at its terminal, which has a high hydrogenation rate and can prevent the hydrogen groups from being cut or separated. [Prior Art and Problems to be Solved by the Invention] Diene polymers having hydrogen groups at the molecular ends, such as butadiene, isoprene, or chloroprene polymers, are heavily used as raw materials for polyurethane. These polymers are generally hydrogenated, for example, in the presence of a catalyst, for the purpose of improving their weather resistance. As hydrogenation catalysts used in such hydrogenation reactions, catalysts in which nickel, palladium, ruthenium or rhodium is supported on a carrier such as silica, alumina, diatomaceous earth, or carbon are known. However, the nickel catalyst has a low hydrogenation rate of the polymer, while the palladium, ruthenium and rhodium catalysts have the problem of eliminating the terminal hydrogen group of the polymer. The purpose of the present invention is to solve such conventional problems,
The object of the present invention is to provide a method capable of hydrogenating a polymer having a hydrogen group at a high hydrogenation rate without cutting or separating the hydrogen groups of the polymer. [Means for solving the problem] As a result of extensive research focusing on the composition of the catalyst used in the hydrogenation reaction, the present inventors discovered that a single metal was supported on a carrier as in the past. The present invention was completed based on the discovery that the above object can be achieved by using a catalyst made of two predetermined metals supported instead of a catalyst. That is, the method for hydrogenating a diene polymer of the present invention involves hydrogenating a diene polymer having hydrogen groups in the presence of a catalyst comprising two metals of Group Group of the periodic table, including nickel, as a carrier. It is characterized by [Specific Description] First, the diene polymer to which the hydrogenation method of the present invention is applied is not particularly limited as long as it has a hydrogen group, but in particular, a diene polymer that has a hydroxyl group at both ends of the molecule. It is preferable that
Specifically, the following formula:

【化】 (式中、Rは水素原子、塩素原子またはメチル
基を表わし、nは5〜300の整数を表わす) で示されるもの、すなわち、ブタジエン、クロロ
プレンまたはイソプレン重合体をあげることがで
きる。 ついで、本発明方法のコ骨子をなす新規な組成
の触媒について説明する。 すなわち、本発明において使用される水素化触
媒は前述したように担体に、周期率表第族、つ
まり、Fe,Ni,Co,Ru,Rh,Pd,Os,Ir,Pt
のうちNiを含む2種の金属を担持せしめてなる
ものである。このうち、とくに、Ru,Ph,Pdま
たはPtがNiと組合わせて好適な金属である。担
体の材料は、とくに限定されるものではないが、
例えばシリカ、アルミナ、カーボン、シリカ、ア
ルミナ、ケイソウ土などをあげることができる。
また、これらの金属の担持量は、通常、担体100
重量部に対して、ニツケルが0.05〜500重量部、
好ましくは0.1〜100重量部、ニツケルを除く族
金属のうちの1種が0.05〜500重量部、好ましく
は、0.1〜100重量部に設定される。 かかる触媒を製造する場合、所定の担体に、所
定量のNiおよびNiを除く族金属のうちの1種
を同時に担持せしめてもよく、一方、Niのみを
担持せしめた担体と、Niを除く族金属のうち
の1種のみを担持せしめた担体とを所定の割合で
混合してもよい。とくに、後者の方法で得られた
触媒は、活性が高く、より好ましいものである。 ついで、かかる触媒を使用した本発明の水素化
方法について述べる。 まず、例えば、耐圧容器に前述したジエン系重
合体、触媒および溶媒を仕込む。このとき使用す
る溶媒としては、ペンタン、ヘキサン、ヘプタ
ン、オクタンなどの脂肪族炭化水素;シクロペン
タン、シクロヘキサン、メチルシクロヘキサンな
どの脂環式炭化水素;メタノール、エタノール、
イソプロパノールなどのアルコール類などをあげ
ることができる。しかるのち、この容器内へ水素
を導入して水素化反応を行なわせる。このとき、
反応温度は30〜300℃、好ましくは、100〜200℃、
圧力は10〜200Kg/cm2G、好ましくは、30〜100
Kg/cm2G、反応時間は0.1〜100時間、好ましくは
0.5〜10時間にそれぞれ設定する。 そして、反応終了後に、容器から反応生成物を
抜出し、触媒を別して、得られた液から溶
媒、未反応ジエン系重合体および軽沸点成分を留
去して目的とする水素化重合体を得る。 [実施例] (1) 触媒の調製 以下のようにして、本発明に係る触媒A〜Eを
調製した。 触媒 A パラジウム(5重量%)担持カーボン(日本エ
ンゲルハルド(株)製)とニツケル(45重量%)担持
ケイソウ土(日揮化学(株)製)とを重量比2:8で
混合して触媒Aを得た。 触媒 B ロジウム(5重量%)担持カーボン(日本エン
ゲルハルド(株)製)とニツケル(45重量%)担持ケ
イソウ土(日揮化学(株)製)とを重量比2:8で混
合して触媒Bを得た。 触媒 C PdCl2,1g,Ni(NO3)・6H2O22.3gをそれぞれ
水溶液とし、各水溶液をそれぞれ1N−アンモニ
ア水に滴下して沈殿を生ぜしめ、得られた沈殿を
過して回収し、風乾後110℃で2時間乾燥した。
こうして得られた2種の粉末と、95gのγ−アル
ミナ(水沢化学(株)製)を乳鉢でよく混合した後、
550℃で2時間加熱して触媒Cを得た。この触媒
Cにおける各金属の担持量を原子吸光光度法によ
り測定したところ、Ni4.32重量%、Pd0.41重量%
であつた。 触媒 D ルテニウム(5重量%)担持カーボン(日本エ
ンゲルハルド(株)製)とニツケル(45重量%)担持
ケイソウ土(日揮科学(株)製)とを重量比2:8で
混合して触媒Dを得た。 触媒 E 白金(5重量%)担持カーボン(日本エンゲル
ハルド(株)製)とニツケル(45重量%)担持ケイソ
ウ土(日揮化学(株)製)とを重量比2:8で混合し
て触媒Dを得た。 さらに、比較例には、以下に示す5種の触媒F
〜Jを使用した。 触媒F:ニツケル(45重量%)担持ケイソウ土
(日揮化学(株)製) 触媒G:パラジウム(5重量%)担持カーボン
(日本エンゲルハルド(株)製) 触媒H:ロジウム(5重量%)担持カーボン(日
本エンゲルハルド(株)製) 触媒I:ルテニウム(5重量%)担持カーボン
(日本エンゲルハルド(株)製) 触媒J:白金(5重量%)担持カーボン(日本エ
ンゲルハルド(株)製) (2) ジエン系重合体の水素化反応 攪拌機および加熱器を備えた内容積1のステ
ンレス製耐圧容器に、表示の両末端に水酸基を有
するジエン系重合体、触媒および溶媒を仕込み、
ついで水素ガスを導入し、60分間かけて昇温した
のち表示の条件で水素化を行なつた。 しかるのち、容器の外表面に空気を吹きつけて
降温し、反応生成物を抜出した。そして、触媒を
別し、液から薄膜蒸発器によつて溶媒、未反
応ジエン系重合体および軽沸点成分を留去して目
的とする水素化重合体を得た。なお、この留去工
程は50℃、20mmHgで30分間の第1段階および110
℃、2mmHgで1時間の第2段階とに分けて行な
つた。 かかる工程において、ジエン系重合体の水素添
加率(%)、すなわち、 水素化前のジエン系重合体の臭素価−水素化後のジエ
ン系重合体の臭素価/水素化前のジエン系重合体の臭素
価×100、 を算出し、その結果を、水素化後のジエン系重合
体の水酸基含量(meq/g)とともに表中に示し
た。
embedded image (wherein R represents a hydrogen atom, a chlorine atom or a methyl group, and n represents an integer from 5 to 300), ie, butadiene, chloroprene or isoprene polymers. Next, a catalyst with a novel composition, which is the main feature of the method of the present invention, will be explained. That is, as mentioned above, the hydrogenation catalyst used in the present invention has a carrier containing compounds belonging to groups of the periodic table, that is, Fe, Ni, Co, Ru, Rh, Pd, Os, Ir, and Pt.
