JPH0578775A - Magnesium alloy excellent in corrosion resistance - Google Patents

Magnesium alloy excellent in corrosion resistance

Info

Publication number
JPH0578775A
JPH0578775A JP27036791A JP27036791A JPH0578775A JP H0578775 A JPH0578775 A JP H0578775A JP 27036791 A JP27036791 A JP 27036791A JP 27036791 A JP27036791 A JP 27036791A JP H0578775 A JPH0578775 A JP H0578775A
Authority
JP
Japan
Prior art keywords
corrosion resistance
crystallized substance
dispersed
pearlite
solid solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27036791A
Other languages
Japanese (ja)
Inventor
Hidenori Iba
英紀 射場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP27036791A priority Critical patent/JPH0578775A/en
Publication of JPH0578775A publication Critical patent/JPH0578775A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain an Mg alloy excellent in corrosion resistance by regulating the grain size of a beta crystallized substance, in an equilibrium state, to be dispersed to a specific value or below in an Mg alloy containing specific amounts of Al. CONSTITUTION:This is an Mg alloy containing 2-12wt.% Al. In this alloy, a beta crystallized substance (Mg17Al12) of <=10mum grain size in an equilibrium state is dispersed or a pearlite-state precipitate of alpha solid solution and beta crystallized substance is formed by >=60% by area ratio by means of heat treatment. The beta crystallized substance is dispersed in an alpha-Mg solid solution. The beta crystallized substance can be finely dispersed by means of rapid cooling, addition of a third element, etc., and corrosion resistance can be remarkably improved when the grain size of this beta crystallized substance is regulated to <=10mum. There are cases where the beta crystallized substance is dispersed in the grains and also where it is grown into pearlite state. Because corrosion resistance cane rapidly be improved when the amount of the beta crystallized substance in pearlite state reaches the prescribed value, the area ratio is regulated to >=60%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は耐食性に優れたマグネシ
ウム合金に関する。
TECHNICAL FIELD The present invention relates to a magnesium alloy having excellent corrosion resistance.

【0002】[0002]

【従来の技術】マグネシウムの比重は1.74で、工業
用金属材料中最も軽量である上、機械的性質もアルミニ
ウム合金に比較して見劣りしないので、主として航空機
あるいは自動車材料、特に軽量化や低燃費化に対応する
材料として注目されてきた。
2. Description of the Related Art Magnesium has a specific gravity of 1.74, which is the lightest in the weight of industrial metal materials, and its mechanical properties are not inferior to those of aluminum alloys. It has been attracting attention as a material that responds to fuel consumption.

【0003】従来のマグネシウム合金のうちMg−Al
系合金(ASTM規格−AM60B、AM50A、AM
20A等)は、2〜12%のAlを含み、これに少量の
Mnが添加されたもので、Mg側はα−Mg固溶体とβ
−Mg17Al12化合物の共晶系で、熱処理によってMg
17Al12の中間相の析出による時効硬化が生ずる。ま
た、溶体化によって強さと靱性が向上する。
Among conventional magnesium alloys, Mg-Al
Alloys (ASTM standard-AM60B, AM50A, AM
20A) contains 2 to 12% of Al, to which a small amount of Mn is added, and the Mg side is α-Mg solid solution and β.
-Mg 17 Al 12 compound eutectic system
Age hardening occurs due to the precipitation of the intermediate phase of 17 Al 12 . Further, solution treatment improves strength and toughness.

【0004】また、Alを5〜10%、Znを1〜3%
含有するMg−Al−Zn系(ASTM規格−AZ91
D等)では、Mg側に広いα−固溶体領域があり、Al
とZnの量によってMg17Al12かMg32(Al,Z
n)49化合物のいずれかが、または両方の化合物が晶出
する。鋳造のままでも強靱で耐食性に優れているが、時
効熱処理によって機械的性質が改善され、また焼入れ焼
戻しにより粒界に化合物相がパーライト状に析出する。
Further, Al is 5 to 10% and Zn is 1 to 3%.
Mg-Al-Zn system contained (ASTM standard-AZ91
D) has a large α-solid solution region on the Mg side,
Mg 17 Al 12 or Mg 32 (Al, Z
n) Crystallization of either or both of the 49 compounds. Although as-cast, it is tough and has excellent corrosion resistance, but mechanical properties are improved by aging heat treatment, and a compound phase precipitates in pearlite form at grain boundaries by quenching and tempering.

【0005】[0005]

【発明が解決しようとする課題】しかし、これらアルミ
ニウムを含有するマグネシウム合金は耐食性が良くない
ので、部品適用の大きな障害となっており、そのため鋳
物、展伸材を問わず適当に防食処理を施す必要がある。
However, these magnesium alloys containing aluminum have poor corrosion resistance, which is a major obstacle to the application of parts. Therefore, appropriate corrosion protection is applied regardless of cast or wrought material. There is a need.

【0006】マグネシウム合金の耐食性は、ダイカスト
材よりも重力鋳造材において特に劣り、図3にAZ91
材の塩水噴霧試験結果を示すが、400時間における腐
食減量はダイカスト材で0.12〜0.18mg/mm
2であるのに対して、重力鋳造材の腐食減量は0.6m
g/mm2にもなる。
The corrosion resistance of magnesium alloys is particularly inferior to gravity cast materials compared to die cast materials.
The results of the salt spray test of the material are shown below. The corrosion weight loss at 400 hours is 0.12 to 0.18 mg / mm for the die cast material.
2 , the weight loss of gravity cast material is 0.6m
It can be as high as g / mm 2 .

【0007】本発明は従来のアルミニウムを含有するマ
グネシウム合金が耐食性に劣るという問題点を解決する
ためになされたものであって、耐食性に優れたマグネシ
ウム合金を提供することを目的とする。
The present invention has been made to solve the problem that conventional magnesium alloys containing aluminum have poor corrosion resistance, and an object thereof is to provide a magnesium alloy having excellent corrosion resistance.

【0008】[0008]

【課題を解決するための手段】発明者は、図3に示すA
Z91D合金のダイカスト材の鋳肌表面、加工面、重力
鋳造材の加工面について塩水噴霧試験を行った結果か
ら、β晶出物粒径と耐食性との間に密接な関連性がある
ことに気付いた。そこで、図3の塩水噴霧試験結果をも
とに、図4に示すように、β晶出物粒径と耐食性の関係
をまとめた。図4に示したように、β晶出物の粒径が減
少するとともに耐食性が向上していることが明らかとな
った。
The inventor has shown that A shown in FIG.
From the results of a salt spray test on the casting surface of Z91D alloy die cast material, the machined surface, and the machined surface of gravity cast material, we found that there is a close relationship between β crystallized grain size and corrosion resistance. It was Therefore, based on the salt spray test results of FIG. 3, as shown in FIG. 4, the relationship between the β crystallized product particle size and the corrosion resistance was summarized. As shown in FIG. 4, it became clear that the grain size of the β crystallized substance was reduced and the corrosion resistance was improved.

【0009】この知見をもとに、さらにβ晶出物粒径と
耐食性との関係を明らかにするため、鋭意研究を続けた
結果、β晶出物の粒径をダイカスト材以上に小さいある
一定範囲以下にすることにより、耐食性が著しく向上す
ることを新たに見出して本発明を完成した。
Based on this knowledge, as a result of further studies to clarify the relationship between the β crystallized substance particle size and the corrosion resistance, as a result, the β crystallized substance particle size was smaller than that of the die-cast material at a certain level. The present invention has been completed by newly finding that the corrosion resistance is remarkably improved when the content is within the range.

【0010】本発明の耐食性に優れたマグネシウム合金
は、アルミニウムを2〜12重量%含有するマグネシウ
ム合金であって、粒径10μm以下の平衡状態のβ晶出
物(Mg17Al12)が分散していることを要旨とする。
The magnesium alloy excellent in corrosion resistance according to the present invention is a magnesium alloy containing 2 to 12% by weight of aluminum, and β crystallized products (Mg 17 Al 12 ) in an equilibrium state having a grain size of 10 μm or less are dispersed. That is the summary.

【0011】Mg−Al系の合金は、鋳造したままの状
態では、図10のダイカスト材(AZ91D)の金属組
織を表す顕微鏡写真に示すように、β晶出物はα−Mg
固溶体の中に分散している。また、重力鋳造後熱処理
(例えばT−6処理)を施すと、図11の重力鋳造熱処
理材(AZ91C−T6)の金属組織を表す顕微鏡写真
に示すように、β析出物が形成される。これらβ相化合
物はいずれもAlリッチなMg17Al12金属化合物であ
ることが知られている。
As shown in the micrograph of the metal structure of the die-cast material (AZ91D) shown in FIG. 10, the Mg-Al alloy in the as-cast state has β-crystallized products of α-Mg.
Dispersed in solid solution. Further, when heat treatment after gravity casting (for example, T-6 treatment) is performed, β precipitates are formed as shown in the micrograph showing the metal structure of the gravity cast heat treated material (AZ91C-T6) in FIG. 11. It is known that all of these β-phase compounds are Al-rich Mg 17 Al 12 metal compounds.

【0012】このβ晶出物は急冷、第3元素の添加など
により微細に分散させることができる。また、β析出物
は粒内に微細に分散する場合と、粒界から数μmオーダ
の層間隔でパーライト状に成長する場合とがある。
The β crystallized product can be finely dispersed by quenching, addition of a third element, or the like. In addition, the β precipitate may be finely dispersed in the grain, or may be grown in a pearlite state at a layer interval of several μm from the grain boundary.

【0013】そこで、発明者はβ析出物の形態と耐食性
の関係について検討した。図6はAZ91D合金のF
(鋳造のまま)材、T4処理(溶体化)材、T6処理
(溶体化−時効)材についての塩水噴霧試験結果を示
す。図6に示す結果より、耐食性はβ析出物がミクロに
分散しているT6処理材が最も良かった。
Therefore, the inventor examined the relationship between the morphology of β precipitates and corrosion resistance. Figure 6 shows F of AZ91D alloy
The salt spray test results of the (as cast) material, the T4 treated (solution treated) material, and the T6 treated (solution treated-aging) material are shown. From the results shown in FIG. 6, the corrosion resistance was highest in the T6 treated material in which β precipitates were microscopically dispersed.

【0014】この知見をもとに、発明者はさらにβ析出
物の形態を変化させて耐食性との関係を研究した。その
結果、粒界から発生するパーライト状のβ析出物が所定
量に達すると、急激に耐食性が向上することを新たに見
出して本発明を完成した。
Based on this knowledge, the inventor further studied the relationship with the corrosion resistance by changing the morphology of β precipitates. As a result, the inventors have newly found that when the amount of pearlite-like β precipitates generated from grain boundaries reaches a predetermined amount, the corrosion resistance is rapidly improved, and the present invention has been completed.

【0015】第2の発明の耐食性に優れたマグネシウム
合金は、アルミニウムを2〜12重量%含有するマグネ
シウム合金であって、α固溶体とβ相化合物(Mg17
12)のパーライト状析出物を熱処理により面積率で6
0%以上形成させたことを要旨とする。
The magnesium alloy excellent in corrosion resistance of the second invention is a magnesium alloy containing 2 to 12% by weight of aluminum, wherein the α solid solution and the β phase compound (Mg 17 A
The area ratio of the pearlite-like precipitates of ( 12 ) is 6 by heat treatment.
The main point is to form 0% or more.

【0016】本発明が適用されるアルミニウムを2〜1
2重量%含有するマグネシウム合金は、2〜12%のA
lを含み、これに少量のMnが添加された合金で、例え
ばMg−Al系合金(ASTM規格−AM60B、AM
50A、AM20A等)、あるいはAlを5〜10%、
Znを1〜3%含有する合金、例えばMg−Al−Zn
系(ASTM規格−AZ91D等)である。
The aluminum to which the present invention is applied is 2-1.
A magnesium alloy containing 2% by weight has an A content of 2 to 12%.
alloy containing 1 and a small amount of Mn added thereto, for example, Mg-Al alloy (ASTM standard-AM60B, AM
50A, AM20A, etc.) or 5-10% of Al,
An alloy containing 1 to 3% Zn, for example Mg-Al-Zn
System (ASTM standard-AZ91D, etc.).

【0017】α−Mg固溶体中に晶出または析出するβ
相化合物は、主としてMg17Al12であるが、Mg
32(Al,Zn)49化合物が一部混入しても構わない。
また、β晶出物の粒径は鋳造後の冷却速度を変化させる
ことにより制御することができる。さらに、所望の面積
率でβ相化合物をパーライト状に析出させるには、T6
処理において、時効温度および時間を適宜選択すること
によって達成される。また、α固溶体とβ相化合物をパ
ーライト状に面積率60%以上で析出させるには、Al
量が5%以上含まれるほうが容易であるので、好まし
い。
Β crystallized or precipitated in α-Mg solid solution
The phase compound is mainly Mg 17 Al 12 ,
A part of 32 (Al, Zn) 49 compound may be mixed.
Further, the grain size of the β crystallized product can be controlled by changing the cooling rate after casting. Further, in order to precipitate the β-phase compound in a pearlite state at a desired area ratio, T6 is used.
This can be achieved by appropriately selecting the aging temperature and time in the treatment. In order to precipitate the α solid solution and the β phase compound in a pearlite state with an area ratio of 60% or more, Al
It is preferable that the amount is 5% or more because it is easy.

【0018】[0018]

【作用】アルミニウムを含有するマグネシウム合金にお
いて、α−固溶体とβ化合物が共存する場合、腐食はα
固溶体から優先的に進行する。α相内を進行する腐食は
β相界面に至ると停止する。これはAlリッチのβ相化
合物に形成する酸化膜が強固であるためである。
[Function] In a magnesium alloy containing aluminum, when α-solid solution and β compound coexist, corrosion is α
Preferentially progresses from solid solution. Corrosion that proceeds in the α phase stops at the β phase interface. This is because the oxide film formed on the Al-rich β-phase compound is strong.

【0019】このような腐食の機構を図7のβ相化合物
が微細に晶出している場合、図8のパーライト状に析出
している場合、図9の粗大粒の場合について、模式的に
表した図によって説明する。図7〜9はいずれも同じ倍
率であって、単位面積当たりの腐食の核が3個の場合に
ついて示したものである。図9のβ晶出物粒径が大きい
場合、腐食がβ晶出物に至るまで進行すると、α固溶体
一個当たりの面積が大きいので、広範囲にわたって腐食
が拡大する。
The above corrosion mechanism is schematically shown in the case where the β-phase compound in FIG. 7 is finely crystallized, in the case of pearlite-like precipitation in FIG. 8 and in the case of coarse grains in FIG. It will be described with reference to the drawings. 7 to 9 show the case where the magnification is the same and there are three corrosion nuclei per unit area. When the β crystallized substance particle size in FIG. 9 is large, when the corrosion progresses to the β crystallized substance, the area per α solid solution is large, so that the corrosion spreads over a wide range.

【0020】然るに、図7のβ相化合物が微細に晶出し
ている場合、図8のパーライト状に析出している場合
は、β相化合物に囲まれたα固溶体の面積が非常に小さ
いので、腐食がβ相化合物に至るまで進行しても、腐食
される面積は僅かな範囲に止まる。
However, when the β-phase compound of FIG. 7 is finely crystallized or when it is precipitated in the pearlite form of FIG. 8, the area of the α solid solution surrounded by the β-phase compound is very small. Even if the corrosion progresses to reach the β-phase compound, the area to be corroded remains in a small range.

【0021】本発明合金は、α固溶体中に粒径10μm
以下の微細なβ晶出物を分散させたので、図7に示した
ように、腐食がβ晶出物に至るまで進行しても、腐食さ
れる面積は僅かな範囲に止まり、耐食性に優れた合金と
なる。また、第2の発明合金はパーライト状析出物を熱
処理により面積率で60%以上形成させたので、図8に
示すように、β相化合物に囲まれたα固溶体の面積が非
常に狭く小さいので、同様に腐食される面積は僅かな範
囲に止まり、耐食性に優れた合金となる。
The alloy of the present invention has a particle size of 10 μm in α solid solution.
Since the following fine β crystallized substances were dispersed, as shown in FIG. 7, even if the corrosion progressed to β crystallized substances, the corroded area remained in a small range and the corrosion resistance was excellent. It becomes an alloy. Further, in the second invention alloy, since the pearlite precipitates were formed by the heat treatment in an area ratio of 60% or more, the area of the α solid solution surrounded by the β phase compound was very narrow and small as shown in FIG. Similarly, the area that is corroded remains in a small range, and the alloy has excellent corrosion resistance.

【0022】本発明において、平衡状態のβ晶出物(M
17Al12)の粒径を10μm以下としたのは、粒径が
10μmを越えると、α固溶体の面積が大きくなり、耐
食性向上の効果が得られないからである。また、熱処理
により形成されるパーライト状析出物を面積率で60%
以上としたのは、面積率が60%以下になると、α固溶
体の面積が多くなり、耐食性向上の効果が得られないか
らである。
In the present invention, the β crystallized product (M
The grain size of g 17 Al 12 ) is set to 10 μm or less because if the grain size exceeds 10 μm, the area of the α solid solution becomes large and the effect of improving the corrosion resistance cannot be obtained. In addition, the area ratio of pearlite precipitates formed by heat treatment is 60%.
The reason for the above is that when the area ratio is 60% or less, the area of the α solid solution increases and the effect of improving the corrosion resistance cannot be obtained.

【0023】[0023]

【実施例】本発明の実施例を説明し、本発明の効果を明
らかにする。 (実施例1)水冷銅ハースに、溶湯の量を20g〜15
0gの間で6段階に替えて冷却速度を変化させ、AZ9
1Dの溶湯を流し込み、棒状のテストピースを作製し
た。各々のテストピースの表面のβ晶出物の粒径を測定
した結果を図5に冷却速度との関係図として示した。
EXAMPLES Examples of the present invention will be described to clarify the effects of the present invention. (Example 1) The amount of molten metal was 20 g to 15 in a water-cooled copper hearth.
Change the cooling rate in 6 steps between 0g and AZ9
A 1D molten metal was poured into it to prepare a rod-shaped test piece. The results of measuring the particle size of β crystallized substances on the surface of each test piece are shown in FIG. 5 as a relationship diagram with the cooling rate.

【0024】さらにこのテストピースを用いて、400
時間の塩水噴霧試験を行い腐食減量を測定した。得られ
た結果は、β晶出物の粒径との関係図として図1に示し
た。図1に示したように、腐食減量は結晶粒径が10μ
m以下になると急激に減少し、7μmに達すると腐食減
量の減少量は飽和する。この結果、β晶出物の粒径をダ
イカスト材以上に小さく10μm以下にすることによ
り、耐食性に優れたマグネシウム合金の得られることが
確認された。
Further, using this test piece, 400
A salt spray test was performed for an hour to measure the corrosion weight loss. The obtained results are shown in FIG. 1 as a relationship diagram with the particle size of β crystallized substances. As shown in Fig. 1, the corrosion weight loss is due to the crystal grain size of 10μ.
When it becomes less than m, it sharply decreases, and when it reaches 7 μm, the decrease amount of corrosion weight loss becomes saturated. As a result, it was confirmed that a magnesium alloy having excellent corrosion resistance can be obtained by making the grain size of the β crystallized product smaller than that of the die-cast material and 10 μm or less.

【0025】また、図5との関係から、104℃/se
c以上の冷却速度では、それ以上の耐食性の向上はない
ことがわかった。むしろ早過ぎる冷却は過飽和固溶体を
形成し、β相晶出物の量を減少させるため、却って逆効
果となると考えられる。
From the relationship with FIG. 5, 10 4 ° C / se
It was found that at a cooling rate of c or higher, there is no further improvement in corrosion resistance. Rather, premature cooling forms a supersaturated solid solution and reduces the amount of β-phase crystallized substances, which is rather thought to be the opposite effect.

【0026】(実施例2)AZ91D合金を溶体化処理
した後、時効の温度と時間を制御し、α固溶体とβ相化
合物とのパーライト状析出物を、面積率で30〜100
%の間で変化させて、析出させた。得られた試料につい
て、400時間の塩水噴霧試験を行い腐食減量を測定し
た。得られた結果は図2にパーライト状析出物の面積率
との関係図として示した。
(Example 2) After subjecting the AZ91D alloy to solution treatment, the aging temperature and time are controlled to form a pearlite precipitate of an α solid solution and a β phase compound in an area ratio of 30 to 100.
It was made to precipitate by changing between%. The obtained sample was subjected to a salt spray test for 400 hours to measure the corrosion weight loss. The obtained results are shown in FIG. 2 as a relational diagram with the area ratio of the pearlite precipitates.

【0027】図2から明らかなように、腐食減量は面積
率が30%から60%までは急激に減少し、60%から
100%まではなだらかに減少することがわかった。以
上の結果から、α固溶体とβ相化合物のパーライト状析
出物を熱処理により面積率で60%以上形成させること
により、耐食性に優れたマグネシウム合金の得られるこ
とが確認された。
As is clear from FIG. 2, it was found that the corrosion weight loss drastically decreases from the area ratio of 30% to 60% and gradually decreases from 60% to 100%. From the above results, it was confirmed that a magnesium alloy excellent in corrosion resistance can be obtained by forming a pearlite precipitate of an α solid solution and a β phase compound by heat treatment so as to have an area ratio of 60% or more.

【0028】[0028]

【発明の効果】本発明の耐食性に優れたマグネシウム合
金は以上説明したように、アルミニウムを2〜12重量
%含有するマグネシウム合金において、粒径10μm以
下の平衡状態のβ相化合物(Mg17Al12)を分散せし
めるか、あるいはα固溶体とβ晶出物(Mg17Al12
のパーライト状析出物を熱処理により面積率で60%以
上形成させたことを特徴とするものであって、β相化合
物に囲まれたα固溶体の面積が非常に小さいので、α固
溶体が腐食されてβ相化合物に至るまで腐食が進行して
も、腐食される面積は僅かな範囲に止まるため、耐食性
に優れたマグネシウム合金となる。
As described above, the magnesium alloy excellent in corrosion resistance of the present invention is a magnesium alloy containing 2 to 12% by weight of aluminum, and is a β-phase compound (Mg 17 Al 12 ) in equilibrium with a grain size of 10 μm or less. ) Is dispersed, or α solid solution and β crystallized product (Mg 17 Al 12 ).
The pearlite-like precipitate of No. 2 was formed by heat treatment in an area ratio of 60% or more. Since the area of the α solid solution surrounded by the β phase compound is very small, the α solid solution is corroded. Even if the corrosion progresses up to the β-phase compound, the corroded area remains in a small range, so that the magnesium alloy has excellent corrosion resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】β晶出物の結晶粒径と塩水噴霧試験における腐
食減量との関係を示す線図である。
FIG. 1 is a diagram showing the relationship between the crystal grain size of β crystallized substances and the corrosion weight loss in a salt spray test.

【図2】β化合物のパーライト状析出物の面積率と塩水
噴霧試験における腐食減量との関係を示す線図である。
FIG. 2 is a graph showing the relationship between the area ratio of pearlite precipitates of β compound and the corrosion weight loss in a salt spray test.

【図3】AZ91材の塩水噴霧試験による腐食減量と噴
霧時間の関係を示す線図である。
FIG. 3 is a diagram showing the relationship between the corrosion weight loss and the spraying time of a salt spray test of AZ91 material.

【図4】AZ91材の塩水噴霧試験による腐食減量とβ
晶出物粒径との関係を示す線図である。
[Fig. 4] Corrosion weight loss and β by salt spray test of AZ91 material
It is a diagram which shows the relationship with a crystallized substance particle size.

【図5】実施例1における冷却速度とβ晶出物の結晶粒
径との関係を示す線図である。
5 is a diagram showing the relationship between the cooling rate and the crystal grain size of β crystallized substances in Example 1. FIG.

【図6】AZ91材の熱処理材の塩水噴霧試験による腐
食減量と噴霧時間の関係を示す線図である。
FIG. 6 is a diagram showing the relationship between the corrosion weight loss and the spray time of a heat-treated AZ91 material by a salt spray test.

【図7】β相化合物が微細に晶出している場合の腐食の
状況を模式的に示す図である。
FIG. 7 is a diagram schematically showing a situation of corrosion when a β-phase compound is finely crystallized.

【図8】β相化合物がパーライト状に析出している場合
の腐食の状況を模式的に示す図である。
FIG. 8 is a diagram schematically showing a situation of corrosion when a β-phase compound is precipitated in a pearlite form.

【図9】β晶出物が粗大に晶出している場合の腐食の状
況を模式的に示す図である。
FIG. 9 is a diagram schematically showing a situation of corrosion when β crystallized substances are coarsely crystallized.

【図10】ダイカスト材(AZ91D)の金属組織を表
す100倍の顕微鏡写真である。
FIG. 10 is a 100 × micrograph showing the metal structure of a die cast material (AZ91D).

【図11】重力鋳造熱処理材(AZ91C−T6)の金
属組織を表す100倍の顕微鏡写真である。
FIG. 11 is a 100 × micrograph showing the metal structure of a gravity cast heat-treated material (AZ91C-T6).

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 アルミニウムを2〜12重量%含有する
マグネシウム合金であって、粒径10μm以下の平衡状
態のβ晶出物(Mg17Al12)が分散していることを特
徴とする耐食性に優れたマグネシウム合金。
1. A magnesium alloy containing 2 to 12% by weight of aluminum, wherein β crystallized substances (Mg 17 Al 12 ) in an equilibrium state having a grain size of 10 μm or less are dispersed, and the corrosion resistance is improved. Excellent magnesium alloy.
【請求項2】 アルミニウムを2〜12重量%含有する
マグネシウム合金であって、α固溶体とβ相化合物(M
17Al12)のパーライト状析出物を熱処理により面積
率で60%以上形成させたことを特徴とする耐食性に優
れたマグネシウム合金。
2. A magnesium alloy containing 2 to 12% by weight of aluminum, wherein α solid solution and β phase compound (M
A magnesium alloy excellent in corrosion resistance, characterized in that pearlite precipitates of g 17 Al 12 ) are formed by heat treatment in an area ratio of 60% or more.
JP27036791A 1991-09-20 1991-09-20 Magnesium alloy excellent in corrosion resistance Pending JPH0578775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27036791A JPH0578775A (en) 1991-09-20 1991-09-20 Magnesium alloy excellent in corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27036791A JPH0578775A (en) 1991-09-20 1991-09-20 Magnesium alloy excellent in corrosion resistance

Publications (1)

Publication Number Publication Date
JPH0578775A true JPH0578775A (en) 1993-03-30

Family

ID=17485280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27036791A Pending JPH0578775A (en) 1991-09-20 1991-09-20 Magnesium alloy excellent in corrosion resistance

Country Status (1)

Country Link
JP (1) JPH0578775A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0892074A1 (en) * 1997-07-17 1999-01-20 Matsushita Electric Industrial Co., Ltd. Magnesium alloy molded product and method for producing the same
US6544357B1 (en) * 1994-08-01 2003-04-08 Franz Hehmann Selected processing for non-equilibrium light alloys and products
WO2004005564A1 (en) * 2002-07-05 2004-01-15 Daimlerchrysler Ag Am-magnesium pressure die cast alloy and method for producing an interior fitting from an am-magnesium pressure die cast alloy
WO2004005563A1 (en) * 2002-07-05 2004-01-15 Daimlerchrysler Ag As-magnesium pressure die cast alloy and method for producing a subassembly part from an as-magnesium pressure die cast alloy of this type
CN100432267C (en) * 2006-09-22 2008-11-12 中国科学院长春应用化学研究所 High-strength magnesium based composite material and preparation method thereof
JP2010106335A (en) * 2008-10-31 2010-05-13 Miyamoto Kogyo Kk Magnesium alloy for forging
WO2010103971A1 (en) * 2009-03-12 2010-09-16 住友電気工業株式会社 Magnesium alloy member
WO2011096294A1 (en) * 2010-02-08 2011-08-11 住友電気工業株式会社 Magnesium alloy plate
JP2012107273A (en) * 2010-11-16 2012-06-07 Sumitomo Electric Ind Ltd Magnesium alloy sheet
JP2012107285A (en) * 2010-11-16 2012-06-07 Sumitomo Electric Ind Ltd Magnesium alloy member
WO2012091112A1 (en) * 2010-12-28 2012-07-05 住友電気工業株式会社 Magnesium alloy material
JP2012140656A (en) * 2010-12-28 2012-07-26 Sumitomo Electric Ind Ltd Magnesium alloy material
JP2012140657A (en) * 2010-12-28 2012-07-26 Sumitomo Electric Ind Ltd Magnesium alloy material
JP2012140655A (en) * 2010-12-28 2012-07-26 Sumitomo Electric Ind Ltd Magnesium alloy sheet material
US9222161B2 (en) 2010-11-16 2015-12-29 Sumitomo Electric Industries, Ltd. Magnesium alloy sheet and method for producing same

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6544357B1 (en) * 1994-08-01 2003-04-08 Franz Hehmann Selected processing for non-equilibrium light alloys and products
US6908516B2 (en) 1994-08-01 2005-06-21 Franz Hehmann Selected processing for non-equilibrium light alloys and products
EP0892074A1 (en) * 1997-07-17 1999-01-20 Matsushita Electric Industrial Co., Ltd. Magnesium alloy molded product and method for producing the same
WO2004005564A1 (en) * 2002-07-05 2004-01-15 Daimlerchrysler Ag Am-magnesium pressure die cast alloy and method for producing an interior fitting from an am-magnesium pressure die cast alloy
WO2004005563A1 (en) * 2002-07-05 2004-01-15 Daimlerchrysler Ag As-magnesium pressure die cast alloy and method for producing a subassembly part from an as-magnesium pressure die cast alloy of this type
CN100432267C (en) * 2006-09-22 2008-11-12 中国科学院长春应用化学研究所 High-strength magnesium based composite material and preparation method thereof
JP2010106335A (en) * 2008-10-31 2010-05-13 Miyamoto Kogyo Kk Magnesium alloy for forging
JP2010209452A (en) * 2009-03-12 2010-09-24 Sumitomo Electric Ind Ltd Magnesium alloy member
WO2010103971A1 (en) * 2009-03-12 2010-09-16 住友電気工業株式会社 Magnesium alloy member
WO2011096294A1 (en) * 2010-02-08 2011-08-11 住友電気工業株式会社 Magnesium alloy plate
JP2011179112A (en) * 2010-02-08 2011-09-15 Sumitomo Electric Ind Ltd Magnesium alloy plate
US9181608B2 (en) 2010-02-08 2015-11-10 Sumitomo Electric Industries, Ltd. Magnesium alloy sheet
JP2012107273A (en) * 2010-11-16 2012-06-07 Sumitomo Electric Ind Ltd Magnesium alloy sheet
JP2012107285A (en) * 2010-11-16 2012-06-07 Sumitomo Electric Ind Ltd Magnesium alloy member
US9222161B2 (en) 2010-11-16 2015-12-29 Sumitomo Electric Industries, Ltd. Magnesium alloy sheet and method for producing same
WO2012091112A1 (en) * 2010-12-28 2012-07-05 住友電気工業株式会社 Magnesium alloy material
JP2012140656A (en) * 2010-12-28 2012-07-26 Sumitomo Electric Ind Ltd Magnesium alloy material
JP2012140657A (en) * 2010-12-28 2012-07-26 Sumitomo Electric Ind Ltd Magnesium alloy material
JP2012140655A (en) * 2010-12-28 2012-07-26 Sumitomo Electric Ind Ltd Magnesium alloy sheet material

Similar Documents

Publication Publication Date Title
Lee et al. Grain refinement of magnesium
Schumacher et al. New studies of nucleation mechanisms in aluminium alloys: implications for grain refinement practice
EP2241644B1 (en) Heat treatable L12 aluminum alloys
JPH0578775A (en) Magnesium alloy excellent in corrosion resistance
EP2112242A1 (en) Heat treatable L12 aluminium alloys
Czerwinski On the generation of thixotropic structures during melting of Mg-9% Al-1% Zn alloy
US4021271A (en) Ultrafine grain Al-Mg alloy product
Bose et al. Structure of rapidly solidified aluminium-silicon alloys
EP2112244A1 (en) High strength L12 aluminium alloys
CZ293797B6 (en) Cylinder head casting or engine block casting of aluminium alloy and process for producing thereof
Zhang et al. Effect of fine-grained raw material addition on microstructure refinement and tensile properties in horizontal continuous casting Al–12% Si alloy billets
Gu et al. The influence of zirconium on the coarsening of σ′(Al3Li) in an Al-2.8 wt.% Li-0.14 wt.% Zr alloy
Kaiser et al. Effect of scandium on the grain refining and ageing behaviour of cast Al-Si-Mg alloy
US4139400A (en) Superplastic aluminium base alloys
Bamberger Phase formation in Mg-Sn-Zn alloys—thermodynamic calculations vs experimental verification
Cabibbo et al. A TEM investigation on the effect of semisolid forming on precipitation processes in an Al–Mg–Si Alloy
Nayyeri et al. Microstructure evolution in as-cast and SIMA-processed AE42 magnesium alloy
CA2064437C (en) Grain refining alloy and a method for grain refining of aluminium and aluminium alloys
Kaiser et al. Effect of rolling on the fractional recrystallization behaviour of Al-Mg and Al-Mg-Zr alloys
JPH09296245A (en) Aluminum alloy for casting
Zoeller et al. The rate of solidification and the effects of local composition on the subsequent nucleation of Al $ _20 $ Cu $ _2 $ Mn $ _3 $ dispersoid phase in Al-4Cu-0.3 Fe-0.4 Mn-0.2 Si alloys
JPH06172948A (en) Production of heat resistant magnesium alloy
Shen et al. Microstructure and mechanical properties of As-cast 5182 aluminum alloy modified with Al-RE and Al-5Ti-1B master alloys
KR100391760B1 (en) Manufacturing process of Magnesium alloys and components excellent in Corrosion resistance using semisolid/semiliquid process
JPH06172909A (en) High strength cast mg alloy