JPH0578978A - Production of fusion proofing and flame retardant polyester fiber - Google Patents

Production of fusion proofing and flame retardant polyester fiber

Info

Publication number
JPH0578978A
JPH0578978A JP26705891A JP26705891A JPH0578978A JP H0578978 A JPH0578978 A JP H0578978A JP 26705891 A JP26705891 A JP 26705891A JP 26705891 A JP26705891 A JP 26705891A JP H0578978 A JPH0578978 A JP H0578978A
Authority
JP
Japan
Prior art keywords
fiber
polyester
weight
fusion
polyester fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26705891A
Other languages
Japanese (ja)
Inventor
Toshihiko Kotani
敏彦 小谷
Minoru Fujii
実 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP26705891A priority Critical patent/JPH0578978A/en
Publication of JPH0578978A publication Critical patent/JPH0578978A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Artificial Filaments (AREA)

Abstract

PURPOSE:To obtain the title fiber having both of fusion proofing property and flame retardance by irradiating a polyester fiber containing a specific amount or more of phosphorus compound with electron beam and then providing a specific amount of specific monomer to the fiber. CONSTITUTION:A phosphorus compound, e.g. phosphorus-containing flame retardant material is melt and kneaded with a polyethylene terephthalate resin and the kneaded material is spun to afford 0.1-5wt.% of polyester fiber. Then the fiber is irradiated with electron beam and then a polymerizable monomer having <=200 molecular weight, e.g. (meth) acrylic acid, etc., or esters thereof are provided to the fiber and the monomer is polymerized and fixed so as to increase the fiber weight by >=7%. The fiber obtained by this treatment has fusion proofing performance and is excellent also in flame retardance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,防融性能を兼ね備えた
難燃性ポリエステル繊維の製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a flame-retardant polyester fiber which also has anti-melting properties.

【0002】[0002]

【従来の技術】難燃衣料に関する研究は,ここ数年頻繁
に行われており,一般消費者の関心もかなり高まりつつ
ある。従来の難燃繊維に関する提案は,大別すると次の
3種類を挙げることができる。 (1)無機,有機の難燃助剤を添加し,難燃化したもの (2)リンあるいはハロゲンを含有した薬剤を後加工に
より付与し,難燃化したもの (3)リン化合物をポリエステルに共重合させたもの
2. Description of the Related Art Researches on flame-retardant garments have been frequently conducted in the last few years, and the interest of general consumers is increasing considerably. The conventional proposals for flame-retardant fibers can be roughly classified into the following three types. (1) Flame-retardant by adding an inorganic or organic flame-retardant aid (2) Flame-retardant by adding a chemical containing phosphorus or halogen by post-processing (3) Phosphorus compound to polyester Copolymerized

【0003】しかしながら,上記難燃化ポリエステル
は,生産性,加工性,耐久性等に利点はあるものの,自
己消火性のメカニズムがすべて溶融落下によるものであ
るため,これらのポリエステル繊維を実際に衣料として
着用し,その衣料に火がついたときには,繊維の溶融に
よって重大な火傷を招く原因となっていた。
However, although the flame-retardant polyester has advantages in productivity, processability, durability, etc., all of its self-extinguishing mechanism is due to melting and dropping, so these polyester fibers are actually used for clothing. When it was worn as a garment and the clothing was ignited, it caused serious burns due to the melting of the fibers.

【0004】そこで,ポリエステルの耐熱性を向上させ
るために,多官能アクリレート,例えば,ジアリルシア
ヌレート,ジアリルイソシアヌレート,トリアリルシア
ヌレート,トリアリルイソシアヌレートおよびこれらの
2量体,3量体等を架橋剤としてポリエステル樹脂中に
溶融混練し,得られたフイルムやシート,繊維に電離性
放射線を照射することにより架橋を行うという手法が提
案されているが,この方法では溶融を完全に防止するこ
とはできず,性能面における問題が残されているばかり
でなく,前記架橋剤をポリマーに練り込んで繊維を製造
する際,粘度低下が生じ,均一な繊維が得られないとい
う問題や,有毒ガスが発生するという問題も残されてい
た。
Therefore, in order to improve the heat resistance of polyester, polyfunctional acrylates such as diallyl cyanurate, diallyl isocyanurate, triallyl cyanurate, triallyl isocyanurate and their dimers and trimers are used. A method has been proposed in which the film, sheet, or fiber obtained by melt-kneading in a polyester resin as a cross-linking agent is subjected to cross-linking by irradiation with ionizing radiation, but in this method, melting is completely prevented. Not only is there a problem in terms of performance, but also when the above-mentioned cross-linking agent is kneaded into a polymer to produce fibers, the viscosity is lowered and uniform fibers cannot be obtained. There was also the problem of occurrence of.