Of these, two types of metals including Ni are supported. Among these, Ru, Ph, Pd, or Pt are particularly suitable metals in combination with Ni. The material of the carrier is not particularly limited, but
Examples include silica, alumina, carbon, silica, alumina, and diatomaceous earth.
In addition, the amount of these metals supported is usually 100
Nickel is 0.05 to 500 parts by weight,
The content is preferably 0.1 to 100 parts by weight, and the content of one of the group metals excluding nickel is set to 0.05 to 500 parts by weight, preferably 0.1 to 100 parts by weight. When producing such a catalyst, a predetermined amount of Ni and one of the group metals excluding Ni may be simultaneously supported on a predetermined carrier, while a carrier supporting only Ni and a group metal other than Ni may be simultaneously supported on a predetermined carrier. A carrier supporting only one of the metals may be mixed at a predetermined ratio. In particular, the catalyst obtained by the latter method has high activity and is more preferable. Next, the hydrogenation method of the present invention using such a catalyst will be described. First, for example, the above-described diene polymer, catalyst, and solvent are placed in a pressure container. Solvents used at this time include aliphatic hydrocarbons such as pentane, hexane, heptane, and octane; alicyclic hydrocarbons such as cyclopentane, cyclohexane, and methylcyclohexane; methanol, ethanol,
Examples include alcohols such as isopropanol. Thereafter, hydrogen is introduced into this container to carry out a hydrogenation reaction. At this time,
The reaction temperature is 30-300℃, preferably 100-200℃,
Pressure is 10-200Kg/cm 2 G, preferably 30-100
Kg/cm 2 G, reaction time 0.1-100 hours, preferably
Set each time from 0.5 to 10 hours. After the reaction is completed, the reaction product is extracted from the container, the catalyst is separated, and the solvent, unreacted diene polymer, and light boiling point components are distilled off from the resulting liquid to obtain the desired hydrogenated polymer. [Example] (1) Preparation of catalyst Catalysts A to E according to the present invention were prepared as follows. Catalyst A Catalyst A was prepared by mixing palladium (5% by weight) supported carbon (manufactured by Nippon Engelhard Co., Ltd.) and nickel (45% by weight) supported diatomaceous earth (manufactured by JGC Chemical Co., Ltd.) at a weight ratio of 2:8. I got it. Catalyst B Catalyst B was prepared by mixing rhodium (5% by weight) supported carbon (manufactured by Nippon Engelhard Co., Ltd.) and nickel (45% by weight) supported diatomaceous earth (manufactured by JGC Chemical Co., Ltd.) at a weight ratio of 2:8. I got it. Catalyst C 1 g of PdCl 2 and 2.3 g of Ni(NO 3 )/6H 2 O were each made into aqueous solutions, each aqueous solution was dropped into 1N ammonia water to form a precipitate, and the resulting precipitate was collected by filtration. After air drying, it was dried at 110°C for 2 hours.
After thoroughly mixing the two types of powder thus obtained and 95 g of γ-alumina (manufactured by Mizusawa Chemical Co., Ltd.) in a mortar,
Catalyst C was obtained by heating at 550°C for 2 hours. When the amount of each metal supported on this catalyst C was measured by atomic absorption spectrophotometry, it was found that Ni was 4.32% by weight and Pd was 0.41% by weight.
It was hot. Catalyst D: Ruthenium (5% by weight) supported carbon (made by Nippon Engelhard Co., Ltd.) and nickel (45% by weight) supported diatomaceous earth (made by JGC Scientific Co., Ltd.) were mixed at a weight ratio of 2:8 to prepare catalyst D. I got it. Catalyst E: Catalyst D was prepared by mixing platinum (5% by weight) supported carbon (manufactured by Nippon Engelhard Co., Ltd.) and nickel (45% by weight) supported diatomaceous earth (manufactured by JGC Chemical Co., Ltd.) at a weight ratio of 2:8. I got it. Furthermore, in the comparative example, the following five types of catalysts F
~J was used. Catalyst F: Nickel (45% by weight) supported diatomaceous earth (manufactured by JGC Chemical Co., Ltd.) Catalyst G: Palladium (5% by weight) supported on carbon (manufactured by Nippon Engelhard Co., Ltd.) Catalyst H: Rhodium (5% by weight) supported Carbon (manufactured by Nippon Engelhard Co., Ltd.) Catalyst I: Carbon supported on ruthenium (5% by weight) (manufactured by Nippon Engelhard Co., Ltd.) Catalyst J: Carbon supported on platinum (5% by weight) (manufactured by Nippon Engelhard Co., Ltd.) (2) Hydrogenation reaction of diene polymer A diene polymer having hydroxyl groups at both ends as indicated, a catalyst, and a solvent are placed in a stainless steel pressure vessel with an internal volume of 1 equipped with a stirrer and a heater.
Next, hydrogen gas was introduced, the temperature was raised over 60 minutes, and then hydrogenation was carried out under the indicated conditions. Thereafter, air was blown onto the outer surface of the container to lower the temperature, and the reaction product was extracted. Then, the catalyst was separated, and the solvent, unreacted diene polymer, and light boiling point components were distilled off from the liquid using a thin film evaporator to obtain the desired hydrogenated polymer. This distillation process includes a first step of 30 minutes at 50°C and 20mmHg, and a
The second stage was carried out for 1 hour at 2 mmHg and 2 mmHg. In this step, the hydrogenation rate (%) of the diene polymer, i.e., the bromine number of the diene polymer before hydrogenation - the bromine number of the diene polymer after hydrogenation / the diene polymer before hydrogenation. The bromine number x 100 was calculated, and the results are shown in the table together with the hydroxyl group content (meq/g) of the diene polymer after hydrogenation.

