JPH0578307B2 - - Google Patents

Info

Publication number
JPH0578307B2
JPH0578307B2 JP63050092A JP5009288A JPH0578307B2 JP H0578307 B2 JPH0578307 B2 JP H0578307B2 JP 63050092 A JP63050092 A JP 63050092A JP 5009288 A JP5009288 A JP 5009288A JP H0578307 B2 JPH0578307 B2 JP H0578307B2
Authority
JP
Japan
Prior art keywords
cells
mouse
immunosuppressive
culture
immunosuppressive substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63050092A
Other languages
Japanese (ja)
Other versions
JPH01104087A (en
Inventor
Tetsuo Fujita
Ryosuke Tooyama
Shigeo Sasaki
Takeki Okumoto
Kenji Chiba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taito Co Ltd
Welfide Corp
Original Assignee
Taito Co Ltd
Welfide Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taito Co Ltd, Welfide Corp filed Critical Taito Co Ltd
Priority to JP63050092A priority Critical patent/JPH01104087A/en
Publication of JPH01104087A publication Critical patent/JPH01104087A/en
Publication of JPH0578307B2 publication Critical patent/JPH0578307B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、微生物を用いた免疫抑制物質、就中
マイリオシンの新しい製造法に関する。 〔従来の技術〕 従来、微生物由来の免疫抑制物質はシリンドロ
カルボン(Cylindrocapon)属、トリポクラジウ
ム(Tolypocladium)属またはフザリウム
(Fusarium)属に属する免疫抑制物質生産菌株を
培養することにより製造できることが知られてい
る。特に、トリポクラジウム属から生産されるシ
クロスポリンは臓器移植の際の拒絶反応防止に広
く用いられている。 〔発明の目的〕 本発明者らは、このような事情に鑑み、免疫抑
制物質の生産菌を探索した結果、従来免疫抑制物
質を生産することが知られていないある属に属す
る微生物から免疫抑制物質生産菌を見出し、本発
明に到達した。 〔発明の構成〕 すなわち、本発明の要旨はイザリア(Isaria)
属に属する免疫抑制物質生産菌を培養し、培養物
から免疫抑制物質を採取することを特徴とする免
疫抑制物質の製造法に関する。 以下に本発明を詳細に説明する。 本発明方法で使用される微生物はイザリア属に
属し、培養物中に充分な量の免疫抑制物質を生産
しうる能力を有する免疫抑制物質生産菌である。
このような菌株としては、たとえば、イザリア属
に属するシンクレイリー(sinclairii)菌が挙げ
られ、アメリカン・タイプ・カルチユア・コレク
シヨン(American Type Culture Collection)
にIsaria sinclairii ATCC No.24400として寄託
されている。 本発明に用いる免疫抑制物質生産菌はこの菌株
に限定されるものではなく、たとえば、常用され
る紫外線、高周波放射線、薬品などによる人工変
異手段で変更された変異株を含むことは勿論であ
る。 本発明に用いる免疫抑制物質生産菌は通常のか
び用栄養源を含む種々の培養基で培養されうる。
たとえば、炭素源としてグルコース、澱粉、グリ
セリン、糖水あめ、デキストリン、糖蜜、マルト
ースなど、および窒素源としてコーンステイープ
リカー、ペプトン、イーストエキス、ジヤガイモ
煎汁、肉汁、大豆粉、小麦胚芽、硝酸カリウム、
硝酸ナトリウム、硫酸アンモニウム、アミノ酸な
どがあげられ、その他通常の無機塩および菌の発
育を助け、免疫抑制物質の生産を促進する有機お
よび無機物や消泡剤などの培養に常用される添加
剤を適当に加えることができる。 培養法は特に限定されるものではないが、好気
的な深部培養法が適している。培養に適当な温度
は20〜35℃、好適には25〜30℃で培養する。 本発明方法により培養物中に生産された免疫抑
制物質は抽出、吸着など常用される操作を必要に
応じて適宜組み合わせ、培養物中より取り出され
る。たとえば、培養液から菌体などの不溶物を濾
過、遠心分離などの方法で分離し、培養濾液をア
ンバーライトXAD−2に通液させ、免疫抑制物
質を吸着させることによつて取り出される。かく
して得られた免疫抑制物質をさらに、たとえば、
メタノールで溶出させ、溶出部を更に逆相クロマ
トグラフイーにかけて、分画することによつて免
疫抑制物質の高度精製物が得られる。 かくして得られた高度精製免疫抑制物質は、ミ
リオコツカム・アルボミセス(Myriococcum
albomyces)およびマイセリア・ステリリア
(Mycelia sterilia)等の菌からも産生されるマ
イリオシン(Myriocin)、別名サーモザイモシデ
イン(Thermozymocidin)〔米国特許第3928572
号明細書参照〕であることを、NMR、紫外線吸
収スペクトル、赤外線吸収スペクトル、マス分析
等より推認した。この物質もまた強い免疫抑制活
性を持つものである。 〔作用〕 本発明により、生産される免疫抑制物質は優れ
た免疫抑制作用を示しヒト、ウシ、ウマ、イヌ、
マウス、ラツトなどの哺乳動物に対して、たとえ
ば臓器や骨髄移植の際の拒絶反応の抑制剤やエリ
テマトーデス、関節リウマチ、アレルギーなどの
自己免疫疾患またはリンパ球増殖異常に基づく疾
患などにおける予防または治療剤として、あるい
は医学、薬学における試薬として用いることがで
きる。 上記医薬として、本発明の免疫抑制物質を用い
る場合には担体、賦形剤、希釈剤などと混合して
散剤、カプセル剤、錠剤、注射剤などに製剤化し
て患者に投与することができる。また、凍結乾燥
させてもよい。 その投与量は、疾患、症状、体重、性別、年令
などによつて変わりうるが、たとえば腎移植にお
ける拒否反応の抑制には通常、成人1日当たり
0.1〜10mg(力価)を1日1〜数回に分けて投与
される。 〔実施例〕 以下に実施例を挙げて本発明をさらに詳細に説
明するが、本発明はその要旨を超えない限り以下
の実施例により何等の限定も受けるものではな
い。なお、免疫抑制物質の活性測定は、下記の方
法で行なつた。 免疫抑制物質の活性測定法としては、マウス、
ラツトあるいはヒトのリンパ球を用いた種々の免
疫反応を用いることができるが、たとえば、本発
明の免疫抑制物質は、マウス、ラツト、ヒトの同
種リンパ球混合反応(同種MLR)を用いること
により、感度よく測定できる。同種MLRとは、
同種でしかも主要組織適合性抗原が異なる2個体
由来のリンパ球、たとえば、脾細胞、リンパ節細
胞、末梢血リンパ球などを混合培養することによ
つて誘導されるリンパ球の幼若化反応である。こ
の同種MLRは、リンパ球の供与者間の主要組織
適合性抗原の違いを反映し、誘導される現象であ
りたとえば、一卵性双生児のリンパ球の混合培養
によるリンパ球の幼若化現象は認められない。そ
こで、同種MLRはたとえば、臓器移植における
供与者−受容者の選択に広く用いられている方法
である。 通常、同種MLRを行なう場合には、一方のリ
ンパ球をX線照射あるいはマイトマイシンC処理
などを行なうことによつて、分裂増殖を阻止した
状態で刺激細胞として用い、他方のリンパ球(反
応細胞)の幼若化反応を測定する方法(one
way−MLR)を用いることができる。 さらに、本発明の免疫抑制物質の活性は、同種
MLRの際に誘導される主要組織適合性抗原拘束
性を有する細胞障害性T細胞の誘導を抑制する活
性としても測定することができる。 また、本発明の免疫抑制物質の活性は、同種
MLRの他に、種々のマイトジエン(コンカナバ
リンA、フイトヘムアグルチニン、ポークウイー
ドマイトジエンなど)の刺激により誘導されるリ
ンパ球の幼若化反応を抑制する活性、または、T
細胞、B細胞などのリンパ球の分裂増殖を増強も
しくは分化を促進する活性を有するようなサイト
カイン(インターロイキン1、2、3、4、5、
6など)により誘導されるリンパ球の分裂増殖反
応、または機能の誘導活性を抑制する活性として
も評価することができる。さらにこれらサイトカ
インのT細胞、マクロフアージなどからの産生を
抑制する活性として評価することが可能である。 さらに、本発明の免疫抑制物質はマウスなどに
腹腔内、経口、静脈内または皮内投与をすること
によつて、たとえば、異種赤血球などであらかじ
め免疫されたマウスの脾細胞内に誘導される抗異
種赤血球抗体を産生する形質細胞の誘導を抑制す
る活性、または同種マウスの皮膚移植により誘導
される移植片対借主反応、あるいは遅延型アレル
ギー、アジユバント関節炎などを抑制する活性と
しても評価することができる。 また、自己免疫疾患のモデルマウスである
MRL/prマウス、NZB/WF1マウス、BXSB
マウスなどに本発明の免疫抑制物質を投与するこ
とにより、たとえば、抗DNA抗体の産生、リウ
マチ因子の産生、腎炎、リンパ球の増殖異常など
の抑制活性あるいは延命効果としても評価するこ
とができる。 〔実施例〕 実施例1 (シンクレイリー菌株のジヤー培養) GPY培地(1あたり、グリコース30g、ペプ
トン5g、酵母エキス3g、KH2PO4 0.3g、K2
HPO4 0.3g、MgSO4・7H2O 0.3g、PH5.5)を
500ml容首長振盪フラスコ2本に100mlずつ分注
し、121℃、20分間オートクレーブで滅菌後、ポ
テトデキストロース寒天培地上で成育したイザリ
ア・シンクレイリーATCC No.24400の菌糸体の
約1cm2を各フラスコに接種し、25℃、6日間往復
振盪培養(145rpm、振復巾8cm)を行なつた。
得られた培養液を種母として上記のGPY培地5
を仕込んだ10容ジヤーフアーメンタに接種
し、25℃で、10日間、通気攪拌培養(1VVM、
300rpm)を行なつた。 実施例2 (シンクレイリー菌の培養液からの免
疫抑制物質の採取) 実施例1で得られた培養液4.5から濾過によ
り菌体および不溶物を除き、培養濾液4.0を得
た。得られた培養濾液をアンバーライトXAD−
2(φ40mm×750mm)に通液し、免疫抑制物質を吸
着させた。さらに水4を通液し洗浄した。その
後メタノール6を通液し、免疫抑制物質を溶出
させた。これを減圧濃縮後、酢酸エチル200mlに
溶解し、水200mlで3回分漏液斗にて抽出した。 水抽出部および酢酸エチル部それぞれを減圧濃
縮後、凍結乾燥して免疫抑制物質2.23gおよび
0.34gをそれぞれ得た。 実施例3 (マイリオシンの採取) 実施例2で得られた水抽出部を凍結乾燥して得
られた免疫抑制物質2.23gを5mlの水で溶解し、
逆相クロマトグラフイー(ODS DM−1020Tフ
ジ−デビソン ケミカル社製)カラム(φ30mm×
h85mm)にかけた。水にて溶出を開始し、漸次メ
タノールの濃度を上げながら溶出し、分画を行な
つた。70%メタノール溶出部を減圧下濃縮乾固し
た後、少量の熱メタノールに溶解し、放冷により
マイリオシンの結晶を析出させた。本析出結晶を
再度熱メタノールに溶かし、再結晶操作を行ない
純粋なマイリオシン40mgを得た。 〔実験例〕 実験例1 (採取免疫抑制物質の免疫抑制作用の
測定) 本発明の免疫抑制物質の活性の測定は、マウス
同種リンパ球混合反応(以下、MLRと称するこ
ともある。)を用いて行なつた。マウス同種MLR
は、反応細胞としてBALB/cマウス(H−2d
の脾細胞を、刺激細胞としてC57BL/6(H−2b
マウスの脾細胞をマイトマイシンC処理したもの
を用い、等比で混合培養することによつて行なつ
た。 反応細胞の調製法としては、以下の方法で行な
つた。5〜6週齢の雄性BALB/cマウスより
脾臓を摘出し、熱不活性牛胎児血清(以下、FCS
と称することもある。)を5%添加した
RPM11640培地(硫酸カナマイシン60μg/ml、
L−グルタミン2mM、N−2−ヒドロキシエチ