【0005】[0005]

【発明が解決しようとする課題】本発明は,上記欠点を
解消するもので,衣料用ポリエステル繊維としては全く
新規な,防融性をも兼ね備えた優れた難燃性を有するポ
リエステル繊維を提供することを技術的課題とするもの
である。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned drawbacks and provides a polyester fiber having excellent flame retardancy, which is completely novel as a polyester fiber for clothing and has a fusion resistance. This is a technical issue.

【0006】[0006]

【課題を解決するための手段】本発明者らは,上記課題
を解決するために鋭意研究の結果,分子鎖の熱による流
動を抑制し得る構造をポリエステルに導入することによ
り,優れた防融性が得られることを見出し,本発明に到
達した。
Means for Solving the Problems As a result of earnest research to solve the above problems, the present inventors have introduced an excellent anti-melting property by introducing into polyester a structure capable of suppressing the flow of molecular chains due to heat. The present invention has been achieved by finding that the property is obtained.

【0007】すなわち,本発明は,リン含有率が0.1〜
5重量%のポリエステル繊維に電子線を照射した後,分
子量が200以下の重合性モノマーを付与することによ
り繊維重量を7%以上増加せしめることを特徴とする防
融難燃性ポリエステル繊維の製造方法を要旨とするもの
である。以下,本発明を詳細に説明する。
That is, the present invention has a phosphorus content of 0.1 to
After irradiating 5% by weight of polyester fiber with an electron beam, the weight of the fiber is increased by 7% or more by applying a polymerizable monomer having a molecular weight of 200 or less, and a method for producing a fusion-resistant flame-retardant polyester fiber. Is the gist. Hereinafter, the present invention will be described in detail.

【0008】本発明でいうポリエステルとしては,ポリ
エチレンテレフタレートやポリブチレンテレフタレート
を一般に挙げることができるが,イソフタル酸やスルホ
イソフタル酸,アゼライン酸,コハク酸,アジピン酸等
が共重合されていてもよい。
Polyethylene terephthalate and polybutylene terephthalate can be generally mentioned as the polyester in the present invention, but isophthalic acid, sulfoisophthalic acid, azelaic acid, succinic acid, adipic acid, etc. may be copolymerized.

【0009】本発明の防融難燃性ポリエステルにあって
は,まず第1に自己消火性を有することが必要であり,
そのためには,ポリエステル中のリンの含有率が0.1〜
5重量%の範囲にあることが必要である。リンの含有率
が0.1重量%未満では,難燃効果が不十分であり,ま
た,リン含有率が5重量%を超えると,強力特性,生産
性,染色性,風合等の面で問題が発生するので好ましく
ない。
In the anti-melting flame-retardant polyester of the present invention, first of all, it is necessary to have self-extinguishing property,
To this end, the phosphorus content in the polyester is 0.1-
It should be in the range of 5% by weight. If the phosphorus content is less than 0.1% by weight, the flame-retardant effect is insufficient, and if the phosphorus content exceeds 5% by weight, the strength, productivity, dyeability, and texture are poor. This is not preferable because it causes problems.

【0010】ポリエステル繊維にリンを含有せしめる方
法としては,繊維の製造時にポリマーにリン系難燃剤を
添加する方法や,ポリマー自体にリン化合物を共重合す
る方法等がある。例えば,ポリマーに難燃剤を添加する
方法にあっては,リン酸アマイド縮合物,脂肪族リン酸
エステル,芳香族リン酸エステル,アルコキシホスフア
ゼン,アミノホスフアゼン,ハロゲン化アルキルポリホ
スフエートホスホネート等を難燃剤として用いることが
でき,この難燃剤とポリエステルチツプとを所定重量比
で溶融混練してマスターチツプを製造し,常法により溶
融紡糸して得ることができる。一方,リン化合物を共重
合する方法としては,ポリエチレンテレフタレートやポ
リブチレンテレフタレート等の重合の際に,リンを含有
した酸成分および/またはグリコール成分を第3成分と
して,従来公知のポリエステル製造方法,例えば,エス
テル交換法,エステル化法,重縮合法等により共重合す
る方法が挙げられる。
As a method of incorporating phosphorus into the polyester fiber, there are a method of adding a phosphorus-based flame retardant to the polymer at the time of producing the fiber, a method of copolymerizing a phosphorus compound with the polymer itself, and the like. For example, in the method of adding a flame retardant to a polymer, a phosphoric acid amide condensate, an aliphatic phosphoric acid ester, an aromatic phosphoric acid ester, an alkoxyphosphazene, an aminophosphazene, a halogenated alkyl polyphosphate phosphonate, etc. It can be used as a flame retardant, and it can be obtained by melt-kneading the flame retardant and a polyester chip in a predetermined weight ratio to produce a master chip, and melt spinning the same by a conventional method. On the other hand, as a method for copolymerizing a phosphorus compound, a conventionally known polyester production method, for example, a polyester production method using a phosphorus-containing acid component and / or a glycol component as a third component at the time of polymerization of polyethylene terephthalate, polybutylene terephthalate, etc. The method of copolymerization may be a transesterification method, an esterification method, a polycondensation method, or the like.

【0011】本発明のポリエステル繊維の防融性能は,
上記で得られたリン含有ポリエステル繊維に電子線を照
射した後,分子量が200以下の重合性モノマーを付与
することによって得られる。すなわち,本発明にあって
は,ポリエステルを構成するポリマー分子鎖の熱による
流動を抑制する必要があり,そのためには,まず繊維基
材に電子線を照射し,ポリエステル内部にまでラジカル
を生成させた後,重合性モノマーと接触させ,ポリマー
内部で十分な重合性モノマーによるマトリツクス重合を
起こさせることが必要である。重合性モノマーを繊維に
含浸させた後,電子線を照射する方法では,ポリマー内
部にまでモノマーの重合が及ばず,防融効果は得られな
い。また,重合性モノマーを熱によりポリマー内部に吸
尽させた後,電子線を照射し,マトリツクス重合を起こ
させる方法では,モノマーの吸尽量が十分でないため,
期待する防融効果が得られず,さらに,マトリツクス重
合の制御が困難となるため好ましくない。
The melting resistance of the polyester fiber of the present invention is
It is obtained by irradiating the phosphorus-containing polyester fiber obtained above with an electron beam and then adding a polymerizable monomer having a molecular weight of 200 or less. That is, in the present invention, it is necessary to suppress the flow of the polymer molecular chains constituting the polyester due to heat. For that purpose, first, the fiber substrate is irradiated with an electron beam to generate radicals even inside the polyester. After that, it is necessary to contact with the polymerizable monomer to cause matrix polymerization with sufficient polymerizable monomer inside the polymer. In the method of irradiating the fiber with the polymerizable monomer and then irradiating it with an electron beam, the polymerization of the monomer does not reach the inside of the polymer, and the anti-fusion effect cannot be obtained. Further, in the method in which the polymerizable monomer is exhausted inside the polymer by heat and then electron beam irradiation is performed to cause matrix polymerization, the exhaustion amount of the monomer is not sufficient.
It is not preferable because the expected anti-fusing effect cannot be obtained, and it becomes difficult to control the matrix polymerization.

【0012】本発明にあっては,重合性モノマーのマト
リツクス重合による重量増加率は,繊維重量に対して7
%以上,好ましくは10%以上がよい。
In the present invention, the weight increase rate by the matrix polymerization of the polymerizable monomer is 7 with respect to the fiber weight.
% Or more, preferably 10% or more.

【0013】また,重合性モノマーにあっては,分子量
が200以下がよく,150以下がより好ましい。この
分子量が200を超えると,ポリマー内部までモノマー
が到達せず,防融効果が不十分になる。ここで用いられ
る重合性モノマーとしては,例えば,アクリル酸,メタ
クリル酸,イタコン酸,アリルスルフオン酸,メタリル
スルフオン酸,スチレンスルフオン酸等の酸性基を有す
る化合物やこれらのエステルおよびアクリルアミド,ア
クリロニトリル等のアクリル酸誘導体を挙げることがで
きるが,これらに限られるものではない。
The polymerizable monomer preferably has a molecular weight of 200 or less, more preferably 150 or less. If this molecular weight exceeds 200, the monomer does not reach the inside of the polymer, and the anti-fusing effect becomes insufficient. Examples of the polymerizable monomer used here include compounds having an acidic group such as acrylic acid, methacrylic acid, itaconic acid, allyl sulfonic acid, methallyl sulfonic acid, styrene sulfonic acid, their esters and acrylamide, and acrylonitrile. Examples thereof include acrylic acid derivatives, but are not limited to these.

【0014】上記重合性モノマーは,水溶液として使用
することが好ましいが,二塩化エチレンやモノクロルベ
ンゼン等の溶剤を膨潤剤として用いても何ら差し支えな
い。モノマーの付与方法としては,浸漬法,噴霧法等の
通常の方法を挙げることができるが,これらに限られる
ものではなく,適宜採用すればよい。この際,付与する
モノマーは,活性化状態にあることが好ましく,例え
ば,熱,マイクロ波,超音波振動等のエネルギーにより
モノマーの活性化状態を得ることができる。
The above polymerizable monomer is preferably used as an aqueous solution, but a solvent such as ethylene dichloride or monochlorobenzene may be used as a swelling agent. Examples of the method of applying the monomer include a usual method such as a dipping method and a spraying method, but the method is not limited to these and may be appropriately adopted. At this time, it is preferable that the applied monomer is in an activated state, and for example, the activated state of the monomer can be obtained by energy such as heat, microwaves or ultrasonic vibrations.

【0015】電子線の照射条件としては,加速電圧につ
いては,対象とするポリエステル繊維基材の厚さにより
適宜設定すればよいが,一般的には150KV以上,50
0KV以下が適当である。また,照射線量については,5
メガラド(以下Mrad と記す)以上,30Mrad 以下が
よい。照射線量が5Mrad 未満では,生成ラジカル量が
少なく,十分なマトリツクス重合が得られず,逆に30
Mrad を超えると,繊維の物性低下が生じるので好まし
くない。電子線照射雰囲気は,酸素濃度500ppm 以下
が好ましく,窒素気流下で行うと,この条件を得るうえ
で好適である。
As the electron beam irradiation conditions, the acceleration voltage may be appropriately set according to the thickness of the target polyester fiber base material, but is generally 150 KV or more, 50
0KV or less is suitable. Regarding the irradiation dose, 5
Greater than or equal to Megarad (hereinafter referred to as Mrad) and less than or equal to 30Mrad is preferable. When the irradiation dose is less than 5 Mrad, the amount of radicals produced is small and sufficient matrix polymerization cannot be obtained.
If it exceeds Mrad, the physical properties of the fiber deteriorate, which is not preferable. The electron beam irradiation atmosphere preferably has an oxygen concentration of 500 ppm or less, and it is suitable to carry out under a nitrogen stream in order to obtain this condition.

【0016】[0016]

【作 用】本発明方法のごとく,リンを0.1〜5重量%
含有する難燃性ポリエステル繊維に電子線を照射してか
ら分子量200以下の重合性モノマーを付与すると,分
子間に重合性モノマーによるマトリツクス重合が生じ
て,ポリエステル繊維は熱による流動性が抑制され,そ
の結果,繊維に防融性能が付与されるようになる。ま
た,電子線を照射した後,分子量200以下という低分
子量の重合性モノマーを付与するので,モノマーは素早
くポリマー内部にまで浸透して十分にマトリツクス重合
が進み,繊維は極めて優れた防融性能を示すようにな
る。
[Operation] As in the method of the present invention, 0.1 to 5% by weight of phosphorus
When the flame-retardant polyester fiber contained is irradiated with an electron beam and then a polymerizable monomer having a molecular weight of 200 or less is applied, matrix polymerization due to the polymerizable monomer occurs between the molecules, and the polyester fiber is suppressed in fluidity due to heat, As a result, the fiber has an anti-fusing property. Also, after irradiation with an electron beam, a low molecular weight polymerizable monomer having a molecular weight of 200 or less is imparted, so that the monomer quickly penetrates into the inside of the polymer and matrix polymerization proceeds sufficiently, and the fiber has an extremely excellent anti-melting property. As shown.

