JPH0578951B2 - - Google Patents

Info

Publication number
JPH0578951B2
JPH0578951B2 JP26783584A JP26783584A JPH0578951B2 JP H0578951 B2 JPH0578951 B2 JP H0578951B2 JP 26783584 A JP26783584 A JP 26783584A JP 26783584 A JP26783584 A JP 26783584A JP H0578951 B2 JPH0578951 B2 JP H0578951B2
Authority
JP
Japan
Prior art keywords
temperature
resistor
circuit
operational amplifier
fet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26783584A
Other languages
Japanese (ja)
Other versions
JPS61144884A (en
Inventor
Tsutomu Ishihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP26783584A priority Critical patent/JPS61144884A/en
Publication of JPS61144884A publication Critical patent/JPS61144884A/en
Publication of JPH0578951B2 publication Critical patent/JPH0578951B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Pressure Sensors (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体変換器の温度上昇にともなう
出力感度の変化を補償する温度補償回路に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a temperature compensation circuit that compensates for changes in output sensitivity due to increases in temperature of a semiconductor converter.

〔従来の技術〕[Conventional technology]

従来、半導体変換器として、半導体ピエゾ抵抗
素子を用いた圧力変換器がよく知られている。該
半導体ピエゾ抵抗素子のゲージ率は一般に負の温
度系数を示し、該半導体ピエゾ抵抗素子を含むブ
リツジ回路からなる変換器の圧力・電気変換感度
は周囲温度の上昇に伴ない低下する。この感度低
下を補償する集積化レベルの温度補償回路とし
て、従来 (1) バイポーラ・トランジスタのベース・エミツ
タ間順方向電圧VBEの負の温度系数を利用し、
電源電圧からVBEに比例した電圧を差しひくこ
とによりブリツジ励起電圧を温度上昇に対して
直線的に増大させるようにした温度補償回路
(信学技報ED80−20)、 (2) 電流密度の異なるバイポーラ・トランジスタ
のベース・エミツタ間電圧の差△VBEが絶対温
度に比例する(アイ・イー・イー・イー・ジヤ
ーナル・オブ・ソリツド・ステート・サーキツ
ツ(IEEE J.Solid−State Circuits)6巻、
1971年、2〜7ページ)ことを利用して、ブリ
ツジ励起電圧に正の温度係数を与えるようにし
た温度補償回路(センサーズアンドアクチユエ
ータ(Sensors and Actuators)4巻、1983
年、63〜69ページ)等が報告されている。上記
の2例にはいずれもバイポーラ集積技術が用い
られている。しかしながら、集積化変換器の目
標は多機能化、インテリジエント化にあり、こ
れらの目標を実現する集積回路技術としては、
バイポーラ技術よりもMDS技術の方が優れて
いる。すなわち、将来の集積化変換器には、半
導体検知素子と同一基板上に、単に温度補償機
能のみでなく、増幅機能、マルチプレツクス機
能、チツプ内での演算処理機能、コンピユータ
とのデイジタルインターフエースを可能にする
A/D変換及びデイジタル信号処理機能等を搭
載することが要求される。これらの要求には、
スイツチトキヤパシタ回路、アナログ・スイツ
チ、A/D変換マイクロ・プロセツサ等を含む
アナログ・デイジタル混載回路の分野で実績が
あり、バイポーラ技術に比べ、低消費電力化と
大規模集積化が可能なMOS集積回路技術が適
している。
Conventionally, a pressure transducer using a semiconductor piezoresistive element is well known as a semiconductor transducer. The gauge factor of the semiconductor piezoresistive element generally exhibits a negative temperature coefficient, and the pressure-to-electrical conversion sensitivity of a converter made of a bridge circuit including the semiconductor piezoresistive element decreases as the ambient temperature rises. Conventionally, as a temperature compensation circuit at an integrated level to compensate for this decrease in sensitivity, (1) the negative temperature coefficient of the forward voltage V BE between the base and emitter of a bipolar transistor is utilized;
A temperature compensation circuit that increases the bridge excitation voltage linearly with temperature rise by subtracting a voltage proportional to V BE from the power supply voltage (IEICE Technical Report ED80-20); (2) Current density The difference in base-emitter voltages of different bipolar transistors, △V BE , is proportional to absolute temperature (IEEE J.Solid-State Circuits, Vol. 6) ,
1971, pp. 2-7) to give a positive temperature coefficient to the bridge excitation voltage (Sensors and Actuators, Vol. 4, 1983)
2013, pp. 63-69). Both of the above two examples use bipolar integration technology. However, the goal of integrated converters is to make them multi-functional and intelligent, and the integrated circuit technology to achieve these goals is as follows:
MDS technology is superior to bipolar technology. In other words, future integrated converters will have not only a temperature compensation function, but also an amplification function, multiplex function, on-chip arithmetic processing function, and digital interface with a computer on the same substrate as the semiconductor sensing element. It is required to be equipped with A/D conversion and digital signal processing functions, etc., to make it possible. These requests include:
MOS integration has a proven track record in the field of analog/digital hybrid circuits, including switch capacitor circuits, analog switches, A/D conversion microprocessors, etc., and enables lower power consumption and larger scale integration than bipolar technology. Circuit technology is suitable.

しかしながら、周知の集積化温度補償回路
は、いずれもバイポーラ集積化を前提としてお
り、根本的にMOS集積化プロセスに適合し得
ないものであつた。
However, all known integrated temperature compensation circuits are based on bipolar integration, and are fundamentally incompatible with the MOS integration process.

上記問題点を解決するために、MOS集積化に
適した構成を備えた温度補償回路(特願昭59−
187633号(特開昭61−66106号))が考えられた。
第2図に該温度補償回路の構成を示す。図におい
100は半導体ピエゾ抵抗素子1,2,3,4
から成るブリツジ回路、5は基準電圧発生回路、
6は演算増幅器、7は抵抗、8は抵抗7よりも大
きな正の温度係数を有する感温拡散抵抗である。
この回路では、抵抗7と感温拡散抵抗8とが、演
算増幅器6の出力電圧の一部を反転側入力端子に
戻す負帰還ループを形成している。演算増幅器6
をも含めた回路としては、基準電圧発生回路5の
出力電圧に対する反転形回路になつており、該演
算増幅器6の出力電圧でブリツジ回路100が励
起される構成になつている。
In order to solve the above problems, we developed a temperature compensation circuit with a configuration suitable for MOS integration (Japanese Patent Application No.
No. 187633 (Japanese Unexamined Patent Publication No. 61-66106)) was considered.
FIG. 2 shows the configuration of the temperature compensation circuit. In the figure, 100 indicates semiconductor piezoresistance elements 1, 2, 3, 4.
5 is a reference voltage generation circuit,
6 is an operational amplifier, 7 is a resistor, and 8 is a temperature-sensitive diffused resistor having a larger positive temperature coefficient than the resistor 7.
In this circuit, the resistor 7 and the temperature-sensitive diffused resistor 8 form a negative feedback loop that returns part of the output voltage of the operational amplifier 6 to the inverting input terminal. Operational amplifier 6
The circuit including the reference voltage generating circuit 5 is an inverting circuit for the output voltage of the operational amplifier 6, and the bridge circuit 100 is excited by the output voltage of the operational amplifier 6.

したがつて、いま抵抗7及び感温拡散抵抗8の
抵抗値をR1及びR2とし、基準電圧発生回路5の
出力電圧をVrefとし、抵抗7の温度係数が事実
上温度に不感と見なし得る程度に小さいと仮定す
ると、演算増幅器6の出力電圧すなわちブリツジ
回路100に供給される励起電圧Vexcは次式で
与えられる。
Therefore, assuming that the resistance values of the resistor 7 and the temperature-sensitive diffused resistor 8 are R1 and R2 , and the output voltage of the reference voltage generation circuit 5 is Vref, the temperature coefficient of the resistor 7 can be considered to be virtually insensitive to temperature. Assuming that Vexc is reasonably small, the output voltage of the operational amplifier 6, that is, the excitation voltage Vexc supplied to the bridge circuit 100 , is given by the following equation.

Vexc=−R2 R1・Vref=−R2(O) R1・(1+αt)・Vref ここで、R2(O)及びαは、感温拡散抵抗8の或
る基準温度における抵抗値及び抵抗温度係数、t
は基準温度からの温度遷移である。上式から明ら
かなように、第2図の回路によれば、ブリツジ回
路100の励起電圧Vexcに感温拡散抵抗8の温
度係数αに基づく正の温度係数を与えることがで
き、ピエゾ抵抗係数の負の温度係数に基づくブリ
ツジ回路100の圧力−電気変換感度の負の温度
係数を補償することができる。
Vexc=-R 2 R 1・Vref=-R 2 (O) R 1・(1+αt)・Vref Here, R 2 (O) and α are the resistance value of the temperature-sensitive diffused resistor 8 at a certain reference temperature and Temperature coefficient of resistance, t
is the temperature transition from the reference temperature. As is clear from the above equation, according to the circuit shown in FIG. 2, a positive temperature coefficient based on the temperature coefficient α of the temperature-sensitive diffused resistor 8 can be given to the excitation voltage Vexc of the bridge circuit 100, and the piezoresistance coefficient The negative temperature coefficient of the pressure-to-electrical conversion sensitivity of the bridge circuit 100 based on the negative temperature coefficient can be compensated for.

第2図の回路で、圧力−電気変換感度の温度係
数を零にするためには、ブリツジ励起電圧の温度
係数すなわち感温拡散抵抗8の抵抗温度係数α
(正の値)をブリツジ回路100を構成する半導
体ピエゾ抵抗素子1〜4のピエゾ抵抗係数の温度
係数と等しく選べばよい。これに一般には、半導
体ピエゾ抵抗素子1〜4と感温拡散抵抗8を構成
する領域の不純物濃度をそれぞれ適宜制御するこ
とにより達成される。n形シリコン基板に形成さ
れたp形不純物領域からなる拡散抵抗の場合に
は、表面不純物濃度が3×1018及び2×1020cm-3
の近傍において、抵抗温度係数(正の値)とピエ
ゾ抵抗係数温度係数(負の値)の絶対値が等しく
なる。したがつて表面不純物濃度を上記上面に選
べば、温度補償のための感温拡散抵抗8を半導体
ピエゾ抵抗素子1〜4と同一工程で製造できる。
In the circuit shown in FIG. 2, in order to make the temperature coefficient of pressure-electrical conversion sensitivity zero, the temperature coefficient of the bridge excitation voltage, that is, the resistance temperature coefficient α of the temperature-sensitive diffused resistor 8 must be
(a positive value) should be selected to be equal to the temperature coefficient of the piezoresistance coefficient of the semiconductor piezoresistance elements 1 to 4 constituting the bridge circuit 100. Generally, this is achieved by appropriately controlling the impurity concentrations of the regions constituting the semiconductor piezoresistive elements 1 to 4 and the temperature-sensitive diffused resistor 8, respectively. In the case of a diffused resistor consisting of a p-type impurity region formed on an n-type silicon substrate, the surface impurity concentration is 3×10 18 and 2×10 20 cm -3
In the vicinity of , the absolute values of the temperature coefficient of resistance (positive value) and the temperature coefficient of piezoresistance coefficient (negative value) become equal. Therefore, if the surface impurity concentration is selected to be on the upper surface, the temperature-sensitive diffused resistor 8 for temperature compensation can be manufactured in the same process as the semiconductor piezoresistive elements 1 to 4.

第2図の回路に使用される基準電圧発生回路5
は、エンハンスメント形MOSFETとデブリーシ
ヨン形MOSFETのスレツシヨルド電圧の差を検
出する回路方式(アイ・イー・イー・イー・ジヤ
ーナル・オブ・ソリツド・ステート・サーキツツ
(IEEE J.Solid−State Circuits)13巻、1978年、
767〜774ページ)を用いることによりMOS集積
化プロセスで製造可能であり、これと演算増幅器
6、感温拡散抵抗8、半導体ピエゾ抵抗素子1〜
4を同一半導体基板上に一体化することにより
MOS集積化された温度補償回路が構成される。
Reference voltage generation circuit 5 used in the circuit shown in Fig. 2
A circuit method for detecting the difference in threshold voltage between an enhancement-type MOSFET and a depletion-type MOSFET (IEEE J.Solid-State Circuits), Volume 13, 1978 Year,
(pages 767 to 774), it can be manufactured using a MOS integration process, and in conjunction with this, an operational amplifier 6, a temperature-sensitive diffused resistor 8, and a semiconductor piezoresistive element 1 to
By integrating 4 on the same semiconductor substrate
A MOS-integrated temperature compensation circuit is constructed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上、MOS集積化に適した温度補償回路の従
来例を述べたが、この回路は、半導体ピエゾ抵抗
素子1〜4から成るブリツジ回路100及び感温
拡散抵抗8が大負荷電流の供給には不向きな演算
増幅器6の負荷となるため、半導体ピエゾ抵抗素
子1〜4及び感温拡散抵抗8の抵抗値、すなわち
拡散抵抗長を小さくできない欠点がある。最も広
く用いられているダイアフラム形圧力変換器の場
合、圧力−電気変換感度は半導体ピエゾ抵抗素子
1〜4の長さとともに著しく低下するので、抵抗
長の増大は感度の著しい劣化をまねく。また、感
温拡散抵抗8は圧力不感部であるダイアフラム周
辺の狭い厚肉部領域に配置されるので抵抗長の増
大はパターン配置の困難さを惹起する。これらを
回避する方法は演算増幅器6の出力段の寸法を大
きくし、負荷能力を高めることであるが、出力段
の寸法増大は、前段に影響を及ぼし、演算増幅器
全体の周波数特性を劣化させる。これを防止する
には、さらに前段の寸法を増大させる必要があ
り、結果として演算増幅器の消費電力と占有面積
は著しく増大してしまう。
The conventional example of a temperature compensation circuit suitable for MOS integration has been described above, but this circuit is not suitable for supplying large load current because the bridge circuit 100 consisting of semiconductor piezoresistive elements 1 to 4 and the temperature-sensitive diffused resistor 8 are not suitable for supplying large load current. Since this becomes a load on the operational amplifier 6, there is a drawback that the resistance values of the semiconductor piezoresistive elements 1 to 4 and the temperature-sensitive diffused resistor 8, that is, the length of the diffused resistor cannot be made small. In the case of the most widely used diaphragm pressure transducer, the pressure-to-electrical conversion sensitivity significantly decreases with the length of the semiconductor piezoresistive elements 1 to 4, so an increase in the resistance length leads to a significant deterioration of the sensitivity. Further, since the temperature-sensitive diffused resistor 8 is arranged in a narrow thick region around the diaphragm which is a pressure-insensitive part, an increase in the resistance length causes difficulty in pattern arrangement. A way to avoid these problems is to increase the size of the output stage of the operational amplifier 6 to increase its load capacity, but increasing the size of the output stage affects the previous stage and deteriorates the frequency characteristics of the entire operational amplifier. To prevent this, it is necessary to further increase the size of the front stage, and as a result, the power consumption and occupied area of the operational amplifier significantly increase.

本発明の目的は、MOS集積化に適し、かつ上
記従来技術の欠点が除去された温度補償回路を提
供することにある。
An object of the present invention is to provide a temperature compensation circuit that is suitable for MOS integration and eliminates the drawbacks of the prior art described above.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するために、本発明は、基準電
圧発生回路と、非反転側入力端子が接地された演
算増幅器と、前記演算増幅器の出力端がゲートに
接続されたソースフオロワ構成のFETと、前記
演算増幅器の反転側入力端子と前記基準電圧発生
回路の出力端及び前記ソースフオロワ構成の
FETのソースとの間にそれぞれ接続された抵抗
及び前記抵抗よりも大きな正の温度係数を有する
感温拡散抵抗と、前記ソースフオロワ構成の
FETのソースに接続された負の温度係数を有す
る半導体ピエゾ抵抗素子からなるブリツジ回路と
を設けたものである。
In order to achieve the above object, the present invention provides a reference voltage generation circuit, an operational amplifier whose non-inverting side input terminal is grounded, an FET having a source follower configuration where the output terminal of the operational amplifier is connected to the gate, and the the inverting side input terminal of the operational amplifier, the output terminal of the reference voltage generation circuit, and the source follower configuration.
a resistor connected between the source of the FET and a temperature-sensitive diffused resistor having a larger positive temperature coefficient than the resistor;
A bridge circuit consisting of a semiconductor piezoresistance element having a negative temperature coefficient is connected to the source of the FET.

〔実施例〕〔Example〕

以下、実施例により本発明を詳細に説明する。 Hereinafter, the present invention will be explained in detail with reference to Examples.

第1図は、本発明の一実施例を示す図である。
図において、100は第2図の構成と同じく半導
体ピエゾ抵抗素子1,2,3,4から成るブリツ
ジ回路、10は基準電圧発生回路、20は非反転
側入力端子が接地された演算増幅器、30はゲー
トに該演算増幅器20の出力が接続されたソース
フオロワ構成のFET、11は基準電圧発生回路
10の出力と演算増幅器20の反転側入力端子と
の間に接続された抵抗、12はFET30のソー
スと演算増幅器20の非反転側入力端子との間に
接続された感温拡散抵抗であり、検出回路として
のブリツジ回路100はドレインが電源端子13
に接続されたソースフオロワ構成のFET30の
出力で励起される。
FIG. 1 is a diagram showing an embodiment of the present invention.
In the figure, 100 is a bridge circuit consisting of semiconductor piezoresistance elements 1, 2, 3, and 4 as in the configuration shown in FIG. 2, 10 is a reference voltage generation circuit, 20 is an operational amplifier whose non-inverting side input terminal is grounded, and 30 11 is a resistor connected between the output of the reference voltage generation circuit 10 and the inverting input terminal of the operational amplifier 20, and 12 is the source of the FET 30. The bridge circuit 100 as a detection circuit has a drain connected to the power supply terminal 13.
It is excited by the output of FET 30 in a source follower configuration connected to.

本実施例において、抵抗11及び感温拡散抵抗
12は、第2図における抵抗7及び感温拡散抵抗
8にそれぞれ対応しており、演算増幅器20の負
帰還回路を形成してブリツジ回路100の励起電
圧に感温拡散抵抗12の温度係数に基づく正の温
度係数を与える。抵抗11としては、事実上温度
に不感な抵抗と見なし得る程度に温度係数の小さ
い、例えば金属皮膜、厚膜あるいは薄膜抵抗を、
感温拡散抵抗12としては、抵抗11よりも大き
な正の温度係数を有する、例えば半導体ピエゾ抵
抗素子1〜4と同一基板上の圧力不感部に形成さ
れた拡散抵抗を用いることができる。
In this embodiment, the resistor 11 and the temperature-sensitive diffused resistor 12 respectively correspond to the resistor 7 and the temperature-sensitive diffused resistor 8 in FIG. A positive temperature coefficient based on the temperature coefficient of the temperature-sensitive diffused resistor 12 is given to the voltage. As the resistor 11, for example, a metal film, thick film, or thin film resistor with a small temperature coefficient that can be considered as a virtually temperature-insensitive resistor is used.
As the temperature-sensitive diffused resistor 12, a diffused resistor having a larger positive temperature coefficient than the resistor 11 and formed, for example, in a pressure-insensitive portion on the same substrate as the semiconductor piezoresistive elements 1 to 4 can be used.

本実施例の特徴は、ブリツジ回路100が演算
増幅器20よりソースフオロワ構成のFET30
を介して励起させている点にある。すなわち、第
2図に示した従来の温度補償回路が演算増幅器6
の出力で直接ブリツジ回路100を励起するよう
構成されていたのに対し、本実施例では、ブリツ
ジ回路100が演算増幅器20の出力に直接接続
されるのではなく、ソースフオロワ構成のFET
30を介して励起されるようにその構成が修正さ
れている。
The feature of this embodiment is that the bridge circuit 100 has a source follower configuration FET 30 rather than the operational amplifier 20.
The point is that it is excited through . That is, the conventional temperature compensation circuit shown in FIG.
However, in this embodiment, the bridge circuit 100 is not connected directly to the output of the operational amplifier 20 , but instead is connected directly to the output of the operational amplifier 20, using a FET with a source follower configuration.
Its configuration has been modified to be excited via 30.

本実施例の構成によれば、ブリツジ回路100
及び感温拡散抵抗12はソースフオロワ構成の
FET30によるソースフオロワの負荷となり、
演算増幅器20の負荷は単にFET30のゲート
容量のみとなる。抵抗負荷がなく容量性負荷のみ
となるので演算増幅器20の大幅な低消費電力化
が可能である。さらに、第2図の回路ではインバ
ータあるいはソースフオロワで構成される演算増
幅器6の出力段の一方のMOSFETと負荷である
ブリツジ回路100及び感温拡散抵抗8が並列に
接続されていたためもう一方のMOSFETに負荷
電流と動作点電流の和の電流を流す必要があつた
が、本実施例ではソースフオロワ構成のFET3
0は負荷電流に等しい電流を負担するだけでよ
い。したがつて回路全体としても大幅な低消費電
力化が図れる。
According to the configuration of this embodiment, the bridge circuit 100
and the temperature-sensitive diffused resistor 12 has a source follower configuration.
The source follower is loaded by FET30,
The load on the operational amplifier 20 is simply the gate capacitance of the FET 30. Since there is no resistive load and there is only a capacitive load, the power consumption of the operational amplifier 20 can be significantly reduced. Furthermore, in the circuit shown in Fig. 2, one MOSFET of the output stage of the operational amplifier 6 consisting of an inverter or a source follower is connected in parallel with the bridge circuit 100 and the temperature-sensitive diffused resistor 8, which are the loads, so that the other MOSFET is connected in parallel. It was necessary to flow a current equal to the sum of the load current and the operating point current, but in this example, FET3 of the source follower configuration was used.
0 only needs to bear a current equal to the load current. Therefore, the power consumption of the entire circuit can be significantly reduced.

したがつて、本実施例によれば、大電力を消費
することなく、また大面積を占有することなく、
上記従来技術の欠点がことごとく解消され、
MOS集積化に適した極めて有用な温度補償回路
が得られる。
Therefore, according to this embodiment, without consuming a large amount of power or occupying a large area,
All the drawbacks of the above conventional technology have been completely eliminated,
An extremely useful temperature compensation circuit suitable for MOS integration is obtained.

以上、半導体ピエゾ抵抗素子を用いた圧力変換
器の場合を説明したが、本発明は圧力変換器のみ
ならず、検知対象の変化に応答して抵抗値変化を
示す半導体検知素子を用いる半導体変換器の温度
補償回路に広く適用できる。
Although the case of a pressure transducer using a semiconductor piezoresistive element has been described above, the present invention is applicable not only to a pressure transducer but also to a semiconductor transducer using a semiconductor sensing element that shows a change in resistance value in response to a change in a detection target. It can be widely applied to temperature compensation circuits.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、上記従来技術の
欠点がことごとく解消され、MOS集積化に適し
た極めて有用な温度補償回路が実現される。本発
明による温度補償回路は半導体変換器のマイクロ
コンピユータとの組合せによるインテリジエント
化に寄与し、その効果は大きいものである。
As described above, according to the present invention, all the drawbacks of the above-mentioned conventional techniques are eliminated, and an extremely useful temperature compensation circuit suitable for MOS integration is realized. The temperature compensation circuit according to the present invention contributes to making the semiconductor converter intelligent by combining it with a microcomputer, and its effects are significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す回路図、第2
図は半導体変換器の温度補償回路の従来例を示す
回路図である。 100……ブリツジ回路、1,2,3,4……
半導体ピエゾ抵抗素子、10……基準電圧発生回
路、20……演算増幅器、11……抵抗、12…
…感温拡散抵抗、30……ソースフオロワ構成の
FET。
Figure 1 is a circuit diagram showing one embodiment of the present invention, Figure 2 is a circuit diagram showing an embodiment of the present invention.
The figure is a circuit diagram showing a conventional example of a temperature compensation circuit for a semiconductor converter. 100... Bridge circuit, 1, 2, 3, 4...
Semiconductor piezoresistive element, 10... Reference voltage generation circuit, 20... Operational amplifier, 11... Resistor, 12...
…Temperature-sensitive diffusion resistance, 30…Source-follower configuration
FET.

Claims (1)

【特許請求の範囲】[Claims] 1 基準電圧発生回路と、非反転側入力端子が接
地された演算増幅器と、前記演算増幅器の出力端
がゲートに接続されたソースフオロワ構成の
FETと、前記演算増幅器の反転側入力端子と前
記基準電圧発生回路の出力端及び前記ソースフオ
ロワ構成のFETのソースとの間にそれぞれ接続
された抵抗及び前記抵抗よりも大きな正の温度係
数を有する感温拡散抵抗と、前記ソースフオロワ
構成のFETのソースに接続された負の温度係数
を有する半導体ピエゾ抵抗素子からなるブリツジ
回路とを備えたことを特徴とする温度補償回路。
1 A source follower configuration including a reference voltage generation circuit, an operational amplifier whose non-inverting input terminal is grounded, and an output terminal of the operational amplifier connected to a gate.
an FET, a resistor connected between the inverting input terminal of the operational amplifier, the output terminal of the reference voltage generating circuit, and the source of the FET in the source follower configuration, and a resistor having a positive temperature coefficient larger than the resistor; 1. A temperature compensation circuit comprising: a thermal diffusion resistor; and a bridge circuit comprising a semiconductor piezoresistance element having a negative temperature coefficient and connected to the source of the FET having the source follower configuration.
JP26783584A 1984-12-19 1984-12-19 Temperature compensation circuit Granted JPS61144884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26783584A JPS61144884A (en) 1984-12-19 1984-12-19 Temperature compensation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26783584A JPS61144884A (en) 1984-12-19 1984-12-19 Temperature compensation circuit

Publications (2)

Publication Number Publication Date
JPS61144884A JPS61144884A (en) 1986-07-02
JPH0578951B2 true JPH0578951B2 (en) 1993-10-29

Family

ID=17450279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26783584A Granted JPS61144884A (en) 1984-12-19 1984-12-19 Temperature compensation circuit

Country Status (1)

Country Link
JP (1) JPS61144884A (en)

Also Published As

Publication number Publication date
JPS61144884A (en) 1986-07-02

Similar Documents

Publication Publication Date Title
US5563760A (en) Temperature sensing circuit
US5039878A (en) Temperature sensing circuit
US4556807A (en) Pressure transducer with temperature compensation circuit
US4680963A (en) Semiconductor flow velocity sensor
US4004462A (en) Temperature transducer
JPH0570326B2 (en)
US4558238A (en) Pressure transducer using integrated circuit elements
JP4388144B2 (en) Reference circuit and method
JP2575611B2 (en) Integrated circuit semiconductor converter
JPH0578951B2 (en)
JP4553084B2 (en) Physical quantity detection circuit
US5663574A (en) Power semiconductor component with monolithically integrated sensor arrangement as well as manufacture and employment thereof
US6552602B2 (en) Circuit generating a stable reference voltage with respect to temperature, particularly for CMOS processes
Dobkin Monolithic temperature transducer
JPS6197543A (en) Compensation circuit for semiconductor pressure sensor
JPH033962B2 (en)
JPH0721402B2 (en) Temperature compensation circuit
JPH0721401B2 (en) Temperature compensation circuit
JPH0629751A (en) Temperature compensated amplifier
US20030184327A1 (en) Temperature dependent sensitivity compensation structure of sensor
JP4424762B2 (en) pressure sensor
JPS63210635A (en) Detection circuit of semiconductor sensor
JPH0569457B2 (en)
CN117705310A (en) Integrated high-sensitivity temperature sensing chip with MOS structure
JPH0736506B2 (en) Voltage comparator

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term