ルピペラジン−N′−2−エタンスルホネート
(HEPES)10mM、0.1%炭酸水素ナトリウム含
有)を用いて、脾細胞の単細胞浮遊液を得た。溶
血処理後、10-4M2−メルカプトエタノールおよ
び20%FCSを含むRPM11640培地を用いて、107
個/mlに調製し、反応細胞浮遊液として用いた。 刺激細胞の調製法は以下の方法で行なつた。5
〜6週齢の雄性C57BL/6マウスより脾臓を摘
出し、RPM11640培地を用いて脾細胞の単細胞浮
遊液を得た。溶血処理後、40μg/mlマイトマイ
シンCで37℃、60分間の処理を行なつた。3回洗
浄後、10-4M2−メルカプトエタノールおよび20
%FCSを含むRPM11640培地を用いて、107個/
mlに調製し、刺激細胞浮遊液として用いた。 上述した方法により調製した反応細胞浮遊液
50μと刺激細胞浮遊液50μおよび被検体液
100μとを、96穴マイクロテストプレートに加
え、37℃で5%炭酸ガスの条件下で4日間培養を
行なつた。 リンパ球の幼若化反応の測定方法としては、
MTT(〔3−(4,5−ジメチルアゾール−2−
イル)−2,5−ジフエニルテトラゾリウムブロ
マイド〕)を用いる色素定量法および3H−チミジ
ンの取り込みを指標とする方法を用いた。 1 MTTを用いる色素定量法 培養終了後、各ウエルの上清100μを除去し、
5mg/ml MTT溶液を20μずつ各wellに添加
し、4時間、37℃でインキユベートした。その
後、10%ドデシル硫酸ナトリウムを含む0.01規定
塩酸溶液100μを加え、一晩37℃でインキユベ
ートし、形成された紫色のホルマザンの結晶を溶
解させ、マイクロプレート吸光光度計を用いて
550nmにおける吸光度を測定し、マウス同種
MLRのリンパ球幼若化反応の指標とした。マウ
ス同種MLRの抑制は以下の式により抑制率を算
出することにより評価した。 抑制率(%)=[1−(被検体を添加したMLRの吸光
度)−(反応細胞のみの吸光度)/(被検体未添加のML
Rの吸光度)−(反応細胞のみの吸光度)]×100 2 3Hチミジン取り込みを指標とする方法 培養終了後に、3Hチミジン0.5μCi/ウエルを添
加し、4時間培養後、セルハーベスターにて細胞
を収集し、細胞内に取り込まれた放射活性を液体
シンチレーシヨンカウンターにて測定し、マウス
同種MLRのリンパ球幼若化の指標とした。マウ
ス同種MLRの抑制は、以下の式により抑制率を
算出し評価した。 抑制率(%)=[1−(被検体を添加したMLRのcpm)
−(反応細胞のみのcpm)/(被検体未添加のMLRのcpm
)−(反応細胞のみのcpm)]×100 本発明の免疫抑制物質はメタノールに懸濁後、
RPM11640培地で希釈し、用いた。なお、メタノ
ールは、最終濃度が0.1%以下で用い、この場合
には、同種MLRに全く影響が認められなかつた。 本発明の免疫抑制物質(水抽出画分および酢酸
エチル抽出画分)について、10μg/mlから10-4
μg/mlの範囲の最終濃度で、マウス同種MLRに
おけるリンパ球幼若化反応の抑制活性を測定した
結果、第1表に示すように、本発明の免疫抑制物
質(酢酸エチル抽出)のマウス同種MLRを50%
抑制する濃度(IC50)は1.6×10-3μg/mlであり、
水抽出の免疫抑制物質のIC50は2.5×10-1μg/ml
であることが明らかとなつた。 一方、これらの免疫抑制物質は、10μg/mlの
濃度でも、マウスL929細胞などに対する細胞毒
性は認められなかつた(IC50は50μg/ml以上であ
る)。
[Industrial Application Field] The present invention relates to a new method for producing an immunosuppressive substance, particularly myriocin, using microorganisms. [Prior Art] Conventionally, it has been known that microbial-derived immunosuppressive substances can be produced by culturing immunosuppressive substance-producing strains belonging to the genus Cylindrocapon, Tolypocladium, or Fusarium. Are known. In particular, cyclosporine produced from the genus Tolypocladium is widely used to prevent rejection during organ transplants. [Purpose of the Invention] In view of the above circumstances, the present inventors searched for microorganisms that produce immunosuppressive substances and found that immunosuppressive substances were detected from microorganisms belonging to a certain genus that was not known to produce immunosuppressive substances. We discovered a substance-producing bacterium and arrived at the present invention. [Structure of the Invention] That is, the gist of the present invention is based on Isaria.
The present invention relates to a method for producing an immunosuppressive substance, which comprises culturing an immunosuppressive substance-producing bacterium belonging to the genus and collecting the immunosuppressive substance from the culture. The present invention will be explained in detail below. The microorganism used in the method of the present invention belongs to the genus Isaria and is an immunosuppressant-producing bacterium that has the ability to produce a sufficient amount of an immunosuppressant in culture.
Examples of such strains include sinclairii, which belongs to the genus Isaria, and is included in the American Type Culture Collection.
It has been deposited as Isaria sinclairii ATCC No. 24400. The immunosuppressive substance-producing bacteria used in the present invention are not limited to these strains, and of course include mutant strains that have been modified by artificial mutation means such as commonly used ultraviolet rays, high-frequency radiation, and chemicals. The immunosuppressant-producing bacteria used in the present invention can be cultured in various culture media containing common nutrient sources for molds.
For example, carbon sources include glucose, starch, glycerin, sugar syrup, dextrin, molasses, maltose, etc., and nitrogen sources include cornstarch liquor, peptone, yeast extract, potato broth, meat juice, soy flour, wheat germ, potassium nitrate, etc.
Examples include sodium nitrate, ammonium sulfate, amino acids, and other common inorganic salts and additives commonly used in culture such as organic and inorganic substances that aid the growth of bacteria and promote the production of immunosuppressive substances, and antifoaming agents. can be added. Although the culture method is not particularly limited, an aerobic deep culture method is suitable. A suitable culture temperature is 20 to 35°C, preferably 25 to 30°C. The immunosuppressive substance produced in the culture by the method of the present invention can be extracted from the culture by appropriately combining commonly used operations such as extraction and adsorption as necessary. For example, insoluble substances such as bacterial cells are separated from the culture solution by filtration, centrifugation, or the like, and the culture filtrate is passed through Amberlite XAD-2 to adsorb the immunosuppressive substance. The immunosuppressive substance thus obtained may be further treated with, for example,
A highly purified product of the immunosuppressive substance can be obtained by elution with methanol and further subjecting the eluate to reverse phase chromatography and fractionation. The highly purified immunosuppressive substance obtained in this way is derived from Myriococcum albomyces.
Myriocin, also known as Thermozymocidin, which is also produced by bacteria such as Albomyces and Mycelia sterilia [US Patent No. 3928572
It was inferred from NMR, ultraviolet absorption spectrum, infrared absorption spectrum, mass analysis, etc. This substance also has strong immunosuppressive activity. [Effect] The immunosuppressive substance produced by the present invention exhibits an excellent immunosuppressive effect on humans, cows, horses, dogs,
For mammals such as mice and rats, for example, an inhibitor of rejection during organ or bone marrow transplantation, or a prophylactic or therapeutic agent for autoimmune diseases such as lupus erythematosus, rheumatoid arthritis, allergies, or diseases based on abnormal lymphocyte proliferation. or as a reagent in medicine and pharmacy. When the immunosuppressive substance of the present invention is used as the above-mentioned medicine, it can be mixed with carriers, excipients, diluents, etc., formulated into powders, capsules, tablets, injections, etc., and administered to patients. Alternatively, it may be freeze-dried. The dosage may vary depending on the disease, symptoms, body weight, sex, age, etc., but for example, to suppress rejection in kidney transplantation, it is usually administered per day for an adult.
It is administered in doses of 0.1 to 10 mg (potency) in one to several divided doses a day. [Examples] The present invention will be described in more detail with reference to Examples below, but the present invention is not limited in any way by the Examples unless the gist of the invention is exceeded. The activity of the immunosuppressive substance was measured by the following method. As a method for measuring the activity of immunosuppressive substances, mice,
Although various immune reactions using rat or human lymphocytes can be used, for example, the immunosuppressive substance of the present invention can be used in a mixed reaction (allogeneic MLR) of mouse, rat, and human allogeneic lymphocytes. Can be measured with good sensitivity. What is homogeneous MLR?
A lymphocyte rejuvenation reaction induced by mixed culture of lymphocytes from two individuals of the same species but with different major histocompatibility antigens, such as splenocytes, lymph node cells, and peripheral blood lymphocytes. be. This allogeneic MLR is a phenomenon that reflects and is induced by differences in major histocompatibility antigens between lymphocyte donors. unacceptable. Allogeneic MLR, for example, is a widely used method for donor-recipient selection in organ transplants. Normally, when performing allogeneic MLR, one lymphocyte is used as a stimulator cell after its division and proliferation is inhibited by X-ray irradiation or mitomycin C treatment, and the other lymphocyte (reactive cell) is used as a stimulator cell. How to measure the rejuvenation response of one
way-MLR) can be used. Furthermore, the activity of the immunosuppressant of the present invention is similar to that of the same species.
It can also be measured as the activity of suppressing the induction of cytotoxic T cells with major histocompatibility antigen-restricted properties induced during MLR. Furthermore, the activity of the immunosuppressive substance of the present invention is similar to that of the same species.
In addition to MLR, the activity of suppressing the lymphocyte blastogenesis induced by stimulation with various mitogens (concanavalin A, phytohemagglutinin, porkweed mitogen, etc.), or T
Cytokines (interleukins 1, 2, 3, 4, 5,
It can also be evaluated as the activity of suppressing lymphocyte division/proliferation response or function induction activity induced by (6, etc.). Furthermore, it is possible to evaluate the activity of suppressing the production of these cytokines from T cells, macrophages, etc. Furthermore, the immunosuppressive substance of the present invention can be administered intraperitoneally, orally, intravenously, or intradermally to mice, etc., to induce anti-spleen cells of mice that have been immunized with xenogeneic red blood cells. It can also be evaluated as the activity of suppressing the induction of plasma cells that produce xeno-erythrocyte antibodies, the graft-versus-borrower reaction induced by skin transplantation of allogeneic mice, or the activity of suppressing delayed-type allergies, adjuvant arthritis, etc. . It is also a mouse model for autoimmune diseases.
MRL/pr mouse, NZB/WF 1 mouse, BXSB
By administering the immunosuppressive substance of the present invention to mice and the like, it can be evaluated, for example, as suppressive activity against anti-DNA antibody production, rheumatoid factor production, nephritis, abnormal lymphocyte proliferation, etc., or as a survival effect. [Example] Example 1 (Jear culture of Sinclairy strain) GPY medium (30 g of glycose, 5 g of peptone, 3 g of yeast extract, 0.3 g of KH 2 PO 4 , K 2 per portion)
HPO 4 0.3g, MgSO 4・7H 2 O 0.3g, PH5.5)
Dispense 100 ml into two 500 ml long shake flasks, sterilize in an autoclave at 121°C for 20 minutes, and add approximately 1 cm 2 of Isaria Sinclairi ATCC No. 24400 mycelium grown on potato dextrose agar to each flask. and cultured with reciprocating shaking (145 rpm, shaking width 8 cm) at 25°C for 6 days.
Using the obtained culture solution as a seed mother, use the above GPY medium 5.
was inoculated into a 10-volume jar of fermenter, and cultured with aeration at 25°C for 10 days (1VVM,
300rpm). Example 2 (Collection of immunosuppressive substance from culture solution of Bacillus cinquerilii) Bacterial cells and insoluble matter were removed by filtration from culture solution 4.5 obtained in Example 1 to obtain culture filtrate 4.0. The obtained culture filtrate was injected into Amberlite XAD-
2 (φ40 mm x 750 mm) to adsorb the immunosuppressive substance. Further, water 4 was passed therethrough for washing. Thereafter, methanol 6 was passed through the tube to elute the immunosuppressive substance. This was concentrated under reduced pressure, dissolved in 200 ml of ethyl acetate, and extracted three times with 200 ml of water using a funnel. The water extract and ethyl acetate were each concentrated under reduced pressure and then lyophilized to produce 2.23 g of the immunosuppressant and
0.34g each was obtained. Example 3 (Collection of myriocin) 2.23 g of the immunosuppressive substance obtained by freeze-drying the water extract obtained in Example 2 was dissolved in 5 ml of water,
Reversed phase chromatography (ODS DM-1020T manufactured by Fuji Davison Chemical) column (φ30mm x
h85mm). Elution was started with water and fractionated by elution while gradually increasing the methanol concentration. The 70% methanol eluate was concentrated to dryness under reduced pressure, then dissolved in a small amount of hot methanol, and allowed to cool to precipitate myliosin crystals. The precipitated crystals were dissolved again in hot methanol and recrystallized to obtain 40 mg of pure myliocin. [Experimental Examples] Experimental Example 1 (Measurement of the immunosuppressive effect of the collected immunosuppressive substance) The activity of the immunosuppressive substance of the present invention was measured using a mouse allogeneic lymphocyte mixed reaction (hereinafter sometimes referred to as MLR). I did it. Mouse allogeneic MLR
BALB/c mice (H-2 d ) were used as reactive cells.
C57BL/6 (H- 2b ) splenocytes were used as stimulator cells.
The experiment was carried out by using mouse splenocytes treated with mitomycin C and culturing them in equal proportions. The reaction cells were prepared by the following method. The spleen was removed from a 5- to 6-week-old male BALB/c mouse and treated with heat-inactivated fetal bovine serum (hereinafter referred to as FCS).
It is also sometimes called. ) was added at 5%
RPM11640 medium (kanamycin sulfate 60 μg/ml,
A single cell suspension of splenocytes was obtained using 2 mM L-glutamine, 10 mM N-2-hydroxyethylpiperazine-N'-2-ethanesulfonate (HEPES), and 0.1% sodium bicarbonate. After the hemolysis treatment , 10 7
cells/ml and used as a reaction cell suspension. The stimulated cells were prepared as follows. 5
The spleen was removed from a ~6 week old male C57BL/6 mouse, and a single cell suspension of splenocytes was obtained using RPM11640 medium. After hemolysis, treatment was performed with 40 μg/ml mitomycin C at 37° C. for 60 minutes. After three washes, 10 -4 M2-mercaptoethanol and 20
Using RPM11640 medium containing %FCS, 10 7 cells/
ml and used as a stimulated cell suspension. Reactive cell suspension prepared by the method described above
50μ, stimulated cell suspension 50μ and test body fluid
100μ was added to a 96-well microtest plate, and cultured for 4 days at 37°C under 5% carbon dioxide gas. As a method for measuring lymphocyte blastogenesis,
MTT([3-(4,5-dimethylazole-2-
A dye quantitative method using 2,5-diphenyltetrazolium bromide]) and a method using 3 H-thymidine incorporation as an indicator were used. 1. Dye determination method using MTT After the completion of culture, remove 100μ of supernatant from each well,
20μ of 5mg/ml MTT solution was added to each well and incubated at 37°C for 4 hours. Then, add 100μ of 0.01N hydrochloric acid solution containing 10% sodium dodecyl sulfate and incubate at 37°C overnight to dissolve the formed purple formazan crystals and analyze using a microplate spectrophotometer.
Measure the absorbance at 550 nm and measure the absorbance at 550 nm.
It was used as an indicator of MLR lymphocyte blastogenesis. Suppression of mouse allogeneic MLR was evaluated by calculating the suppression rate using the following formula. Suppression rate (%) = [1 - (absorbance of MLR with analyte added) - (absorbance of only reactive cells) / (ML without analyte added)
Absorbance of R) - (absorbance of only reacting cells)] × 100 Method using 2 3 H thymidine incorporation as an indicator After culturing, add 0.5 μCi/well of 3 H thymidine, and after culturing for 4 hours, remove the cells using a cell harvester. were collected, and the radioactivity incorporated into the cells was measured using a liquid scintillation counter, which was used as an indicator of lymphocyte development in mouse allogeneic MLR. Suppression of mouse allogeneic MLR was evaluated by calculating the suppression rate using the following formula. Inhibition rate (%) = [1 - (cpm of MLR with analyte added)
- (cpm of reactive cells only) / (cpm of MLR without analyte added)
) - (cpm of reactive cells only) ] × 100 After suspending the immunosuppressive substance of the present invention in methanol,
It was diluted with RPM11640 medium and used. Note that methanol was used at a final concentration of 0.1% or less, and in this case, no effect was observed on the homogeneous MLR. Regarding the immunosuppressive substance of the present invention (water extract fraction and ethyl acetate extract fraction), from 10 μg/ml to 10 -4
As a result of measuring the inhibitory activity of lymphocyte blastogenesis in mouse allogeneic MLR at a final concentration in the range of μg/ml, as shown in Table 1, the immunosuppressive substance of the present invention (ethyl acetate extraction) was 50% MLR
The inhibitory concentration (IC 50 ) is 1.6×10 -3 μg/ml,
The IC 50 of the water-extracted immunosuppressant is 2.5×10 -1 μg/ml
It became clear that. On the other hand, these immunosuppressive substances showed no cytotoxicity against mouse L929 cells, etc., even at a concentration of 10 μg/ml (IC 50 is 50 μg/ml or higher).