【表】【table】

【表】 [発明の効果] 以上の説明から明らかなように、本発明方法は
ニツケルを含む2種の金属を担持した新規な触媒
を使用することにより、ジエン系重合体の水素添
加率が極めて高いものであるとともに、水素化反
応の前後でその水酸基含量がほとんど変化してい
ない。すなわち、水酸基の切断・離脱がほとんど
発生しないという利点を有するものである。した
がつて、例えばポリウレタンの原料製造分野でそ
の工業的価値は極めて大である。
[Table] [Effects of the Invention] As is clear from the above explanation, the method of the present invention uses a novel catalyst supporting two types of metals including nickel, so that the hydrogenation rate of diene polymers is extremely high. In addition to being high in hydroxyl content, there is almost no change in the hydroxyl group content before and after the hydrogenation reaction. That is, it has the advantage that cleavage and separation of hydroxyl groups hardly occur. Therefore, its industrial value is extremely great, for example, in the field of producing raw materials for polyurethane.

Claims (1)

【特許請求の範囲】 1 周期律表第族金属のうちニツケルを含む2
種を担体に担持せしめてなる触媒の存在下、水酸
基を有するジエン系重合体を水素化することを特
徴とするジエン系重合体の水素化方法。 2 該触媒が、ニツケルを担持せしめた担体とニ
ツケル以外の第族金属のうちの1種を担持せし
めた担体との混合物である特許請求の範囲第1項
に記載の水素化方法。 3 該触媒に含まれる第族金属のうち、ニツケ
ルを除く1種が、パラジウム、ロジウム、ルテニ
ウムまたは白金である特許請求の範囲第1項に記
載の水素化方法。 4 ジエン系重合体が、分子両末端に水素基を有
するものである特許請求の範囲第1項に記載の水
素化方法。 5 ジエン系重合体が、次式: 【化】 (式中、Rは水素原子、塩素原子またはメチル
基を表わし、nは5〜300の整数を表わす) で示されるものである特許請求の範囲第1項に記
載の水素化方法。
[Scope of Claims] 1. Among Group Group metals of the periodic table, including nickel. 2.
A method for hydrogenating a diene polymer, comprising hydrogenating a diene polymer having a hydroxyl group in the presence of a catalyst comprising a species supported on a carrier. 2. The hydrogenation method according to claim 1, wherein the catalyst is a mixture of a carrier supporting nickel and a carrier supporting one of group metals other than nickel. 3. The hydrogenation method according to claim 1, wherein one of the group metals contained in the catalyst, excluding nickel, is palladium, rhodium, ruthenium, or platinum. 4. The hydrogenation method according to claim 1, wherein the diene polymer has hydrogen groups at both ends of the molecule. 5 Claims in which the diene polymer is represented by the following formula: [Chemical formula] (wherein R represents a hydrogen atom, a chlorine atom, or a methyl group, and n represents an integer from 5 to 300) The hydrogenation method according to item 1.
JP27254785A 1985-12-05 1985-12-05 Method for hydrogenating diene polymer Granted JPS62132902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27254785A JPS62132902A (en) 1985-12-05 1985-12-05 Method for hydrogenating diene polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27254785A JPS62132902A (en) 1985-12-05 1985-12-05 Method for hydrogenating diene polymer

Publications (2)

Publication Number Publication Date
JPS62132902A JPS62132902A (en) 1987-06-16
JPH0579081B2 true JPH0579081B2 (en) 1993-11-01

Family

ID=17515420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27254785A Granted JPS62132902A (en) 1985-12-05 1985-12-05 Method for hydrogenating diene polymer

Country Status (1)

Country Link
JP (1) JPS62132902A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010285468A (en) * 2009-06-09 2010-12-24 Bridgestone Corp Method for producing hydrogenated polymer, method for producing photocurable resin, photocurable resin, sealant

Also Published As

Publication number Publication date
JPS62132902A (en) 1987-06-16

Similar Documents

Publication Publication Date Title
US4536347A (en) Selective hydrogenation of unsaturated carbonyl compounds
JPS6045938B2 (en) Method for producing oxalic acid diester hydrogenation catalyst
Wieland et al. Immobilized Metal Complex Catalysts and Heterogeneous Precious Metal Catalysts on Polysiloxane Supports and Their Application in Organic Synthesis
JPH03127750A (en) Method for hydrogenation of citral
JPH04225836A (en) Worganic body carried catalyst for producing ethylidenediacetate, its manufacture and manufacture of ethylidenediacetate using the same
US4740633A (en) Process for hydrogenating olefins in the presence of ethers
JPS646183B2 (en)
JPH069656B2 (en) Supported catalyst for producing hydroxydiphenyl and method for producing the same
US4320228A (en) Preparation of olefinically unsaturated carbonyl compounds and alcohol
CN112569965A (en) Double-transition metal hierarchical pore catalyst and preparation method and application thereof
US4169853A (en) Homogeneous ruthenium catalysts useful in the reduction of ortho-substituted nitroaromatics to amines
JPH0579081B2 (en)
DE19646679A1 (en) Catalyst and process for the preparation of 2-buten-1-ol compounds
AU628466B2 (en) Selective hydrogenolysis of perhalogenated ethane derivatives
JPH01193246A (en) Production of 2,3-dichloropyridine
JPH0579083B2 (en)
JPS62151404A (en) Production of hydrogenated polymer
JP3994246B2 (en) Process for producing cyclododecanol and cyclododecanone
EP1309580A1 (en) Continuous process for the production of optically pure (s)-beta-hydroxy-gamma-butyrolactone
JP2965354B2 (en) Method for producing trans-3,3,5-trimethylcyclohexylethyl ether
JPS58140030A (en) Preparation of 1,9-nonanediol
JPH03271237A (en) Selective hydrogenolysis of perhalogenated ethane derivative
JPS6140226A (en) Production of cycloolefin
JP2005539078A (en) Continuous process for optically pure (S) -β-hydroxy-γ-butyrolactone
JPS6256870B2 (en)

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees