JPH0578347B2 - - Google Patents

Info

Publication number
JPH0578347B2
JPH0578347B2 JP63222494A JP22249488A JPH0578347B2 JP H0578347 B2 JPH0578347 B2 JP H0578347B2 JP 63222494 A JP63222494 A JP 63222494A JP 22249488 A JP22249488 A JP 22249488A JP H0578347 B2 JPH0578347 B2 JP H0578347B2
Authority
JP
Japan
Prior art keywords
water removal
pump
pressure
dialysate
duplex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63222494A
Other languages
Japanese (ja)
Other versions
JPH0271754A (en
Inventor
Toshio Sawairi
Tomomichi Ejiri
Harutoshi Okabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Original Assignee
Nikkiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkiso Co Ltd filed Critical Nikkiso Co Ltd
Priority to JP63222494A priority Critical patent/JPH0271754A/en
Publication of JPH0271754A publication Critical patent/JPH0271754A/en
Publication of JPH0578347B2 publication Critical patent/JPH0578347B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、人工透析装置に係り、特に除水制
御機構を備えた人工透析装置における除水不良や
除水精度を監視する除水制御機構の監視装置に関
する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an artificial dialysis device, and particularly to a water removal control mechanism for monitoring poor water removal and water removal accuracy in an artificial dialysis device equipped with a water removal control mechanism. This invention relates to a monitoring device.

〔従来の技術〕[Conventional technology]

今日、人工透析装置は、慢性腎不全患者の透析
療法を行う装置として広く普及されるに至つてい
る。透析療法は、特に尿の出ない患者にとつて、
飲食した水分を除去する(以下、除水という)と
いう生命を維持するために必要な手段であり、人
工透析装置の存在は極めて重要である。
Today, artificial dialysis machines have come into widespread use as devices for performing dialysis therapy for patients with chronic renal failure. Dialysis therapy is especially effective for patients who cannot produce urine.
The existence of an artificial dialysis machine is extremely important, as it is a necessary means to maintain life by removing water from food and drink (hereinafter referred to as water removal).

近時、高性能の透析器が開発され、多量の除水
が可能となつたが、反面除水制御を誤ると、必要
以上に除水したりまたは充分な除水ができなくな
り、患者の生命に危険を及ぼす事態を生じる惧れ
があり、このため人工透析装置は適正かつ安全な
除水管理を行うことができる機能を保持すること
が要求されるようになつた。
Recently, high-performance dialysis machines have been developed, making it possible to remove a large amount of water. However, if the water removal control is incorrect, it may remove more water than necessary or may not remove enough water, which can endanger the patient's life. Therefore, it has become necessary for artificial dialysis equipment to maintain a function that allows proper and safe water removal management.

このような観点から、透析器に流入する透析液
流量と、透析器から流出する透析液流量とを等し
くする複式ポンプを使用した透析液の等流量回路
を構成し、しかもこの等流量回路から所定量の液
を除去するとこれと同等量の水分を透析器の血液
側から除去することができる除水ポンプを設けて
なる、除水制御機構を備えた人工透析装置が開発
された。
From this point of view, an equal flow rate circuit for dialysate is constructed using a duplex pump that equalizes the flow rate of dialysate flowing into the dialyzer and the flow rate of dialysate flowing out from the dialyzer. An artificial dialysis machine equipped with a water removal control mechanism has been developed, which includes a water removal pump that can remove an equivalent amount of water from the blood side of the dialyzer when a fixed amount of fluid is removed.

この種の人工透析装置は、任意の除水量を設定
すると、この設定された値に従つて除水ポンプを
介して除水量に見合う液が除去されるため、透析
器の性能のバラツキによる除水誤差を無視するこ
とができ、正確な除水を達成することができる。
しかし、この種の人工透析装置においても、長時
間運転を行うと、塵芥や炭酸塩析出物の噛み込み
等により背圧弁のダイアフラムからの漏れやポン
プ機械部品の摩耗等により、正確な除水制御を行
うことが困難となり、除水不良を生じる場合があ
る。このため、従来の人工透析装置では、除水不
良の原因となる現象を透析液圧の変化で検出する
監視方式が採用されている。
In this type of artificial dialysis machine, when you set an arbitrary amount of water removal, the water removal pump removes the amount of fluid corresponding to the amount of water removed according to this set value, so water removal is caused by variations in the performance of the dialysis machine. Errors can be ignored and accurate water removal can be achieved.
However, even in this type of artificial dialysis machine, when operated for a long time, dust and carbonate precipitates become trapped, causing leakage from the diaphragm of the back pressure valve and abrasion of pump mechanical parts, resulting in accurate water removal control. This may make it difficult to perform water removal, resulting in poor water removal. For this reason, conventional artificial dialysis apparatuses employ a monitoring method that detects phenomena that cause poor water removal based on changes in dialysate pressure.

〔発明が解決しようとする課題〕 前述した除水制御機構を備えた人工透析装置を
使用して透析治療を行う場合、透析液は透析効率
の関係から一般的に500ml/min(時間当り30)
であり、5時間透析を行うと約150消費するこ
とになる。この場合、患者によつて異なるが、1
回の透析で通常約1〜5の除水量を除去しなが
ら、透析器に対する流入透析液流量と流出透析液
流量との流量差の積算値が±300ml以内になるよ
うに制御することが要求される。しかしながら、
1回の全透析液量150に対し、±300mlの誤差を
測定しようとした場合、精度は±0.2%となり、
透析器に対する流入透析液流量および流出透析液
流量を夫々通常の流量計で安定して測定すること
は困難である。
[Problem to be solved by the invention] When performing dialysis treatment using an artificial dialysis machine equipped with the above-mentioned water removal control mechanism, the rate of dialysate is generally 500ml/min (30ml/hour) due to dialysis efficiency.
Therefore, if dialysis is performed for 5 hours, approximately 150 will be consumed. In this case, although it varies depending on the patient, 1
It is required to control the integrated value of the flow rate difference between the inflow dialysate flow rate and the outflow dialysate flow rate to within ±300 ml while removing approximately 1 to 5 times the amount of water removed in each dialysis. Ru. however,
If you try to measure an error of ±300ml for a total dialysate volume of 150ml, the accuracy will be ±0.2%,
It is difficult to stably measure the inflow dialysate flow rate and the outflow dialysate flow rate to a dialyzer using a conventional flow meter.

また、従来の人工透析装置において、複式ポン
プによる等流量回路を使用した除水制御機構で機
械的構成部分における除水不良の原因となつた主
要な要因を調査した結果、次の事項が判明した。
In addition, as a result of investigating the main factors that caused poor water removal in the mechanical components of conventional dialysis machines using a water removal control mechanism that uses an equal flow rate circuit using dual pumps, the following findings were found. .

透析液回路における各ポンプ吐出配管側に設
けられた背圧弁の不良。
Defective back pressure valve installed on each pump discharge piping side in the dialysate circuit.

複式ポンプの故障。 Duplex pump failure.

配管の漏れ。 Plumbing leaks.

除水ポンプの故障。 Malfunction of water removal pump.

これらの事項は、除水不良の原因の大半を占め
ていることが確認された。なお、従来の人工透析
装置においては、各背圧弁の背圧を調整するに際
しては、配管を外して適所に圧力計を接続配置
し、この圧力計の指示する圧力を確認しながら背
圧調整を行い、また除水不良の際その原因を調べ
る時に同様に圧力計を接続配置して背圧の確認を
行う必要があり、適正な除水制御のための監視が
不充分であり、しかも除水制御管理並びに保守作
業も極めて煩雑となる難点がある。
It was confirmed that these matters accounted for most of the causes of poor water removal. In addition, in conventional artificial dialysis machines, when adjusting the back pressure of each back pressure valve, the piping is removed, a pressure gauge is connected and placed in the appropriate place, and the back pressure is adjusted while checking the pressure indicated by this pressure gauge. In addition, when investigating the cause of poor water removal, it is necessary to connect and arrange a pressure gauge to check the back pressure. Monitoring for proper water removal control is insufficient, and water removal is insufficient. There is a drawback that control management and maintenance work are extremely complicated.

そこで、本発明の目的は、透析液回路に複式ポ
ンプを使用して等流量回路を構成した除水制御機
構を有する人工透析装置において、複式ポンプの
各背圧と除水ポンプの背圧とを常時検出すること
により、透析治療中またはその他の試運転状態に
際し、背圧弁、複式ポンプ、除水ポンプ、電磁弁
等の配管部品についての故障を検出し、除水不良
の監視を容易かつ確実に達成することのできる人
工透析装置における除水制御機構の監視装置を提
供するにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an artificial dialysis machine having a water removal control mechanism using duplex pumps in the dialysate circuit to form an equal flow rate circuit, in which each back pressure of the duplex pumps and the back pressure of the water removal pump are controlled. Through constant detection, failures in piping parts such as back pressure valves, duplex pumps, water removal pumps, solenoid valves, etc. can be detected during dialysis treatment or other test run conditions, and water removal failures can be monitored easily and reliably. An object of the present invention is to provide a monitoring device for a water removal control mechanism in an artificial dialysis machine.

〔課題を解決するための手段〕 本発明に係る人工透析装置における除水制御機
構の監視システムは、透析器の透析液側に接続さ
れる透析液給液系と透析液排液系とに対し複式ポ
ンプを接続して等流量回路を構成し、前記複式ポ
ンプの吐出側にそれぞれ背圧弁を設けると共に透
析液排液系の前記透析器と複式ポンプとの間に循
環ポンプを設け、さらにこの循環ポンプの下流側
から除水ポンプおよび背圧弁を備えた除水系を分
岐導出してなる除水制御機構を備えた人工透析装
置において、 透析器と近接して透析液給液系と透析液排液系
にそれぞれ三方電磁切換弁を設けてこれら両切換
弁の間にバイパス管を接続配置し、 前記透析液排液系のバイパス管より下流側に透
析液圧力センサを設けると共に、前記複式ポンプ
および除水ポンプの各吐出側に設けた背圧弁の上
流側にそれぞれ背圧測定用圧力センサを設けるこ
とを特徴とする。
[Means for Solving the Problems] A monitoring system for a water removal control mechanism in an artificial dialysis apparatus according to the present invention provides a monitoring system for a dialysate supply system and a dialysate drainage system connected to the dialysate side of a dialyzer. Duplex pumps are connected to form an equal flow rate circuit, a back pressure valve is provided on the discharge side of each of the duplex pumps, and a circulation pump is provided between the dialyzer and the duplex pump in the dialysate drainage system. In an artificial dialysis machine equipped with a water removal control mechanism in which a water removal system equipped with a water removal pump and a back pressure valve is branched out from the downstream side of the pump, a dialysate supply system and a dialysate drainage system are installed in close proximity to the dialyzer. A three-way electromagnetic switching valve is provided in each system, a bypass pipe is connected between these two switching valves, a dialysate pressure sensor is provided downstream of the bypass pipe of the dialysate drainage system, and a dialysate pressure sensor is provided downstream of the bypass pipe of the dialysate drainage system. It is characterized in that a pressure sensor for measuring back pressure is provided on the upstream side of each back pressure valve provided on each discharge side of the water pump.

前記の監視装置において、三方電磁切換弁によ
りバイパス管を連通接続した状態において、複式
ポンプと循環ポンプと除水ポンプとをそれぞれ駆
動し、所定時間内における等流量回路内の圧力変
化を透析液圧力センサで測定し、得られた圧力測
定値が基準値に達した際に除水ポンプや複式ポン
プの作動並びに配管漏れ等の正常状態を判定する
よう構成することができる。この場合、等流量回
路内で透析液圧力が大気圧に対し所要の圧力差を
生じた状態において、複式ポンプと循環ポンプと
除水ポンプとを全て駆動停止し、所定時間内にお
ける等流量回路内の圧力変化を透析液圧力センサ
で測定し、得られた圧力測定値が大気圧方向に変
化した場合に配管漏れ状態を判定するよう構成す
ることができる。同様に、等流量回路内で透析液
圧力が大気圧に対し所要の圧力差を生じた状態に
おいて、複式ポンプと循環ポンプと除水ポンプと
を全て駆動停止し、複式ポンプと除水ポンプのそ
れぞれ吐出側に設けた背圧測定用圧力センサで圧
力測定を行い、得られた圧力測定値が基準値以外
となつた際に背圧弁の不良を判定するよう構成す
ることもできる。
In the above-mentioned monitoring device, the duplex pump, circulation pump, and water removal pump are each driven with the bypass pipes connected to each other by the three-way electromagnetic switching valve, and the pressure change in the equal flow rate circuit within a predetermined time is detected as the dialysate pressure. The sensor may measure the pressure, and when the obtained pressure measurement value reaches a reference value, the operation of the water removal pump or the duplex pump and normal conditions such as piping leakage can be determined. In this case, in a state where the dialysate pressure has a required pressure difference with respect to atmospheric pressure in the equal flow rate circuit, all duplex pumps, circulation pumps, and water removal pumps are stopped, and within the equal flow rate circuit within a predetermined time. The dialysate pressure sensor may measure a change in the pressure of the dialysate, and if the obtained pressure measurement value changes in the direction of atmospheric pressure, a pipe leakage state can be determined. Similarly, in a state where the dialysate pressure has a required pressure difference with respect to atmospheric pressure in the equal flow rate circuit, the duplex pump, circulation pump, and water removal pump are all stopped, and each of the duplex pump and water removal pump is It is also possible to perform pressure measurement with a pressure sensor for measuring back pressure provided on the discharge side, and to determine whether the back pressure valve is defective when the obtained pressure measurement value is other than a reference value.

さらに、前記の監視装置において、三方電磁切
換弁によりバイパス管を連通接続した状態におい
て、複式ポンプと循環ポンプとを駆動し、所定時
間内における等流量回路内の圧力変化を透析液圧
力センサで測定し、得られた圧力測定値が基準値
以上となつた際に複式ポンプの故障および除水誤
差の発生を判定するよう構成することができる。
Furthermore, in the above-mentioned monitoring device, the duplex pump and the circulation pump are driven with the bypass pipe connected to each other by the three-way electromagnetic switching valve, and the pressure change in the equal flow rate circuit is measured by the dialysate pressure sensor within a predetermined period of time. However, when the obtained pressure measurement value exceeds a reference value, it can be configured to determine whether a duplex pump has failed or a water removal error has occurred.

〔作用〕[Effect]

本発明に係る人工透析装置における除水制御機
構の監視装置によれば、透析器と近接して透析液
給液系と透析液排液系にそれぞれ三方電磁切換弁
を設けてこれら両切換弁の間にバイパス管を接続
配置し、しかも複式ポンプと循環ポンプとで構成
した等流量回路に除水ポンプを備えた除水系を分
岐接続し、前記複式ポンプと除水ポンプの吐出側
にそれぞれ背圧弁と共にその上流側にそれぞれ背
圧側定用圧力センサを設け、さらに前記透析液排
液系のバイパス管より下流側に透析液圧力センサ
を設けることにより、前記バイパス管を連通状態
にして、複式ポンプと循環ポンプおよび除水ポン
プを同時に駆動または停止もしくは選択的に駆動
させて、前記各圧力センサによる圧力測定を行
い、得られた圧力測定値を予め設定した基準値と
比較すれば、除水制御に関与する複式ポンプ、循
環ポンプ、除水ポンプ、各種電磁弁、背圧弁等の
正常または故障状態を判定することができ、除水
誤差の発生や除水不良の事前予知を簡便かつ迅速
に達成することができる。
According to the monitoring device for the water removal control mechanism in an artificial dialysis apparatus according to the present invention, three-way electromagnetic switching valves are provided in the dialysate supply system and the dialysate drainage system in close proximity to the dialyzer, respectively. A bypass pipe is connected between them, and a water removal system equipped with a water removal pump is branch-connected to an equal flow rate circuit composed of a duplex pump and a circulation pump, and a back pressure valve is installed on the discharge side of the duplex pump and water removal pump, respectively. At the same time, a back pressure side regular pressure sensor is provided on the upstream side thereof, and a dialysate pressure sensor is further provided on the downstream side of the bypass pipe of the dialysate drainage system, so that the bypass pipe is in communication with the duplex pump. Water removal control can be performed by simultaneously driving, stopping, or selectively driving the circulation pump and the water removal pump, measuring the pressure using each of the pressure sensors, and comparing the obtained pressure measurement value with a preset reference value. It is possible to determine whether the involved duplex pumps, circulation pumps, water removal pumps, various solenoid valves, back pressure valves, etc. are normal or in failure, and easily and quickly predict the occurrence of water removal errors or water removal failures in advance. be able to.

〔実施例〕〔Example〕

次に、本発明に係る人工透析装置における除水
制御機構の監視装置の実施例につき、添付図面を
参照しながら以下詳細に説明する。
Next, an embodiment of a monitoring device for a water removal control mechanism in an artificial dialysis apparatus according to the present invention will be described in detail below with reference to the accompanying drawings.

第1図は、本発明の除水制御機構の監視装置を
実施する人工透析装置の構成例を示す系統図であ
る。第1図において、参照符号10は透析器を示
し、この透析器10の透析液側には、複式ポンプ
12を介して等流量回路を構成する透析液給液系
14と透析液排液系16とが接続される。この場
合、複式ポンプ12は、単一のプランジヤと2つ
の同一容積からなる交互に吸込・吐出動作を行う
ポンプ部18a,18bを備えた往復動ポンプで
構成される。また、透析器10と近接して、透析
液給液系14と透析液排液系16にそれぞれ三方
電磁切換弁20,22を設け、これら両三方電磁
切換弁20,22間に前記透析器10を短絡する
バイパス管24を接続配置する。前記透析液排液
系16には、三方電磁切換弁22と複式ポンプ1
2との間に循環ポンプ26を設け、この循環ポン
プ26の下流側に脱気チヤンバ28を介して除水
ポンプ30を備えた除水系32が分岐接続され
る。この場合、除水ポンプ30も往復動ポンプで
構成される。従つて、このように往復動ポンプで
構成される複式ポンプ12および除水ポンプ30
は、それぞれ吐出側に背圧弁34,36,38を
設けて所定の背圧を保持するよう設定することに
より、各ポンプ吐出流量を一定に保持することが
できる。なお、循環ポンプ26には、これと並列
に背圧弁40が設けられている。また、透析器1
0の血液側には適宜血液ポンプ42を介して患者
Kと結合される血液系44が接続される。
FIG. 1 is a system diagram showing an example of the configuration of an artificial dialysis apparatus implementing a monitoring device for a water removal control mechanism of the present invention. In FIG. 1, reference numeral 10 indicates a dialyzer, and on the dialysate side of the dialyzer 10, there is a dialysate supply system 14 and a dialysate drainage system 16 that constitute an equal flow rate circuit via a duplex pump 12. are connected. In this case, the duplex pump 12 is constituted by a reciprocating pump having a single plunger and two pump parts 18a and 18b having the same volume and performing suction and discharge operations alternately. In addition, three-way electromagnetic switching valves 20 and 22 are provided in the dialysate supply system 14 and dialysate drainage system 16, respectively, in close proximity to the dialyzer 10, and between these two three-way electromagnetic switching valves 20 and 22, the dialyzer 1 A bypass pipe 24 for short-circuiting is connected and arranged. The dialysate drainage system 16 includes a three-way electromagnetic switching valve 22 and a dual pump 1.
A circulation pump 26 is provided between the circulation pump 2 and the circulation pump 26, and a water removal system 32 including a water removal pump 30 is connected downstream of the circulation pump 26 via a degassing chamber 28. In this case, the water removal pump 30 is also configured as a reciprocating pump. Therefore, the duplex pump 12 and water removal pump 30 configured as reciprocating pumps in this way
By providing back pressure valves 34, 36, and 38 on the discharge side and setting to maintain a predetermined back pressure, the discharge flow rate of each pump can be maintained constant. Note that the circulation pump 26 is provided with a back pressure valve 40 in parallel thereto. Also, dialyzer 1
A blood system 44 connected to the patient K is connected to the blood side of the patient K via a blood pump 42 as appropriate.

以上の構成は、典型的な複式ポンプを使用した
除水制御機構を備える人工透析装置の基本構成を
示すものである。
The above configuration shows the basic configuration of an artificial dialysis apparatus equipped with a water removal control mechanism using a typical dual pump.

しかるに、本実施例の人工透析装置において
は、透析液給液系14および透析液排液系16に
設けた複式ポンプ12の各吐出側に配置した給液
側背圧弁34および排液側背圧弁36に対し、そ
れぞれ背圧測定用圧力センサ46および48を付
設する。また、除水系32に設けた除水ポンプ3
0の吐出側に配置した背圧弁38に対し、背圧測
定用圧力センサ50を付設する。さらに、透析液
排液系16に設けた循環ポンプ26の上流側に
は、透析液圧力を測定する透析液圧力センサ52
を付設する。なお、脱気チヤンバ28より電磁開
閉弁54を介して脱気パイプ56を導出し、この
脱気パイプ56を透析液排液系16に対し複式ポ
ンプ12の下流側に連通接続する。
However, in the artificial dialysis apparatus of this embodiment, the back pressure valve 34 on the fluid supply side and the back pressure valve on the drainage side disposed on each discharge side of the duplex pump 12 provided in the dialysate supply system 14 and the dialysate drainage system 16 are 36, pressure sensors 46 and 48 for measuring back pressure are attached, respectively. In addition, the water removal pump 3 provided in the water removal system 32
A pressure sensor 50 for measuring back pressure is attached to the back pressure valve 38 disposed on the discharge side of the pump. Further, on the upstream side of the circulation pump 26 provided in the dialysate drainage system 16, there is a dialysate pressure sensor 52 for measuring dialysate pressure.
Attached. A deaeration pipe 56 is led out from the deaeration chamber 28 via an electromagnetic on-off valve 54, and this deaeration pipe 56 is connected to the dialysate drainage system 16 downstream of the duplex pump 12.

次に、このように構成した本実施例の人工透析
装置の監視機能とその動作につき説明する。
Next, the monitoring function and operation of the artificial dialysis apparatus of this embodiment configured as described above will be explained.

まず、透析治療に際しては、透析液給液系14
と透析液排液系16とが透析器10と連通するよ
う三方電磁切換弁20,22を切換操作し、複式
ポンプ12、循環ポンプ26および除水ポンプ3
0をそれぞれ駆動する。また、血液ポンプ42を
駆動して、透析器10に対し患者Kの血液を供給
する。しかるに、複式ポンプ12のポンプ部18
aから吐出される透析液は、給液側背圧弁34、
三方電磁切換弁20を介して透析器10に導入さ
れ、透析膜を介して血液との透析作用が行われ
る。このようにして、透析処理された透析液は、
三方電磁切換弁22、循環ポンプ26、複式ポン
プ12のポンプ部18bおよび排液側背圧弁36
を介して排出される。この場合、透析液は、透析
液給液系14の流量と透析液排液系16の流量は
等しくなり、該透析液系は等流量回路を構成す
る。そこで、除水ポンプ30を駆動し、所定の除
水量を除水系32を介して前記等流量回路を構成
する透析液排液系16から除去すれば、透析器1
0の透析膜を通して血液側から透析液側に前記除
水量と同量の水分を除去することができる。
First, during dialysis treatment, the dialysate supply system 14
The three-way electromagnetic switching valves 20 and 22 are switched so that the dialysate drainage system 16 and the dialysate drain system 16 communicate with the dialyzer 10, and the duplex pump 12, circulation pump 26, and water removal pump 3
0 respectively. Furthermore, the blood pump 42 is driven to supply the patient K's blood to the dialyzer 10. However, the pump section 18 of the duplex pump 12
The dialysate discharged from the liquid supply side back pressure valve 34,
It is introduced into the dialyzer 10 via the three-way electromagnetic switching valve 20, and undergoes dialysis with blood via the dialysis membrane. In this way, the dialysate treated with dialysis is
Three-way electromagnetic switching valve 22, circulation pump 26, pump section 18b of duplex pump 12, and drain side back pressure valve 36
is discharged through. In this case, the flow rate of the dialysate in the dialysate supply system 14 and the flow rate in the dialysate drainage system 16 are equal, and the dialysate systems constitute an equal flow rate circuit. Therefore, if the water removal pump 30 is driven and a predetermined amount of water is removed from the dialysate drainage system 16 constituting the equal flow rate circuit through the water removal system 32, the dialyzer 1
The same amount of water as the amount of water removed can be removed from the blood side to the dialysate side through the 0 dialysis membrane.

以上は、本実施例の人工透析装置の基本的な透
析動作を示すものであつて、本発明においては、
前記構成からなる人工透析装置によつて、除水不
良の検出並びにその原因を判別する自己診断機能
を発揮することができる。この自己診断機能を発
揮するための監視装置の概略は次の通りである。
なお、第2図は、前記監視装置の動作状態を略示
するタイムチヤート並びに波形図であつて、正常
な状態を示している。
The above shows the basic dialysis operation of the artificial dialysis apparatus of this embodiment, and in the present invention,
The artificial dialysis apparatus having the above configuration can exhibit a self-diagnosis function for detecting poor water removal and determining the cause thereof. The outline of the monitoring device for demonstrating this self-diagnosis function is as follows.
Incidentally, FIG. 2 is a time chart and a waveform diagram schematically showing the operating state of the monitoring device, and shows a normal state.

a) 初期設定 三方電磁切換弁20,22をバイパス管24が
連通するよう切換設定し、複式ポンプ12を駆動
すると共に電磁開閉弁54を開放して透析液系の
等流量回路動作と脱気とを行う(第2図参照)。
a) Initial Settings The three-way electromagnetic switching valves 20 and 22 are switched so that the bypass pipe 24 is in communication, the duplex pump 12 is driven, and the electromagnetic on-off valve 54 is opened to operate the equal flow rate circuit of the dialysate system and perform degassing. (See Figure 2).

b) 除水ポンプ30の動作確認 前項a)の工程で、脱気を充分行つた後、電磁
開閉弁54を閉塞して、除水ポンプ30を駆動す
る。この場合、透析液系には透析器10からの液
の補充がないため、複式ポンプ12によつて形成
された透析液系の閉ループ内で透析液の容積変化
を起生し、これに伴い圧力変化(負圧の増大)を
生じてこの状態を透析液圧力センサ52で測定検
出する。この場合の正常動作を判定する方法とし
ては、次の2方法がある。
b) Checking the operation of the water removal pump 30 After sufficient deaeration has been performed in the step a), the electromagnetic on-off valve 54 is closed and the water removal pump 30 is driven. In this case, since the dialysate system is not refilled with fluid from the dialyzer 10, a volume change of the dialysate occurs within the closed loop of the dialysate system formed by the duplex pump 12, resulting in pressure A change (increase in negative pressure) occurs, and this state is measured and detected by the dialysate pressure sensor 52. There are two methods for determining normal operation in this case:

透析液圧力が、所定の時間内に所定の圧力に
達すれば正常と判定する。
If the dialysate pressure reaches a predetermined pressure within a predetermined time, it is determined to be normal.

透析液圧力が、所定の時間で所定の圧力変化
を生じれば正常と判定する。
The dialysate pressure is determined to be normal if a predetermined pressure change occurs in a predetermined time.

従つて、本実施例では、前記の方法により、
透析液圧力センサ52で検出される圧力測定値1
が、除水ポンプ30の駆動開始時から所定の基準
時間(例えば20秒)内に所定の負圧力(例えば−
300mmHg)に達する状態を検出し、これにより
除水ポンプ30が正常に動作していることを判定
している(第2図参照)。しかし、除水ポンプ3
0の駆動開始時から基準時間内において、前記透
析液圧力センサ52で検出される圧力測定値Iが
所定の負圧力に達しない場合は、除水ポンプ30
の設定不良または故障と判定される(第3図参
照)。
Therefore, in this example, by the above method,
Pressure measurement value 1 detected by dialysate pressure sensor 52
However, a predetermined negative pressure (for example -
300 mmHg), and it is determined from this that the water removal pump 30 is operating normally (see Fig. 2). However, water removal pump 3
If the pressure measurement value I detected by the dialysate pressure sensor 52 does not reach a predetermined negative pressure within a reference time from the start of driving at 0, the water removal pump 30
It is determined that the setting is incorrect or there is a failure (see Figure 3).

c) 透析液系の配管漏れ状態確認 前項b)の確認を行つて、等流量回路内で透析
液圧力が大気圧に対し所要の圧力差を生じた状態
で、複式ポンプ12、循環ポンプ26および除水
ポンプ30の駆動を停止する。この時、電磁開閉
弁54は閉成してあるため、透析液系は各ポンプ
間において遮断状態となる。そこで、前記各ポン
プの停止時から透析液圧力センサ52で検出され
る圧力測定値の変化を測定し、この圧力測定値
が時間の経過と共に殆んど変化しなければ正常
状態と判定される(第2図参照)。しかし、時間
の経過と共に前記圧力測定値が大気方向に変化
すれば、配管漏れすなわち各種電磁弁の不良を判
定することができる(第4図参照)。
c) Confirmation of piping leak status in the dialysate system After checking the previous item b), check that the duplex pump 12, circulation pump 26, and The drive of the water removal pump 30 is stopped. At this time, since the electromagnetic on-off valve 54 is closed, the dialysate system is cut off between each pump. Therefore, the change in the pressure measurement value detected by the dialysate pressure sensor 52 is measured from the time when each pump is stopped, and if this pressure measurement value hardly changes over time, it is determined to be in a normal state ( (See Figure 2). However, if the pressure measurement value changes toward the atmosphere over time, it can be determined that there is a leak in the piping, that is, a defect in the various electromagnetic valves (see FIG. 4).

d) 背圧測定用圧力センサ46,48,50の
背圧確認 前項c)の確認に際し、これと同時に給液側と
排液側と除水側にそれぞれ設けた背圧測定用圧力
センサ46,48,50の各背圧測定を行う。こ
の場合、所定の時間経過後に背圧測定値が所定
圧力に保持されている場合には、正常と判定され
る(第2図参照)。しかし、時間の経過と共に前
記背圧測定値が基準値(例えば0.6Kg/cm2)以
下に変化すれば、背圧弁の不良を判定することが
できる(第4図参照)。
d) Confirming the back pressure of the pressure sensors 46, 48, and 50 for measuring the back pressure When confirming the above item c), at the same time, check the pressure sensors 46, 46, and 50 for measuring the back pressure installed on the liquid supply side, liquid drain side, and water removal side, respectively. 48 and 50 back pressure measurements are taken. In this case, if the back pressure measurement value is maintained at a predetermined pressure after a predetermined period of time has elapsed, it is determined to be normal (see FIG. 2). However, if the measured back pressure value changes to a reference value (for example, 0.6 kg/cm 2 ) or less over time, it can be determined that the back pressure valve is defective (see FIG. 4).

e) 複式ポンプの動作確認 以上の確認を全て終了した後、除水ポンプ30
の駆動を停止した状態で、複式ポンプ12および
循環ポンプ26を駆動し、給液側の吐出量と排液
側の吐出量とのバランス状態を透析液圧力センサ
52により検出する。すなわち、給液側と排液側
の流量差(これは除水誤差となる)が生じること
は、等流量回路に容積変化を生じることであつ
て、この場合に透析圧力が変化することになる。
そこで、所定の時間経過における透析液圧力の変
化を透析液圧力センサ52で測定し、この圧力測
定値が基準値(例えば100mmHg)以内であれ
ば、正常状態と判定される(第2図参照)。しか
し、所定の時間経過と共に前記圧力測定値が基
準値を超える負圧力となつた場合には、複式ポン
プ12の故障と判定することができる(第5図参
照)。
e) Check the operation of the duplex pump After completing all the above checks, check the operation of the water removal pump 30.
While driving is stopped, the duplex pump 12 and the circulation pump 26 are driven, and the dialysate pressure sensor 52 detects the balance between the discharge amount on the supply side and the discharge amount on the drain side. In other words, the occurrence of a flow rate difference between the supply side and the drain side (this results in a water removal error) causes a volume change in the equal flow rate circuit, and in this case, the dialysis pressure changes. .
Therefore, the change in dialysate pressure over a predetermined period of time is measured by the dialysate pressure sensor 52, and if this pressure measurement value is within a reference value (for example, 100 mmHg), it is determined to be in a normal state (see Figure 2). . However, if the pressure measurement value becomes a negative pressure exceeding the reference value as a predetermined time elapses, it can be determined that the duplex pump 12 has failed (see FIG. 5).

また、前述した給液側と排液側の流量差(除水
誤差)と、透析液圧力の圧力変化量との関係を、
直交多項式により分析した結果、第6図に示す特
性が得られた。第6図において、分散比Fは有意
水準1%で有意であり、回帰直線yは、y=
1.642x+5.18となり極めて有意であることが確認
された。また、第6図において、透析液圧力の変
化量の基準値は、除水誤差30ml/hを1つの目
安とし、除水誤差30ml/hの上限限界値69とし
た。逆に、上限限界値69における警報の信頼限界
は除水誤差の範囲では30〜47ml/hになる。
In addition, the relationship between the above-mentioned flow rate difference between the supply side and the drain side (water removal error) and the amount of pressure change in the dialysate pressure is
As a result of analysis using orthogonal polynomials, the characteristics shown in FIG. 6 were obtained. In Figure 6, the variance ratio F is significant at a significance level of 1%, and the regression line y is y=
The result was 1.642x+5.18, which was confirmed to be extremely significant. Further, in FIG. 6, the standard value of the amount of change in dialysate pressure is based on a water removal error of 30 ml/h, and the upper limit value of 69 for the water removal error of 30 ml/h. Conversely, the reliability limit of the alarm at the upper limit value 69 is 30 to 47 ml/h within the water removal error range.

以上、説明した自己診断機能は、透析液を透析
器10に対しバイパスさせ、透析操作を中断して
行う場合を示したが、例えば透析操作中であつて
も、各背圧測定用センサ46,48,50により
背圧を常時監視して各背圧弁34,36,38の
漏れを検出するよう構成することができる。
The self-diagnosis function described above is performed by bypassing the dialyzer 10 and interrupting the dialysis operation, but for example, even during the dialysis operation, each back pressure measurement sensor 46 48 and 50 may be configured to constantly monitor back pressure to detect leaks in each back pressure valve 34, 36, 38.

また、前記自己診断機能としての各確認事項に
ついては、マイクロコンピユータを使用して自動
的に測定値を記憶すると共に予め設定した条件と
の比較演算を行い、適正許容範囲外となつた場合
には適宜警報出力信号を発生するよう構成すれば
好適である。なお、前記自己診断機能の各確認事
項b)〜e)については、その確認工程の順序を
種々に入れ替えて実施することができることは勿
論である。
In addition, regarding each check item as the self-diagnosis function, a microcomputer is used to automatically store the measured value and perform comparison calculations with preset conditions, and if the value is outside the appropriate tolerance range, It is preferable to configure the system to generate an alarm output signal as appropriate. It goes without saying that each of the confirmation items b) to e) of the self-diagnosis function can be implemented by changing the order of the confirmation steps in various ways.

〔発明の効果〕〔Effect of the invention〕

前述した実施例から明らかなように、本発明に
よれば、除水不良の主要な原因である背圧弁、各
種電磁弁を含む配管、複式ポンプ、除水ポンプ等
で発生する漏れを容易に確認することができ、し
かもこの漏れが確認された位置によつて不良ない
し故障個所を直ちに突き止めることができる。従
つて、このように機能する除水制御機構の監視装
置は、透析操作前または透析操作中に透析操作を
中断した状態で除水不良の検出およびその原因個
所の追跡を配管等に改変を加えることなく簡易迅
速に実施することができ、除水制御機構の信頼性
を向上し得ると共に除水不良の事前予知が可能と
なり、透析治療の安全性を高めることができるば
かりでなく、メンテナンス作業も容易となる等多
くの利点を有する。
As is clear from the above-mentioned embodiments, according to the present invention, leaks occurring in back pressure valves, piping including various solenoid valves, duplex pumps, water removal pumps, etc., which are the main causes of poor water removal, can be easily confirmed. Moreover, the location of the leakage can be used to immediately locate the location of the defect or failure. Therefore, the monitoring device for the water removal control mechanism that functions in this way detects poor water removal and traces the cause of the problem by making changes to the piping, etc., while the dialysis operation is interrupted before or during the dialysis operation. It can be carried out easily and quickly without any problems, improving the reliability of the water removal control mechanism, and making it possible to predict failures in water removal in advance.This not only improves the safety of dialysis treatment, but also reduces maintenance work. It has many advantages such as ease of use.

以上、本発明の好適な実施例について説明した
が、本発明は前述した実施例に限定されることな
く、本発明の精神を逸脱しない範囲内において
種々の設計変更をなし得ることは勿論である。
Although preferred embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and it goes without saying that various design changes can be made without departing from the spirit of the present invention. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る除水制御機構の監視装置
を実施する人工透析装置の一実施例を示す系統
図、第2図乃至第5図は本発明監視装置の自己診
断機能により判定されるそれぞれ動作特性を示す
ものであつて、第2図は全診断工程における正常
状態を示す動作特性波形図、第3図は除水ポンプ
の動作特性波形図、第4図は配管漏れ状態および
背圧弁の背圧特性をそれぞれ示す波形図、第5図
は複式ポンプの動作特性波形図、第6図は複式ポ
ンプによる給液側と排液側の流量差と透析液圧力
の変化量との関係を示す特性線図である。 10……透析器、12……複式ポンプ、14…
…透析液給液系、16……透析液排液系、18
a,18b……ポンプ部、20,22……三方電
磁切換弁、24……バイパス管、26……循環ポ
ンプ、28……脱気チヤンバ、30……除水ポン
プ、32……除水系、34,36,38……背圧
弁、40……背圧弁、42……血液ポンプ、44
……血液系、46,48,50……背圧測定用圧
力センサ、52……透析液圧力センサ、54……
電磁開閉弁、56……脱気パイプ、K……患者。
Fig. 1 is a system diagram showing an embodiment of an artificial dialysis machine implementing a monitoring device for a water removal control mechanism according to the present invention, and Figs. 2 to 5 show judgments made by the self-diagnosis function of the monitoring device of the present invention. Each shows the operating characteristics. Figure 2 is an operating characteristic waveform diagram showing the normal state in the entire diagnostic process, Figure 3 is an operating characteristic waveform diagram of the water removal pump, and Figure 4 is a pipe leakage state and back pressure valve. Figure 5 is a waveform diagram showing the back pressure characteristics of the duplex pump, Figure 6 is a waveform diagram of the operating characteristics of the duplex pump, and Figure 6 is the relationship between the flow rate difference between the fluid supply side and the drain side of the duplex pump and the amount of change in dialysate pressure. FIG. 10...Dylyzer, 12...Double pump, 14...
... Dialysate supply system, 16 ... Dialysate drainage system, 18
a, 18b... pump section, 20, 22... three-way electromagnetic switching valve, 24... bypass pipe, 26... circulation pump, 28... deaeration chamber, 30... water removal pump, 32... water removal system, 34, 36, 38... Back pressure valve, 40... Back pressure valve, 42... Blood pump, 44
... Blood system, 46, 48, 50 ... Pressure sensor for back pressure measurement, 52 ... Dialysate pressure sensor, 54 ...
Electromagnetic on-off valve, 56...deaeration pipe, K...patient.

Claims (1)

【特許請求の範囲】 1 透析器の透析液側に接続される透析液給液系
と透析液排液系とに対し複式ポンプを接続して等
流量回路を構成し、前記複式ポンプの吐出側にそ
れぞれ背圧弁を設けると共に透析液排液系の前記
透析器と複式ポンプとの間に循環ポンプを設け、
さらにこの循環ポンプの下流側から除水ポンプお
よび背圧弁を備えた除水系を分岐導出してなる除
水制御機構を備えた人工透析装置において、 透析器と近接して透析液給液系と透析液排液系
にそれぞれ三方電磁切換弁を設けてこれら両切換
弁の間にバイパス管を接続配置し、 前記透析液排液系のバイパス管より下流側に透
析液圧力センサを設けると共に、前記複式ポンプ
および除水ポンプの各吐出側に設けた背圧弁の上
流側にそれぞれ背圧測定用圧力センサを設けるこ
とを特徴とする人工透析装置における除水制御機
構の監視装置。 2 三方電磁切換弁によりバイパス管を連通接続
した状態において、複式ポンプと循環ポンプと除
水ポンプとをそれぞれ駆動し、所定時間内におけ
る等流量回路内の圧力変化を透析液圧力センサで
測定し、得られた圧力測定値が基準値に達した際
に除水ポンプや複式ポンプの作動並びに配管漏れ
等の正常状態を判定するよう構成してなる請求項
1記載の人工透析装置における除水制御機構の監
視装置。 3 等流量回路内で透析液圧力が大気圧に対し所
要の圧力差を生じた状態において、複式ポンプと
循環ポンプと除水ポンプとを全て駆動停止し、所
定時間内における等流量回路内の圧力変化を透析
液圧力センサで測定し、得られた圧力測定値が大
気圧方向に変化した場合に配管漏れ状態を判定す
るよう構成してなる請求項2記載の人工透析装置
における除水制御機構の監視装置。 4 等流量回路内で透析液圧力が大気圧に対し所
要の圧力差を生じた状態において、複式ポンプと
循環ポンプと除水ポンプとを全て駆動停止し、複
式ポンプと除水ポンプのそれぞれ吐出側に設けた
背圧測定用圧力センサで圧力測定を行い、得られ
た圧力測定値が基準値以外となつた際に背圧弁の
不良を判定するよう構成してなる請求項2または
3記載の人工透析装置における除水制御機構の監
視装置。 5 三方電磁切換弁によりバイパス管を連通接続
した状態において、複式ポンプと循環ポンプとを
駆動し、所定時間内における等流量回路内の圧力
変化を透析液圧力センサで測定し、得られた圧力
測定値が基準値以上となつた際に複式ポンプの故
障および除水誤差の発生を判定するよう構成して
なる請求項1記載の人工透析装置における除水制
御機構の監視装置。
[Claims] 1. A duplex pump is connected to a dialysate supply system and a dialysate drainage system connected to the dialysate side of a dialyzer to form an equal flow rate circuit, and the discharge side of the duplex pump a back pressure valve is provided in each, and a circulation pump is provided between the dialyzer and the duplex pump in the dialysate drainage system,
Furthermore, in an artificial dialysis machine equipped with a water removal control mechanism in which a water removal system equipped with a water removal pump and a back pressure valve is branched out from the downstream side of the circulation pump, a dialysate supply system and a dialysis system are installed in close proximity to the dialyzer. A three-way electromagnetic switching valve is provided in each of the dialysate drainage systems, a bypass pipe is connected between the two switching valves, a dialysate pressure sensor is provided downstream of the bypass pipe of the dialysate drainage system, and the dual type 1. A monitoring device for a water removal control mechanism in an artificial dialysis machine, characterized in that a pressure sensor for measuring back pressure is provided on the upstream side of a back pressure valve provided on each discharge side of a pump and a water removal pump. 2. With the bypass pipes connected in communication using the three-way electromagnetic switching valve, drive the duplex pump, circulation pump, and water removal pump, respectively, and measure the pressure change in the equal flow rate circuit within a predetermined time using the dialysate pressure sensor, The water removal control mechanism in an artificial dialysis apparatus according to claim 1, wherein the water removal control mechanism in an artificial dialysis apparatus is configured to determine the operation of the water removal pump or the duplex pump and whether there is a leak in the pipes or the like when the obtained pressure measurement value reaches a reference value. monitoring equipment. 3. In a state where the dialysate pressure has a required pressure difference with respect to atmospheric pressure in the equal flow rate circuit, all duplex pumps, circulation pumps, and water removal pumps are stopped, and the pressure in the equal flow rate circuit is adjusted within a predetermined period of time. 3. The water removal control mechanism in an artificial dialysis apparatus according to claim 2, wherein the change is measured by a dialysate pressure sensor, and a pipe leakage state is determined when the obtained pressure measurement value changes in the direction of atmospheric pressure. monitoring equipment. 4 With the required pressure difference between the dialysate pressure and the atmospheric pressure in the equal flow circuit, the duplex pump, circulation pump, and water removal pump are all stopped, and the discharge side of each of the duplex pump and water removal pump is 4. The artificial body according to claim 2 or 3, wherein the pressure is measured by a pressure sensor for measuring back pressure provided in the back pressure valve, and a defect in the back pressure valve is determined when the obtained pressure measurement value is other than a reference value. A monitoring device for the water removal control mechanism in a dialysis machine. 5 With the bypass pipes connected through the three-way electromagnetic switching valve, drive the duplex pump and circulation pump, measure the pressure change in the equal flow rate circuit within a predetermined time using the dialysate pressure sensor, and measure the pressure obtained. 2. A monitoring device for a water removal control mechanism in an artificial dialysis apparatus according to claim 1, wherein the monitoring device is configured to determine whether a duplex pump has failed or a water removal error has occurred when the value exceeds a reference value.
JP63222494A 1988-09-07 1988-09-07 Monitoring system for water removal control mechanism in artificial dialyzer Granted JPH0271754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63222494A JPH0271754A (en) 1988-09-07 1988-09-07 Monitoring system for water removal control mechanism in artificial dialyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63222494A JPH0271754A (en) 1988-09-07 1988-09-07 Monitoring system for water removal control mechanism in artificial dialyzer

Publications (2)

Publication Number Publication Date
JPH0271754A JPH0271754A (en) 1990-03-12
JPH0578347B2 true JPH0578347B2 (en) 1993-10-28

Family

ID=16783312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63222494A Granted JPH0271754A (en) 1988-09-07 1988-09-07 Monitoring system for water removal control mechanism in artificial dialyzer

Country Status (1)

Country Link
JP (1) JPH0271754A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2557134B2 (en) * 1990-07-09 1996-11-27 日機装 株式会社 Water purification control monitoring system for blood purification device
CN100441243C (en) * 2002-11-14 2008-12-10 日机装株式会社 Blood purification device
JP3958733B2 (en) * 2002-11-14 2007-08-15 日機装株式会社 Blood purification equipment
CN102900664B (en) * 2012-10-22 2015-11-18 贝恩医疗设备(广州)有限公司 A kind of ballast pump

Also Published As

Publication number Publication date
JPH0271754A (en) 1990-03-12

Similar Documents

Publication Publication Date Title
JP5148568B2 (en) Method and apparatus for detecting leakage in a fluid system of a blood processing apparatus
JP4101382B2 (en) Blood processing equipment
JP4221156B2 (en) Method and apparatus for detecting the presence of a leak in a system in which fluid is flowing
JP3690846B2 (en) Hydraulic pressure measuring device, adjustment method thereof, and blood processing device
US8617093B2 (en) Method and device for monitoring a fluid system of an extracorporeal blood treatment device
JP4406325B2 (en) Apparatus for extracorporeal blood treatment having a device for inspecting a sterile filter, and method for inspecting a sterile filter of an extracorporeal blood treatment apparatus
US20210170087A1 (en) Delivery System and Mode of Operation Thereof
KR20110042189A (en) System and method for detecting access disconnection
JP2013513470A (en) Means for checking filter integrity in liquid purification systems
JP2012504984A (en) Method and apparatus for monitoring the introduction of replacement fluid upstream or downstream of a dialyzer or filter
JPH0578347B2 (en)
CN113975508B (en) Failure determination method for blood purification device, and storage medium
JP2510736B2 (en) Water removal control monitoring system for dialysis equipment
CN110090329B (en) Monitoring device and method for monitoring an extracorporeal blood treatment device
JP2506245B2 (en) Ultrafiltration control monitoring system for dialysis machines
JP2735770B2 (en) Dialysis device water removal control monitoring device
US20230158217A1 (en) Extracorporeal blood treatment device
WO2019119412A1 (en) Device for measuring filling time of balancing chamber system, device for detecting abnormity in balancing chamber system, balancing chamber module, dialysis system and corresponding method
JP2002126076A (en) Method of inspecting sterile filtration of hemodialyzer
CN117883649A (en) Failure detection method for blood purification device, and storage medium
TH34132B (en) Control systems for pump-operated piping fixtures
TH80434A (en) Control systems for pump-operated piping fixtures

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term