【表】 実験例2 (マイリオシンの免疫抑制作用の測
定) 実施例1と同様にしてマイリオシンの免疫抑制
作用を3H−チミジン取り込みを指標とする方法
により測定し、その結果を第2表に示した。な
お、マイリオシンはメタノールに懸濁した。ま
た、メタノールの最終濃度は0.05%以下で用い、
この場合には同種MLRに全く影響が認められな
かつた。 マイリオシンのマウス同種MLRに対するIC50
値はシクロスポリンAの1/100以下である。
[Table] Experimental Example 2 (Measurement of the immunosuppressive effect of myliocin) The immunosuppressive effect of myliocin was measured in the same manner as in Example 1 using the method using 3H -thymidine uptake as an indicator, and the results are shown in Table 2. Ta. Note that myriocin was suspended in methanol. In addition, the final concentration of methanol is used at 0.05% or less,
In this case, no effect was observed on allogeneic MLR. IC 50 of myriocin against mouse homologous MLR
The value is less than 1/100 that of cyclosporin A.

【表】 実験例3 マイトジエン刺激によるマウス脾細胞
幼若化反応の抑制効果) フイトヘムアグルチニン(PHA)またはポー
クウイードマイトジエン(PWM)刺激によるマ
ウス脾細胞幼若化反応に対する効果の試験は、以
下の方法で行なつた。 5〜8週齢の雄性BALB/cマウスより脾臓
を摘出し、5%熱不活化牛胎児血清を添加した
RPM11640培地を用いて脾細胞の単細胞浮遊液を
得た。溶血処理後、10-4M2−メルカプトエタノ
ールおよび20%熱不活化牛胎児血清を含む
RPMI1640培地を用いて5×106個/mlに調製し
PHAまたはPWMを添加した。この細胞浮遊液
100μをあらかじめ被検液100μを入れておい
た96穴マイクロテストプレートの各ウエルに加え
た(マウス脾細胞の数は5×105個/ウエルであ
る)。37℃、5%炭酸ガス条件下で72時間培養し
た後、3H−チミジン0.5μCi/ウエルを加え、同条
件下でさらに4時間培養した。培養終了後、セル
ハーベスターを用いて細胞を回収し、細胞内に取
り込まれた放射活性を液体シンチレーシヨンカウ
タンーにて測定し、マウス脾細胞幼若化反応の指
標とした。その結果を第3表に示す。
[Table] Experimental Example 3: Suppressing effect on mouse splenocyte rejuvenation response induced by mitogen stimulation) Testing of the effect on mouse splenocyte rejuvenation response induced by phytohemagglutinin (PHA) or porkweed mitogene (PWM) stimulation was as follows: I did it in the following way. Spleens were removed from male BALB/c mice aged 5 to 8 weeks, and 5% heat-inactivated fetal bovine serum was added.
A single cell suspension of splenocytes was obtained using RPM11640 medium. After hemolysis treatment, containing 10 -4 M2-mercaptoethanol and 20% heat-inactivated fetal bovine serum.
Adjust to 5 x 106 cells/ml using RPMI1640 medium.
Added PHA or PWM. This cell suspension
100μ of the test solution was added to each well of a 96-well microtest plate in which 100μ of the test solution had been previously placed (the number of mouse splenocytes was 5×10 5 cells/well). After culturing at 37° C. for 72 hours under 5% carbon dioxide gas conditions, 0.5 μCi/well of 3 H-thymidine was added, and the cells were cultured for an additional 4 hours under the same conditions. After the culture was completed, the cells were collected using a cell harvester, and the radioactivity incorporated into the cells was measured using liquid scintillation countermeasures, which was used as an indicator of the mouse splenocyte rejuvenation reaction. The results are shown in Table 3.