【0017】[0017]

【実施例】以下,実施例により本発明の防融難燃性ポリ
エステル繊維の製造方法を具体的に説明するが,実施例
における布帛の性能の測定,評価は,次の方法で行っ
た。 (1)難燃性 JIS L−1091 A−1法(45°ミクロバ
ーナー法)の緊張法にて,残炎,残塵時間を測定した。 JIS L−1091 D法(45°コイル法)に
て,溶融落下の有無を判定した。 (2)防融性 試料を水平に設置し,その上に水平に着火したタバコを
5秒間静置し,そのときの0.5mm以上の穴の有無を15
回の測定に対する穴の生じた回数で表示した。 (3)水洗い試験法 JIS L−1042 F−2法による。 (4)ドライクリーニング試験法 JIS L−1018 E−2法による。
EXAMPLES Hereinafter, the method for producing the anti-melting flame-retardant polyester fiber of the present invention will be specifically described with reference to the examples. The measurement and evaluation of the performance of the cloth in the examples were carried out by the following methods. (1) Flame retardance Afterflame and residual dust time were measured by the tension method of JIS L-1091 A-1 method (45 ° microburner method). The presence or absence of melt drop was determined by the JIS L-1091 D method (45 ° coil method). (2) Anti-fusing property The sample is placed horizontally, and the horizontally ignited cigarette is left on it for 5 seconds, and the presence or absence of a hole of 0.5 mm or more is checked for 15 seconds.
The number of occurrences of holes for each measurement was displayed. (3) Washing test method According to JIS L-1042 F-2 method. (4) Dry cleaning test method According to JIS L-1018 E-2 method.

【0018】実施例1 ポリエチレンテレフタレート樹脂100重量部に対して
クレジルジフエニルホスホネート(リン含有難燃剤)7
重量部を溶融混練して得たチツプを用いて,溶融紡糸法
によりポリエステル繊維150d/48fを得た。この
ときのリン含有量は0.6重量%であった。
Example 1 Cresyl diphenyl phosphonate (phosphorus-containing flame retardant) 7 per 100 parts by weight of polyethylene terephthalate resin
Using a chip obtained by melt-kneading parts by weight, polyester fibers 150d / 48f were obtained by a melt spinning method. At this time, the phosphorus content was 0.6% by weight.

【0019】得られたポリエステル繊維を経,緯糸に用
いて,目付150g/m2 のタフタを製織した。続い
て,200KV,20Mradの電子線照射を行った後,液
温80℃,濃度30%のアクリル酸(分子量72)の水
溶液に15分間浸漬してマトリツクス重合を行い,本発
明方法による防融難燃性ポリエステルタフタを得た。こ
のときの重量増加率は12.4%であった。
A taffeta having a basis weight of 150 g / m 2 was woven using the obtained polyester fiber as a warp. Then, after irradiating with an electron beam of 200 KV and 20 Mrad, it is immersed in an aqueous solution of acrylic acid (molecular weight 72) with a liquid temperature of 80 ° C. and a concentration of 30% for 15 minutes to carry out matrix polymerization to prevent the fusion prevention by the method of the invention. A flammable polyester taffeta was obtained. The weight increase rate at this time was 12.4%.

【0020】実施例2 上述の実施例1と同じポリエステルタフタを用いて,こ
れに200KV,20Mrad の電子線照射を行った後,液
温80℃,濃度40%のエチレングリコールジアクリレ
ート(分子量170)の水溶液に20分間浸漬してマト
リツクス重合を行い,本発明方法による防融難燃性ポリ
エステルタフタを得た。このときの重量増加率は11.8
%であった。
Example 2 The same polyester taffeta as used in Example 1 above was irradiated with an electron beam of 200 KV and 20 Mrad, and then a liquid temperature of 80 ° C. and a concentration of 40% ethylene glycol diacrylate (molecular weight 170). This was dipped in the aqueous solution for 20 minutes for matrix polymerization to obtain a fusion-resistant flame-retardant polyester taffeta according to the method of the present invention. The weight increase rate at this time is 11.8.
%Met.

【0021】比較例1 前記実施例1と同じポリエステルタフタを用いて,20
0KV,10Mrad の電子線照射を行った後,液温80
℃,濃度20%のアクリル酸水溶液に15分間浸漬して
マトリツクス重合を行い,比較用の防融難燃性ポリエス
テルタフタを得た。このときの重量増加率は5.3%であ
った。
Comparative Example 1 Using the same polyester taffeta as used in Example 1, 20
After irradiation with an electron beam of 0 KV and 10 Mrad, the liquid temperature was 80
By dipping in an acrylic acid aqueous solution having a concentration of 20% at a temperature of 15 ° C. for 15 minutes, matrix polymerization was performed to obtain a fusion-resistant flame-retardant polyester taffeta for comparison. The weight increase rate at this time was 5.3%.

【0022】比較例2 前記実施例2において,重合性モノマーとしてジエチレ
ングリコールジアクリレート(分子量214)を用いる
ほかは,実施例2と全く同一の方法により比較用のポリ
エステルタフタを得た。このときの重量増加率は8.5%
であった。
Comparative Example 2 A polyester taffeta for comparison was obtained in the same manner as in Example 2 except that diethylene glycol diacrylate (molecular weight 214) was used as the polymerizable monomer. The weight increase rate at this time is 8.5%
Met.

【0023】比較例3 ポリエチレンテレフタレート樹脂100重量部に対して
クレジルジフエニルホスホネート(リン含有難燃剤)0.
8重量部を溶融混練して得たチツプを用いて,溶融紡糸
法によりポリエステル繊維150d/48fを得た。こ
のときのリン含有量は0.06重量%であった。
Comparative Example 3 Cresyl diphenyl phosphonate (phosphorus-containing flame retardant) was added to 100 parts by weight of polyethylene terephthalate resin.
Using a chip obtained by melt-kneading 8 parts by weight, 150d / 48f of polyester fiber was obtained by a melt spinning method. At this time, the phosphorus content was 0.06% by weight.

【0024】得られたポリエステル繊維を経,緯糸に用
いて,目付150g/m2 のタフタを製織した。このポ
リエステルタフタを用いて実施例1と同一のマトリツク
ス重合を行い,比較用のポリエステルタフタを得た。こ
のときの重量増加率は12.1%であった。
Using the obtained polyester fiber as warp and weft, taffeta having a basis weight of 150 g / m 2 was woven. The same matrix polymerization as in Example 1 was performed using this polyester taffeta to obtain a polyester taffeta for comparison. The weight increase rate at this time was 12.1%.

【0025】本発明および比較用の加工織物の性能を測
定,評価し,その結果を合わせて表1に示した。
The performances of the present invention and the comparative woven fabric were measured and evaluated, and the results are shown together in Table 1.

【表1】 [Table 1]

【0026】表1より明らかなごとく,本発明方法によ
り製造されたポリエステル織物は,優れた防融性,難燃
性を有していた。一方,本発明の構成要件を満足しない
比較例1〜3の織物は,難燃性か防融性のいずれかを満
足しないものであった。また,比較例2は,マトリツク
ス重合後の重量増加率が8.5%にて,7%を超えてはい
るものの,分子量が大きいため,ポリマー内部までマト
リツクス重合が進まず,防融性能を満足し得ないもので
あった。
As is clear from Table 1, the polyester woven fabric produced by the method of the present invention had excellent melting resistance and flame retardancy. On the other hand, the woven fabrics of Comparative Examples 1 to 3 which did not satisfy the constituent requirements of the present invention did not satisfy either flame retardancy or anti-fusible property. In Comparative Example 2, the weight increase rate after the matrix polymerization was 8.5%, which exceeded 7%, but the molecular weight was large, so that the matrix polymerization did not proceed to the inside of the polymer and the anti-melting performance was satisfied. It was impossible.

【0027】[0027]

【発明の効果】本発明の製造方法により得られたポリエ
ステル繊維は,防融性能を兼ね備えた難燃性を有してお
り,実際に衣料として着用した場合,衣服の燃焼および
溶融による火傷を防止することができる。
EFFECT OF THE INVENTION The polyester fiber obtained by the production method of the present invention has flame-retardant property with anti-fusing property, and when actually worn as clothing, prevents burns due to burning and melting of clothes. can do.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 リン含有率が0.1〜5重量%のポリエス
テル繊維に電子線を照射した後,分子量が200以下の
重合性モノマーを付与することにより繊維重量を7%以
上増加せしめることを特徴とする防融難燃性ポリエステ
ル繊維の製造方法。
1. A polyester fiber having a phosphorus content of 0.1 to 5% by weight is irradiated with an electron beam and then a polymerizable monomer having a molecular weight of 200 or less is added to increase the fiber weight by 7% or more. A method for producing a fusion-proof flame-retardant polyester fiber, which is characterized.
JP26705891A 1991-09-17 1991-09-17 Production of fusion proofing and flame retardant polyester fiber Pending JPH0578978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26705891A JPH0578978A (en) 1991-09-17 1991-09-17 Production of fusion proofing and flame retardant polyester fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26705891A JPH0578978A (en) 1991-09-17 1991-09-17 Production of fusion proofing and flame retardant polyester fiber

Publications (1)

Publication Number Publication Date
JPH0578978A true JPH0578978A (en) 1993-03-30

Family

ID=17439451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26705891A Pending JPH0578978A (en) 1991-09-17 1991-09-17 Production of fusion proofing and flame retardant polyester fiber

Country Status (1)

Country Link
JP (1) JPH0578978A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102534855A (en) * 2011-12-11 2012-07-04 武汉纺织大学 Method for preparing halogen-free flame-retarding polyester fibers with durability and droplet resistance
CN102560747A (en) * 2011-12-11 2012-07-11 武汉纺织大学 Preparation method of durable low-smoke halogen-free flame-retardant polyacrylonitrile fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102534855A (en) * 2011-12-11 2012-07-04 武汉纺织大学 Method for preparing halogen-free flame-retarding polyester fibers with durability and droplet resistance
CN102560747A (en) * 2011-12-11 2012-07-11 武汉纺织大学 Preparation method of durable low-smoke halogen-free flame-retardant polyacrylonitrile fiber

Similar Documents

Publication Publication Date Title
Kundu et al. An overview of fire retardant treatments for synthetic textiles: From traditional approaches to recent applications
US3864156A (en) Process for Flameproofing Synthetic Textiles and the Fire Retardant Textile Formed Therefrom
US3775165A (en) Polymers of improved flame retardance
KR20130141598A (en) Phosphonate polymers, copolymers, and their respective oligomers as flame retardants for polyester fibers
Wang et al. Fire retardant viscose fiber fabric produced by graft polymerization of phosphorus and nitrogen-containing monomer
JP6401238B2 (en) Flame retardant polyamide, method for producing the flame retardant polyamide, and use of the flame retardant polyamide
Huang et al. A novel high whiteness flame retardant for cotton
Feng et al. An antidripping flame retardant finishing for polyethylene terephthalate fabric
Jin et al. Flame retardant and anti-dripping modification of polyamide 6 fabric by guanidine sulfamate with enhanced durability
Yang Flame resistant cotton
US3695925A (en) Process for flameproofing textiles
JPH0578978A (en) Production of fusion proofing and flame retardant polyester fiber
US3583938A (en) Flame retardant fiber and process for manufacturing the same
GB2054615A (en) Process for durably modifying a shaped synthetic polymer article
JPH059808A (en) Melt-proof flame-retardant polyester fiber
JPS5953947B2 (en) Method for imparting flame retardancy and water absorption to polyester fiber materials
US3849409A (en) Hexahydrotriazine phosphonate derivatives
JP2008088193A (en) Flame-retardant copolyester and flame retardant polyester fiber
KR101072914B1 (en) Flame-retardant Finish of Fabrics Using UV-curable Phosphorous-containing Monomers
JPH07145562A (en) Water-repellent flame-retardant polyester fiber and its production
Pakdel et al. Development of non-combustible weaveable yarn through oxidative control of a textile acrylic fibre
US2892803A (en) Composition comprising nitrilo methylol-phosphorus-polymer and organic textiles flame-proofed therewith
JP7438520B2 (en) Halogen-containing polymers, flame retardants for fibers containing the same, and flame-resistant fiber products
JP2012112048A (en) Method for manufacturing dripping-resistant flame-retardant polyester fiber
JP3387181B2 (en) Carbonized flame-retardant polyester fiber and method for producing the same