【表】 第3表から明らかなように本発明の免疫抑制物
質は同物質を含まない対照に比して、PHAある
いはPWMによつて誘導される3H−チミジン取
り込みを強く抑制した。 実験例4 (インターロイキン2(IL2)により
誘導されるIL2依存性マウス細胞株、CTLL−
2の3H−チミジン取り込みに対する抑制効果) IL2依存性マウス細胞株CTLL−2を30%牛胎
児血清を含むRPMI1640培地にて2×105個/ml
に調製した。この細胞浮遊液50μと、IL2を含
むコンカナバリンA刺激ラツト脾細胞培養上清
50μをあらかじめ被検液100μを入れておいた
96穴マイクロテストプレートの各ウエルに加え
た。37℃、5%炭酸ガス条件下で20、44および68
時間培養した後、3H−チミジン0.5μCi/ウエルを
加え、さらに同条件下で4時間培養した。培養終
了後、サルハーベスターを用いて細胞を回収し、
細胞内に取り込まれた放射活性を液体シンチレー
シヨンカウンターを用いて測定した。その結果を
第4表に示す。
[Table] As is clear from Table 3, the immunosuppressive substance of the present invention strongly suppressed 3 H-thymidine uptake induced by PHA or PWM, compared to the control not containing the same substance. Experimental Example 4 (IL2-dependent mouse cell line induced by interleukin 2 (IL2), CTLL-
2. Inhibitory effect on 3H -thymidine uptake) IL2-dependent mouse cell line CTLL-2 was cultured at 2 x 10 cells/ml in RPMI1640 medium containing 30% fetal bovine serum.
It was prepared as follows. 50μ of this cell suspension and concanavalin A-stimulated rat splenocyte culture supernatant containing IL2.
50μ and 100μ of test solution were added in advance.
was added to each well of a 96-well microtest plate. 20, 44 and 68 at 37℃ and 5% carbon dioxide
After culturing for an hour, 0.5 μCi/well of 3 H-thymidine was added, and the cells were further cultured for 4 hours under the same conditions. After culturing, collect the cells using a monkey harvester,
Radioactivity taken into the cells was measured using a liquid scintillation counter. The results are shown in Table 4.

【表】【table】

【表】 第4表から明らかなように、本発明の免疫抑制
物質は、IL2により誘導されるCTLL−2細胞の3
H−チミジン取り込みの上昇を強く抑制した。 実験例5 (マウス同種リンパ球混合培養
(MLC)におけるIL2産生に対する抑制効果) マウス同種MLCは次のように行なつた。すな
わち、実験例1と同様に調製された反応細胞浮遊
液および刺激細胞浮遊液をそれぞれ0.5mlずつ、
あらかじめ被検液1mlを入れておいた24穴マルチ
デイツシユに加え、37℃、5%炭酸ガス条件下で
3日間培養した。培養終了後、上清を回収してマ
ウス同種MLCの上清とした。 マウス同種MLCの上清中のIL2活性の測定は次
のように行なつた。すなわち、IL2依存性マウス
細胞株CTLL−2を30%熱不活化牛胎児血清を含
むRPMI1640培地にて105個/mlに調製し、あら
かじめ上記MLCの上清を100μ入れておいた96
穴マイクロテストプレートの各ウエルに100μ
ずつ加えた。37℃、5%炭酸ガス条件下で20時間
培養した後、3H−チミジン0.5μCi/ウエルを加
え、さらに同条件下で4時間培養した。培養終了
後、セルハーベスターを用いて細胞を回収し、細
胞内に取り込まれた放射活性を液体シンチレーシ
ヨンカウンターを用いて測定し、IL2活性の指標
とした。その結果を第5表に示す。
[Table] As is clear from Table 4, the immunosuppressive substance of the present invention suppresses CTLL-2 cells induced by IL2.
The increase in H-thymidine uptake was strongly suppressed. Experimental Example 5 (Suppressive effect on IL2 production in mouse allogeneic lymphocyte mixed culture (MLC)) Mouse allogeneic MLC was performed as follows. That is, 0.5 ml each of the reactive cell suspension and stimulated cell suspension prepared in the same manner as in Experimental Example 1,
It was added to a 24-well multi-dish into which 1 ml of the test solution had been previously placed, and cultured for 3 days at 37°C and 5% carbon dioxide. After completion of the culture, the supernatant was collected and used as a supernatant of mouse allogeneic MLC. IL2 activity in the supernatant of mouse allogeneic MLC was measured as follows. Specifically, the IL2-dependent mouse cell line CTLL-2 was prepared at 105 cells/ml in RPMI1640 medium containing 30% heat-inactivated fetal bovine serum, and 100μ of the above MLC supernatant was added in advance96.
100μ in each well of the hole micro test plate
Added one by one. After culturing at 37° C. for 20 hours under 5% carbon dioxide gas conditions, 0.5 μCi/well of 3 H-thymidine was added, and the cells were further cultured under the same conditions for 4 hours. After the culture was completed, the cells were collected using a cell harvester, and the radioactivity incorporated into the cells was measured using a liquid scintillation counter, which was used as an index of IL2 activity. The results are shown in Table 5.

【表】 第5表に示したように本発明の免疫抑制物質は
マウス同種MLCにおけるIL2産生を抑制すること
が示唆された。 実験例6 (マウス同種リンパ球混合培養
(MLC)により誘導される同種細胞障害性T細
胞に対する抑制効果) 実験例1と同様の方法にて調製したBALB/
cマウス(H−2d)脾細胞浮遊液(2×107個/
ml)0.5mlと、マイトマイシンC処理した
C57BL/6マウス(H−2b)脾細胞浮遊液(2×
107個/ml)0.5mlおよび被検体1.0mlを24穴マルチ
デイツシユに加え、37℃で5%炭酸ガスの条件下
で6日間培養を行なつた。 培養終了後、遠心により細胞を回収し、10%
FCSを含むRPMI1640培地にて5×106〜6.25×
105個/mlに調製し、奏効細胞として用いた。 標的細胞としては、刺激細胞と同系(H−2b
のC57BL/bマウス由来白血病細胞、EL4を用い
た。EL4細胞106個を100μCiのNa2 51CrO4
(1mCi/ml)を用いて、37℃にて1時間インキユ
ベートすることにより51Crを細胞質内に取り込ま
せた後、洗浄し、104個/mlに調製し、標的細胞
として用いた。 細胞障害活性の測定は、奏効細胞浮遊液0.1ml
と、標的細胞浮遊液0.1mlを、96穴平底プレート
に加え、37℃にて4時間培養した後、上清中に放
出される51Cr量を測定し、以下の式により細胞障
害活性を算出した。 細胞障害活性(%)=[奏効細胞+標的細胞,cpm)
−(標的細胞単独,cpm)/(全放射活性,cpm)−標的
細胞単独,cpm)]×100 なお、上記方法により誘導された細胞障害性T
細胞は、刺激細胞(H−2b)と同系のEL4細胞
(H−2b)に対しては強い細胞障害活性を示した
が、異系のMeth A細胞(H−2d)に対しては全
く細胞障害活性を示さなかつたことから、H−2b
拘束性の同種細胞障害性T細胞であることが示唆
された。 本発明の免疫抑制物質を0.01〜1μg/mlの濃度
で添加し、同種細胞障害性T細胞の誘導に対する
影響を検討した結果、第6表に示す様に、細胞障
害活性がほとんど認められず、本発明の免疫抑制
物質によつて、同種細胞障害性T細胞の誘導は著
しく抑制された。
[Table] As shown in Table 5, it was suggested that the immunosuppressive substance of the present invention suppresses IL2 production in mouse allogeneic MLC. Experimental Example 6 (Suppressive effect on allogeneic cytotoxic T cells induced by mouse allogeneic lymphocyte mixed culture (MLC)) BALB/
c Mouse (H- 2d ) splenocyte suspension (2 x 10 7 cells/
ml) 0.5 ml and mitomycin C treated
C57BL/6 mouse (H- 2b ) splenocyte suspension (2x
107 cells/ml) and 1.0 ml of the test substance were added to a 24-well multi-dish and cultured for 6 days at 37°C under 5% carbon dioxide gas. After culturing, collect the cells by centrifugation and 10%
5×10 6 to 6.25× in RPMI1640 medium containing FCS
The cells were adjusted to 10 5 cells/ml and used as responder cells. Target cells are syngeneic with stimulator cells (H-2 b )
Leukemia cells derived from C57BL/b mice, EL4, were used. 106 EL4 cells with 100 μCi Na251CrO4
(1 mCi/ml) was used to incorporate 51 Cr into the cytoplasm by incubation at 37° C. for 1 hour, followed by washing, adjusting the concentration to 10 4 cells/ml, and using the cells as target cells. Measurement of cytotoxic activity is performed using 0.1ml of responder cell suspension.
Add 0.1 ml of the target cell suspension to a 96-well flat-bottomed plate, and after culturing at 37°C for 4 hours, measure the amount of 51 Cr released into the supernatant, and calculate the cytotoxic activity using the following formula: did. Cytotoxic activity (%) = [responder cells + target cells, cpm)
- (Target cells alone, cpm) / (Total radioactivity, cpm) - Target cells alone, cpm)] × 100 In addition, the cytotoxic T induced by the above method
The cells showed strong cytotoxic activity against stimulator cells (H- 2b ) and syngeneic EL4 cells (H- 2b ), but against allogeneic Meth A cells (H- 2d ). H-2 b showed no cytotoxic activity at all.
It was suggested that these cells were restricted allogeneic cytotoxic T cells. As a result of adding the immunosuppressive substance of the present invention at a concentration of 0.01 to 1 μg/ml and examining the effect on induction of allogeneic cytotoxic T cells, as shown in Table 6, almost no cytotoxic activity was observed. The induction of allogeneic cytotoxic T cells was significantly suppressed by the immunosuppressive substance of the present invention.

【表】 実験例7 (インターロイキン3(IL3)により
誘導されるIL3依存性マウス細胞株FDCP2の増
殖に対する抑制効果) IL3依存性のマウス細胞株FDCP2を10%牛胎児
血清を含むRPMI1640培地にて2×105個/mlに
調製した。この細胞浮遊液100μとIL3を含むマ
ウス白血病細胞WEHI3培養上清50μを、あらか
じめ被検体100μを入れておいた96穴マイクロ
テストプレートの各ウエルに添加し、37℃にて5
%炭酸ガスの条件下で20時間培養した。培養終了
後、3H−チミジン0.5μCi/ウエルを加え、さらに
同条件下で4時間培養した後、セルハーベスター
により細胞を回収し細胞内に取り込まれた放射活
性を液体シンチレーシヨンカウンターを用いて測
定し、IL3依存性増殖の指標とした。 第7表に示したように、本発明の免疫抑制物質
は、IL3により誘導されるFDCP2細胞の3H−チ
ミジン取り込みの上昇を(1μg/mlの濃度で約60
%程度)抑制することから、IL3依存性の増殖を
抑制する活性を本発明の免疫抑制物質は有してい
ることが示唆された。
[Table] Experimental Example 7 (Suppressive effect on proliferation of IL3-dependent mouse cell line FDCP2 induced by interleukin-3 (IL3)) IL3-dependent mouse cell line FDCP2 was grown in RPMI1640 medium containing 10% fetal bovine serum. The concentration was adjusted to 2×10 5 cells/ml. 100μ of this cell suspension and 50μ of mouse leukemia cell WEHI3 culture supernatant containing IL3 were added to each well of a 96-well microtest plate in which 100μ of the test substance had been previously placed, and the mixture was heated at 37℃ for 5 minutes.
% carbon dioxide gas for 20 hours. After culturing, 0.5 μCi/well of 3 H-thymidine was added, and after further culturing for 4 hours under the same conditions, the cells were collected using a cell harvester and the radioactivity incorporated into the cells was measured using a liquid scintillation counter. This was used as an indicator of IL3-dependent proliferation. As shown in Table 7, the immunosuppressant of the present invention suppresses the increase in 3H -thymidine uptake in FDCP2 cells induced by IL3 (approximately 60% at a concentration of 1 μg/ml).
%), suggesting that the immunosuppressive substance of the present invention has the activity of suppressing IL3-dependent proliferation.

【表】 実験例8 (マウス胸線細胞のインターロイキン
1(IL1)応答に対する抑制効果) 雄性7週齢C3H/H2Nマウスより胸線を摘出
し、無血清RPMI1640培地を用いて単一細胞浮遊
液とした。同培地で3回洗浄した後、20%牛胎児
血清5×10-5M/2−メルカプトエタノール、2
×10-3M/L−グルタミン、1×10-3Mピルビン
酸ナトリウムフイトヘムアグルチニン(PHA、
ウエルカム社、HA16/17)1μg/mlおよびヒ
ト・ウルトラピユアー・インターロイキン1(ゲ
ンザイム社GUPi−1)2単位/mlを含む
RPMI1640培地中に1.5×10-7細胞/mlの濃度で浮
遊させた。この細胞浮遊液100μと本発明の免
疫抑制物質またはサイクロスポリンAを含む溶液
100μとを96ウエル平底マイクロテストプレー
トの各ウエル中で混合し、37℃、5%炭酸ガス条
件下で66時間培養した後、3H−チミジンを
0.5μCi/ウエル加えさらに6時間培養した。培養
終了後、マルチプル・セル・ハーベスターを用い
て各ウエルの細胞をフイルター上に回収し、細胞
中に取り込まれた放射活性をトルエンベースシン
チレーターを用いた液体シンチレーシヨン法によ
り測定した。 上述の方法により得られた結果を第8表に示
す。表中、SDは標準偏差を表わす。また、抑制
率(%)は以下の式により算出した。 抑制率(%)= [1−
(PHA+IL1に被検液を加えた際の3H−チミジン取り込
み)−(PHA単独の3H−チミジン取り込み)/(PHA+I
L1の3H−チミジン取り込み)−(PHA単独の3H−チミ
ジン取り込み) ×100
[Table] Experimental Example 8 (Suppressive effect on interleukin 1 (IL1) response of mouse thymus cells) The thymus was removed from a 7-week-old male C3H/H 2 N mouse, and single cells were cultured using serum-free RPMI1640 medium. It was made into a floating liquid. After washing three times with the same medium, 20% fetal bovine serum 5 x 10 -5 M/2-mercaptoethanol, 2
×10 -3 M/L-glutamine, 1 × 10 -3 M sodium pyruvate phytohemagglutinin (PHA,
Contains 1 μg/ml (Wellcome, HA16/17) and 2 units/ml of Human Ultrapure Interleukin 1 (GUPi-1, Genzyme)
They were suspended in RPMI1640 medium at a concentration of 1.5 x 10 -7 cells/ml. A solution containing 100μ of this cell suspension and the immunosuppressive substance of the present invention or cyclosporin A
100μ of 3H-thymidine was mixed in each well of a 96-well flat-bottomed microtest plate, and cultured for 66 hours at 37°C and 5% carbon dioxide.
0.5 μCi/well was added and cultured for an additional 6 hours. After the culture was completed, the cells in each well were collected onto a filter using a multiple cell harvester, and the radioactivity incorporated into the cells was measured by a liquid scintillation method using a toluene-based scintillator. The results obtained by the above method are shown in Table 8. In the table, SD represents standard deviation. In addition, the inhibition rate (%) was calculated using the following formula. Suppression rate (%) = [1-
( 3H -thymidine uptake when test solution is added to PHA+IL1) - ( 3H -thymidine uptake of PHA alone)/(PHA+I
3H -thymidine uptake of L1) - ( 3H -thymidine uptake of PHA alone) ×100

【表】 疫抑制物質
2 3973±39 91.
8
0.2 4646±826 83.9
[Table] Epidemic suppression substances
2 3973±39 91.
8
0.2 4646±826 83.9

Claims (1)

【特許請求の範囲】 1 イザリア属に属する免疫抑制物質生産菌を培
養し、培養物から免疫抑制物質を採取することを
特徴とする免疫抑制物質の製造法。 2 免疫抑制物質がマイリオシンである請求項1
記載の免疫抑制物質の製造法。 3 免疫抑制物質生産菌がイザリア属シンクレイ
リー菌であることを特徴とする請求項1または2
記載の免疫抑制物質の製造法。
[Scope of Claims] 1. A method for producing an immunosuppressive substance, which comprises culturing an immunosuppressive substance-producing bacterium belonging to the genus Isaria and collecting the immunosuppressive substance from the culture. 2 Claim 1 wherein the immunosuppressive substance is myriocin
Method for producing the immunosuppressive substance described. 3. Claim 1 or 2, characterized in that the immunosuppressive substance-producing bacterium is Isaria cinclairii.
Method for producing the immunosuppressive substance described.
JP63050092A 1987-03-17 1988-03-02 Production of immunosuppressive substance Granted JPH01104087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63050092A JPH01104087A (en) 1987-03-17 1988-03-02 Production of immunosuppressive substance

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6221587 1987-03-17
JP62-62215 1987-03-17
JP63050092A JPH01104087A (en) 1987-03-17 1988-03-02 Production of immunosuppressive substance

Publications (2)

Publication Number Publication Date
JPH01104087A JPH01104087A (en) 1989-04-21
JPH0578307B2 true JPH0578307B2 (en) 1993-10-28

Family

ID=13193701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63050092A Granted JPH01104087A (en) 1987-03-17 1988-03-02 Production of immunosuppressive substance

Country Status (1)

Country Link
JP (1) JPH01104087A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5948820A (en) 1994-08-22 1999-09-07 Yoshitomi Pharmaceutical Industries, Ltd. Benzene compound and pharmaceutical use thereof
KR100407072B1 (en) * 2001-08-06 2003-11-28 대한민국 Artificial cultivation of Isaria sinclairii using the silkworm
KR100505217B1 (en) * 2002-03-30 2005-07-29 문창현 Compositions comprising Isaria sinclairii as an effective component
JPWO2004074269A1 (en) * 2003-02-20 2006-06-01 明治製菓株式会社 TK-57-164A substance and TK-57-164B substance, their production process, and agricultural and horticultural fungicides containing them as active ingredients

Also Published As

Publication number Publication date
JPH01104087A (en) 1989-04-21

Similar Documents

Publication Publication Date Title
Kim et al. Oral administration of proteoglycan isolated from Phellinus linteus in the prevention and treatment of collagen-induced arthritis in mice
JP4316672B2 (en) Immune activity of rhamnolipids
US5219884A (en) Immunosuppressant
HU192495B (en) Process for producing new polypeptides of alpha-amilase-inhibiting activity and pharmaceutical compositions containing them
CN114380890A (en) Peptides with anti-inflammatory activity and uses thereof
US20030044424A1 (en) Novel immune enhancing compositions
KR100197446B1 (en) Anti-cancer immunoactive polysaccharides separated from phellinus linteus and process for the preparation thereof
JPH0578307B2 (en)
US4851395A (en) Nitrogen-containing polysaccharide
KR101609179B1 (en) A preparation method of fractions from Phellinus igniarius extracts comprising enriched component for prevention and treatment of multiple sclerosis
WO2001074772A1 (en) Chemokine receptor antagonists
Cazzola et al. Update and future perspectives of a thymic biological response modifier (Thymomodulin)
JP3521110B2 (en) Cyclic peptide compound and method for producing the same
JPS58212791A (en) Novel physiologically active substance arphamenine and its preparation
JPH11302191A (en) Immunoactivator and antitumor agent containing extract from lyophyllum decastes (fr.) sing. as active ingredient
KR920005811B1 (en) Immunosuppressant
CN1418633A (en) Anti-cancer assistant medicine contg. 20(S)-protopanaxadiol as effective component, and its application
GB2079150A (en) Antiviral substance from Basidiomycetes
WO2022235030A1 (en) Method for differentiation of mature dendritic cells enriched in immunoregulatory molecules
WO2000032212A1 (en) Lak activity potentiator orginating in shiitake mushroom hyphae extract and lak activity potentiating preparations containing the same
JPH0559046A (en) Immunomodulator
JPS62130B2 (en)
JPH03128347A (en) 2-aminopentanoic acid compound and use thereof as immunosuppressor
JPS6054690A (en) Antibiotic ll-d 05139 beta
JPH0578253A (en) Antineoplastic and immunoenhancing agent

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees