JPH057817B2 - - Google Patents
Info
- Publication number
- JPH057817B2 JPH057817B2 JP58129041A JP12904183A JPH057817B2 JP H057817 B2 JPH057817 B2 JP H057817B2 JP 58129041 A JP58129041 A JP 58129041A JP 12904183 A JP12904183 A JP 12904183A JP H057817 B2 JPH057817 B2 JP H057817B2
- Authority
- JP
- Japan
- Prior art keywords
- rotation
- sample
- signal
- electron beam
- moving
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000007246 mechanism Effects 0.000 claims description 42
- 238000010894 electron beam technology Methods 0.000 claims description 18
- 230000008859 change Effects 0.000 claims description 8
- 230000000007 visual effect Effects 0.000 claims description 8
- 239000002245 particle Substances 0.000 claims description 7
- 238000001000 micrograph Methods 0.000 claims description 4
- 238000010586 diagram Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/20—Means for supporting or positioning the object or the material; Means for adjusting diaphragms or lenses associated with the support
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
Description
【発明の詳細な説明】
本発明は、電子顕微鏡等の荷電粒子線装置にお
ける試料回転装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a sample rotation device in a charged particle beam apparatus such as an electron microscope.
電子顕微鏡等に組込まれる機械的な試料回転移
動機構の多くは、電子線による試料照射位置と試
料回転させた時の回転中心とが一致していないた
めに種々の不都合が生じる。例えば、走査電子顕
微鏡は観察試料の表面における凹凸が激しくても
鮮明な像が得られるという利点があるが、この利
点を充分に活かすためには照射電子線に対して試
料表面を任意の方向を軸として傾斜できるように
して凹凸の影に相当する部分を観察可能にする必
要がある。所が試料位置を変化させる試料装置は
多くの場合、試料傾斜の方向が一方向に固定され
ているので、そのままでは所望の試料傾斜を行な
うことができない。第1図はこのような従来の試
料装置の構成を示すもので、試料室の側壁1に傾
斜機構2が取付けられており、その傾斜軸はX方
向に固定されている。該傾斜機構2の上部には
XY移動機構3が、更にその上部には回転機構4
が載置されており、観察試料5は回転機構4にホ
ルダーを介して取付けられる。このような試料載
置を用いて試料照射電子線6に対する試料表面を
任意方向へ傾けるためには回転機構4と傾斜機構
2を組合せて操作すればよいが、XY移動機構3
の操作によつて回転機構における回転中心が光軸
Zからずれている場合には、回転機構4の操作に
よつて観察中の走査像の視野が逃げてしまう欠点
があつた。 In many mechanical sample rotation and movement mechanisms incorporated in electron microscopes and the like, various inconveniences arise because the position of the sample irradiated by the electron beam does not coincide with the center of rotation when the sample is rotated. For example, a scanning electron microscope has the advantage of being able to obtain a clear image even if the surface of the observation sample is highly uneven, but in order to take full advantage of this advantage, it is necessary to move the sample surface in any direction with respect to the irradiated electron beam. It is necessary to be able to tilt the axis so that the portion corresponding to the shadow of the unevenness can be observed. In many cases, a sample device that changes the sample position has a fixed sample tilting direction in one direction, and therefore cannot tilt the sample as desired. FIG. 1 shows the configuration of such a conventional sample apparatus, in which a tilting mechanism 2 is attached to a side wall 1 of a sample chamber, and its tilting axis is fixed in the X direction. At the top of the tilting mechanism 2,
There is an XY movement mechanism 3, and a rotation mechanism 4 above it.
is mounted, and the observation sample 5 is attached to the rotation mechanism 4 via a holder. In order to tilt the sample surface in any direction with respect to the sample irradiation electron beam 6 using such sample placement, it is sufficient to operate the rotation mechanism 4 and the tilt mechanism 2 in combination, but the XY movement mechanism 3
If the rotation center of the rotation mechanism is shifted from the optical axis Z due to the operation of the rotation mechanism 4, there is a drawback that the field of view of the scanned image being observed is lost due to the operation of the rotation mechanism 4.
ところで、像観察者による試料回転操作は、操
作パネルに取り付けられた回転つまみを左右に回
す事により行われる。この際、熟練者においては
然程問題ないが、初心者にとつては、回転つまみ
をどちらの方向に回せば視野が所望の方向に回転
するか、また、回転つまみをどの程度回せば視野
が所望の量だけ回転するか分からない。 By the way, the sample rotation operation by the image observer is performed by turning a rotation knob attached to the operation panel left and right. At this time, it is not a problem for experts, but for beginners, it is important to know in which direction the rotation knob should be turned to rotate the field of view in the desired direction, and how far the rotation knob should be turned to achieve the desired field of view. I don't know if it will rotate by the amount.
本発明はこのような点に鑑みて成されたもの
で、その目的は、視野ずれなく確実に所望の方向
に所望の量だけ視野を回転させることができる荷
電粒子線装置における試料回転装置を提供する事
にある。 The present invention has been made in view of these points, and its purpose is to provide a sample rotation device for a charged particle beam device that can reliably rotate the field of view by a desired amount in a desired direction without visual field deviation. It's about doing.
この目的を達成する本発明の荷電粒子線装置に
おける試料回転装置は、互いに直交するXY2方
向へ試料を移動させるXY移動機構と、該XY移
動機構に載置される回転機構と、試料を照射する
電子線又は試料を透過する電子線を偏向すること
によつて電子顕微鏡像の視野を電気的に移動させ
る電気的XY移動手段を備えた荷電粒子線装置に
おける試料回転装置において、試料回転操作の直
前における前記XY移動機構と回転機構の状態を
初期信号として記憶しておき前記回転機構の初期
状態からの変化を示す変化信号と前記初期信号と
に基づいて、回転前の試料上での電子線の照射中
心が試料回転に基づいて移動する量だけ該移動の
方向へ電子線の照射中心を移動させるための制御
信号を作成して前記電気的XY移動手段へ供給す
る視野補正手段と、前記回転機構に回転信号を供
給する回転操作手段からの出力によつて陰極線画
面内に回転操作による視野の回転方向と回転量を
表わすマークを表示する手段とを備えたことを特
徴とするものである。 The sample rotation device in the charged particle beam apparatus of the present invention that achieves this objective includes an XY movement mechanism that moves the sample in two XY directions orthogonal to each other, a rotation mechanism placed on the XY movement mechanism, and a rotation mechanism that irradiates the sample. Immediately before the sample rotation operation in a sample rotation device in a charged particle beam device equipped with an electric XY movement means that electrically moves the field of view of an electron microscope image by deflecting the electron beam or the electron beam that passes through the sample. The states of the XY moving mechanism and the rotating mechanism are stored as initial signals, and the electron beam on the sample before rotation is determined based on the initial signal and a change signal indicating a change from the initial state of the rotating mechanism. visual field correction means for creating a control signal for moving the irradiation center of the electron beam in the direction of movement by an amount that the irradiation center moves based on sample rotation, and supplying the control signal to the electric XY moving means; and the rotation mechanism. The present invention is characterized by comprising means for displaying marks in the cathode ray screen indicative of the direction and amount of rotation of the field of view caused by the rotation operation, based on the output from the rotation operation means for supplying a rotation signal to the rotation operation means.
第2図は本発明の一実施例装置を示す略図であ
り、図中第1図と同一符号を付したものは同一構
成要素を表わしている。第2図において、試料5
は細く集束された電子線6によつて照射され、そ
の照射位置は偏向コイル7X,7Yに供給される
偏向信号によつて変化する。偏向コイル7X,7
Yへは走査回路8からの走査信号が倍率回路9及
び加算回路10を介して供給されるため、試料5
の一定領域が電子線によつて二次元的に走査さ
れ、その広さは可変増幅器からなる倍率回路9の
操作によつて変えられる。走査回路8の出力は陰
極線管11の偏向コイル12X,12Yにも供給
されており、陰極線管11の輝度変調信号として
試料5から放射される二次電子の信号を検出する
検出器13の出力が増幅器14を介して供給され
るため陰極線管11の画面には輝度変調走査像が
表示される。又、図中15,16は夫々X方向移
動用とY方向移動用の(パルス)モータを示し、
17,18は夫々回転機構4と傾斜機構2を駆動
するための(パルス)モータを示している。これ
らのモータは中央制御回路19からの制御信号に
基づいて制御されるが、各モータに対する駆動制
御は、中央制御回路19に接続されたX移動つま
み20、Y移動つまみ21、傾斜つまみ22及び
回転つまみ23の操作によつて行われる。回転つ
まみ23に関しては中央制御回路19との間に切
換回路24が設けられており、該切換回路24は
回転つまみ23から与えられた視野回転制御に関
する回転信号をセツト回路26からの入力信号に
応じて輝線表示回路25又は中央制御回路19へ
印加するように構成されている。前記輝線表示回
路25は、走査回路8と回転つまみ23からの信
号に基づいて第3図に示すように、陰極線管11
の画面に回転つまみ23による視野回転量と回転
方向を表わす輝線27を表示させる信号を発生す
るためのものである。このような構成において、
回転機構4によつて試料5を回転させると陰極線
管画面に表示される視野が回転するが、その回転
中心はXY移動機構3を操作することによつて移
動する。そこで、この視野回転の中心が陰極線管
画面の中心と一致する状態においてXY試料移動
機構3が示すXY座標を座標原点(0,0)と定
義する。 FIG. 2 is a schematic diagram showing an embodiment of the present invention, and the same reference numerals as in FIG. 1 represent the same components. In Figure 2, sample 5
is irradiated by a narrowly focused electron beam 6, and the irradiation position changes depending on the deflection signals supplied to the deflection coils 7X, 7Y. Deflection coil 7X, 7
Since the scanning signal from the scanning circuit 8 is supplied to Y via the magnification circuit 9 and the addition circuit 10, the sample 5
A certain area is two-dimensionally scanned by the electron beam, and its width is changed by operating a magnification circuit 9 consisting of a variable amplifier. The output of the scanning circuit 8 is also supplied to the deflection coils 12X and 12Y of the cathode ray tube 11, and the output of the detector 13 which detects the secondary electron signal emitted from the sample 5 as the brightness modulation signal of the cathode ray tube 11 is supplied to the deflection coils 12X and 12Y of the cathode ray tube 11. Since the light is supplied through the amplifier 14, a brightness modulated scanning image is displayed on the screen of the cathode ray tube 11. In the figure, 15 and 16 indicate (pulse) motors for moving in the X direction and moving in the Y direction, respectively.
Reference numerals 17 and 18 indicate (pulse) motors for driving the rotating mechanism 4 and the tilting mechanism 2, respectively. These motors are controlled based on control signals from the central control circuit 19, and drive control for each motor is performed by the X movement knob 20, Y movement knob 21, tilt knob 22, and rotation knob connected to the central control circuit 19. This is done by operating the knob 23. Regarding the rotary knob 23, a switching circuit 24 is provided between it and the central control circuit 19, and the switching circuit 24 converts the rotation signal related to the visual field rotation control given from the rotary knob 23 in response to the input signal from the set circuit 26. It is configured to apply the signal to the bright line display circuit 25 or the central control circuit 19. The bright line display circuit 25 controls the cathode ray tube 11 based on signals from the scanning circuit 8 and the rotary knob 23, as shown in FIG.
This is to generate a signal for displaying a bright line 27 representing the amount and direction of rotation of the field of view by the rotation knob 23 on the screen. In such a configuration,
When the sample 5 is rotated by the rotation mechanism 4, the field of view displayed on the cathode ray tube screen is rotated, and the center of rotation is moved by operating the XY movement mechanism 3. Therefore, the XY coordinates indicated by the XY sample moving mechanism 3 in a state where the center of this field of view rotation coincides with the center of the cathode ray tube screen are defined as the coordinate origin (0,0).
第2図の装置を用いた視野回転操作は以下のよ
うな手順で行われる。 The visual field rotation operation using the apparatus shown in FIG. 2 is performed in the following steps.
(a) 先ず始めに、回転機構4と傾斜機構2を基準
の状態、即ち回転角φ=0,傾斜角θ=0に保
ち、この初期状態から陰極線管画面に所望の視
野が得られるようにXY移動機構3を操作す
る。このときの座標を(X1,Y1)とすると原
点からの距離rは、r=√21+21となる。(a) First, the rotation mechanism 4 and the tilting mechanism 2 are kept in the standard state, that is, the rotation angle φ = 0 and the tilt angle θ = 0, and from this initial state, the desired field of view is obtained on the cathode ray tube screen. Operate the XY movement mechanism 3. If the coordinates at this time are (X 1 , Y 1 ), the distance r from the origin is r=√2 1 +2 1 .
(b) 次に、回転つまみ23を操作して所望の視野
回転方向と回転量φ0を決める。このときセツ
ト回路26は未だ操作されていないため、回転
つまみ26からの回転信号は輝線表示回路25
にのみ印加され、実際の試料回転は行われな
い。輝線表示回路25により陰極線管画面内に
は、第3図に示す如く通常の試料像に重畳して
視野回転の量と方向を示す輝線27が画面の水
平方向を基準として表示され、この輝線27を
回転つまみ23の操作の目安として利用するこ
とができる。(b) Next, operate the rotation knob 23 to determine the desired visual field rotation direction and rotation amount φ 0 . At this time, since the set circuit 26 has not yet been operated, the rotation signal from the rotation knob 26 is transmitted to the bright line display circuit 25.
The actual sample rotation is not performed. The bright line display circuit 25 displays a bright line 27 on the cathode ray tube screen, as shown in FIG. can be used as a guide for operating the rotary knob 23.
(c) 次に、セツト回路26を操作して保持回路2
4における信号出力を切換えて、回転つまみ2
3からの回転信号が輝度表示回路25でなく中
央制御回路19に入力されるようにする。その
結果、陰極線管11の画面から輝線27が消
え、それと同時に中央制御回路19に入力され
た回転信号に基づく制御信号がモータ17に与
えられ、回転機構4によつて試料5がXY座標
の原点を中心に角度φ0回転する。この回転に
より、試料5はその座標位置も変化してしまう
が、その状態を示したものが第4図である。第
4図において、試料回転前の座標位置をS0
(X1,Y1)とし、微小角度φ0回転させたときの
座標位置をS1(X1+ΔX,Y1+ΔY)とすると、
S0からS1へ移動する際のX方向変化分ΔXとY
方向変化分ΔYは次のように表わされる。(c) Next, operate the set circuit 26 to set the hold circuit 2
Switch the signal output at 4 and turn the rotary knob 2.
The rotation signal from 3 is input to the central control circuit 19 instead of the brightness display circuit 25. As a result, the bright line 27 disappears from the screen of the cathode ray tube 11, and at the same time, a control signal based on the rotation signal input to the central control circuit 19 is given to the motor 17, and the rotation mechanism 4 moves the sample 5 to the origin of the XY coordinates. Rotate by an angle φ 0 around . Due to this rotation, the coordinate position of the sample 5 also changes, and FIG. 4 shows this state. In Figure 4, the coordinate position before sample rotation is S 0
(X 1 , Y 1 ), and the coordinate position when rotated by a minute angle φ 0 is S 1 (X 1 +ΔX, Y 1 +ΔY),
Change in X direction ΔX and Y when moving from S 0 to S 1
The direction change ΔY is expressed as follows.
ΔX=−r・φ0・sinφ0
ΔY=r・φ0・conφ0
このような試料回転に基づく試料移動を補正す
るため、中央制御回路19は上式の移動成分を演
算して、その逆方向の視野移動が行われるような
補正偏向信号を加算回路10に印加する。加算回
路10はX,Y走査信号にこれらの補正偏向信号
を加算して試料5を走査する電子線の走査中心を
X方向へΔX,Y方向へΔY移動させるその結果、
陰極線管画面における視野ずれは防止される。 ΔX=-r・φ 0・sinφ 0 ΔY=r・φ 0・conφ 0 In order to correct the sample movement based on such sample rotation, the central control circuit 19 calculates the movement component in the above equation and calculates its inverse A correction deflection signal is applied to the adder circuit 10 such that the field of view is shifted in the direction. The adder circuit 10 adds these correction deflection signals to the X and Y scanning signals to move the scanning center of the electron beam that scans the sample 5 by ΔX in the X direction and by ΔY in the Y direction.
Field shift on the cathode ray tube screen is prevented.
所で、角度φ0が微小でない場合や試料5が傾
斜機構2によつて傾いていて初期状態が上記動作
例と異なる場合には、第4図に代わる幾何学的な
考察から視野ずれを防止するための偏向成分を演
算するためのプログラムを予め中央制御回路19
に記憶させておけばよい。 By the way, if the angle φ 0 is not small or if the sample 5 is tilted by the tilting mechanism 2 and the initial state is different from the above operation example, it is possible to prevent the field of view from shifting by using geometric considerations instead of Fig. 4. The central control circuit 19 pre-programs a program for calculating the deflection components for the
All you have to do is store it in your memory.
第5図は透過電子顕微鏡に本発明を適用した場
合の実施例を示すもので、第2図に用いた記号と
同一記号を付したものは同一構成要素を表わして
いる。第5図において、28は薄膜状試料5の下
方に配置される結像レンズ系(図示せず)の更に
下方に配置された蛍光板を示し、29,30は試
料5の上下に配置された偏向コイルを示す。コイ
ル29,30へは偏向電源31から互いに一定比
率の強度を有する偏向電流が供給されており、偏
向電源31の出力を調整して試料照射電子線の経
路を例えば図中破線で示すように変化させて蛍光
板上に結像する電子顕微鏡像の視野を移動させる
ことが可能である。又、11の陰極線管は回転つ
まみ23からの回転信号を輝線表示回路32に受
けて蛍光板上に結像する透過電子顕微鏡像の視野
回転の方向と量を表わす輝線を表示するためのも
のである。第5図の装置の動作は電気的視野移動
の方式が多少異なる点を除けば、第2図の装置の
動作と略同じである。 FIG. 5 shows an embodiment in which the present invention is applied to a transmission electron microscope, and the same symbols as those used in FIG. 2 represent the same components. In FIG. 5, 28 indicates a fluorescent screen placed further below the imaging lens system (not shown) placed below the thin film sample 5, and 29 and 30 indicate deflection screens placed above and below the sample 5. The coil is shown. Deflection currents having intensities at a constant ratio are supplied to the coils 29 and 30 from a deflection power source 31, and by adjusting the output of the deflection power source 31, the path of the electron beam irradiating the sample is changed, for example, as shown by the broken line in the figure. It is possible to move the field of view of the electron microscope image formed on the fluorescent screen by moving the fluorescent screen. Further, the cathode ray tube 11 is for receiving a rotation signal from the rotation knob 23 into a bright line display circuit 32 and displaying bright lines representing the direction and amount of rotation of the field of view of a transmission electron microscope image formed on a fluorescent screen. . The operation of the apparatus of FIG. 5 is substantially the same as that of the apparatus of FIG. 2, except that the method of electrical field movement is slightly different.
以上本発明の実施例を説明したが、本発明は第
2図や第5図の実施例装置に限定されるものでは
ない。例えば、視野ずれ防止のための制御を偏向
装置をのみによつて行なうと次第に偏向歪の影響
が大きくなるので、適当な時に偏向装置による補
正をXY移動機構3による補正に置換えるように
構成してもよい。又、本発明は電子顕微鏡以外で
もX線マイクロアナライザーやイオンマイクロア
ナライザ等のように荷電粒子線によつて試料に関
する像情報を表示する機能を有する装置であれば
容易に適用することが可能である。 Although the embodiments of the present invention have been described above, the present invention is not limited to the embodiments shown in FIGS. 2 and 5. For example, if the control to prevent deviation of the field of view is performed only by using the deflection device, the influence of deflection distortion will gradually increase. It's okay. Furthermore, the present invention can be easily applied to devices other than electron microscopes, such as X-ray microanalyzers and ion microanalyzers, which have the function of displaying image information about a sample using a charged particle beam. .
以上説明したように、本発明においては、回転
機構の初期状態からの変化を示す変化信号と前記
初期信号とに基づいて、回転前の試料上での電子
線の照射中心が試料回転に基づいて移動する量だ
け該移動の方向へ電子線の照射中心を移動させる
ための制御信号を作成して前記電気的XY移動手
段へ供給する視野補正手段と、陰極線管に回転操
作手段の回転操作による視野の回転方向と回転量
を表わすマークを表示する手段を設けるようにし
たので、観察者は所望の回転方向と回転量をマー
クで指示するだけで、試料が回転したことによる
視野ずれを生ずる事なく、確実に所望の回転状態
での像観察が可能となるので、観察者による試料
の回転操作を著しく向上させることができる。 As explained above, in the present invention, the irradiation center of the electron beam on the sample before rotation is determined based on the sample rotation based on the change signal indicating the change from the initial state of the rotation mechanism and the initial signal. visual field correcting means for creating a control signal for moving the irradiation center of the electron beam in the direction of the movement by the amount of movement and supplying it to the electric XY moving means; Since a means for displaying marks indicating the direction and amount of rotation of the sample is provided, the observer can simply indicate the desired direction and amount of rotation using the marks, without causing visual field shifts due to rotation of the sample. Since it is possible to reliably observe an image in a desired rotational state, the rotation operation of the sample by the observer can be significantly improved.
第1図は従来の試料装置の構造を示す略図、第
2図は本発明の一実施例装置を示す略図、第3図
及び第4図は第2図の装置の動作を説明するため
の略図、第5図は本発明の他の実施例装置を示す
略図である。
1……試料室側壁、2……傾斜機構、3……
XY移動機構、4……回転機構、5……試料、6
……電子線、7X,7Y……偏向コイル、8……
走査回路、9……倍率回路、10……加算回路、
11……陰極線管、12X,12Y……偏向コイ
ル、13……検出器、14……増幅器、15,1
6,17,18……モータ、19……中央制御回
路、20……X移動つまみ、21……Y移動つま
み、22……傾斜つまみ、23……回転つまみ、
24……切換回路、25……輝線表示回路、26
……セツト回路、27……輝線、28……蛍光
板、29,30……偏向コイル、31……偏向電
源、32……輝線表示回路。
Fig. 1 is a schematic diagram showing the structure of a conventional sample device, Fig. 2 is a schematic diagram showing an embodiment of the device of the present invention, and Figs. 3 and 4 are schematic diagrams for explaining the operation of the device shown in Fig. 2. , FIG. 5 is a schematic diagram showing another embodiment of the present invention. 1...Sample chamber side wall, 2...Tilt mechanism, 3...
XY movement mechanism, 4...Rotation mechanism, 5...Sample, 6
...Electron beam, 7X, 7Y...Deflection coil, 8...
Scanning circuit, 9... Magnification circuit, 10... Addition circuit,
11...Cathode ray tube, 12X, 12Y...Deflection coil, 13...Detector, 14...Amplifier, 15,1
6, 17, 18...Motor, 19...Central control circuit, 20...X movement knob, 21...Y movement knob, 22...Tilt knob, 23...Rotation knob,
24...Switching circuit, 25...Bright line display circuit, 26
...Set circuit, 27... Bright line, 28... Fluorescent screen, 29, 30... Deflection coil, 31... Deflection power supply, 32... Bright line display circuit.
Claims (1)
るXY移動機構と、該XY移動機構に載置される
回転機構と、試料を照射する電子線又は試料を透
過する電子線を偏向することによつて電子顕微鏡
像の視野を電気的に移動させる電気的XY移動手
段を備えた荷電粒子線装置における試料回転装置
において、試料回転操作の直前におけるXY移動
機構と回転機構の状態を初期信号として記憶して
おき、前記回転機構の初期状態からの変化を示す
変化信号と前記初期信号とに基づいて、回転前の
試料上での電子線の照射中心が試料回転に基づい
て移動する量だけ該移動の方向へ電子線の照射中
心を移動させるための制御信号を作成して前記電
気的XY移動手段へ供給する視野補正手段と、前
記回転機構に回転信号を供給する回転操作手段か
らの出力によつて陰極線画面内に回転操作による
視野の回転方向と回転量を表わすマークを表示す
る手段とを備えたことを特徴とする荷電粒子線装
置における試料回転装置。1. An XY moving mechanism that moves the sample in two mutually orthogonal X and Y directions, a rotating mechanism placed on the XY moving mechanism, and a rotating mechanism that deflects the electron beam that irradiates the sample or the electron beam that passes through the sample. In a sample rotation device in a charged particle beam apparatus equipped with an electric XY movement means for electrically moving the field of view of an electron microscope image, the states of the XY movement mechanism and rotation mechanism immediately before the sample rotation operation are stored as an initial signal. and based on a change signal indicating a change from the initial state of the rotation mechanism and the initial signal, the direction of the movement is determined by the amount by which the irradiation center of the electron beam on the sample before rotation moves based on the rotation of the sample. Cathode rays are generated by the output from the visual field correction means that creates a control signal for moving the irradiation center of the electron beam and supplies it to the electric XY moving means, and the rotation operation means that supplies a rotation signal to the rotation mechanism. 1. A sample rotation device for a charged particle beam apparatus, comprising means for displaying marks on a screen that indicate the direction and amount of rotation of a field of view caused by a rotation operation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12904183A JPS6020439A (en) | 1983-07-15 | 1983-07-15 | Sample turning gear in charged particle beam device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12904183A JPS6020439A (en) | 1983-07-15 | 1983-07-15 | Sample turning gear in charged particle beam device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6020439A JPS6020439A (en) | 1985-02-01 |
JPH057817B2 true JPH057817B2 (en) | 1993-01-29 |
Family
ID=14999632
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12904183A Granted JPS6020439A (en) | 1983-07-15 | 1983-07-15 | Sample turning gear in charged particle beam device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6020439A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03174239A (en) * | 1989-03-22 | 1991-07-29 | Nippon Zeon Co Ltd | Dispersant and method for using the same |
JP2007192741A (en) * | 2006-01-20 | 2007-08-02 | Sharp Corp | Element analysis method and element analyzer |
JP5182864B2 (en) * | 2007-05-11 | 2013-04-17 | 国立大学法人浜松医科大学 | Sample holder for electron microscope and electron microscope |
US10431418B1 (en) | 2018-04-05 | 2019-10-01 | B Dot Medical Inc. | Focusing magnet and charged particle irradiation apparatus |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5766854U (en) * | 1980-10-08 | 1982-04-21 |
-
1983
- 1983-07-15 JP JP12904183A patent/JPS6020439A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6020439A (en) | 1985-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4537477A (en) | Scanning electron microscope with an optical microscope | |
JP3859396B2 (en) | Sample image observation method and scanning charged particle beam apparatus in scanning charged particle beam apparatus | |
JPH073774B2 (en) | electronic microscope | |
JP3293739B2 (en) | Scanning electron microscope | |
JP3101114B2 (en) | Scanning electron microscope | |
JP5470596B1 (en) | Charged particle beam device with function release mode and function expansion mode | |
JPH057817B2 (en) | ||
US4439681A (en) | Charged particle beam scanning device | |
JPH0232739B2 (en) | ||
US6727911B1 (en) | Method and apparatus for observing specimen image on scanning charged-particle beam instrument | |
JPS5858779B2 (en) | Field of view moving device for electron microscopes, etc. | |
JPS5914222B2 (en) | Magnification control device for scanning electron microscopes, etc. | |
JPH0460298B2 (en) | ||
JPS59148255A (en) | Scanning electron microscope | |
JPS59201352A (en) | Recording and displaying device of observation visual-field in electron microscope | |
JPS59201354A (en) | Electron microscope | |
JPS62198043A (en) | Three-dimensional observation device | |
JPH0232741B2 (en) | ||
JPH0238366Y2 (en) | ||
JP3125297B2 (en) | Charged particle beam equipment | |
JP2647949B2 (en) | Scanning electron microscope alignment equipment | |
JPH0619970B2 (en) | Scanning electron microscope | |
JPS6337549A (en) | Charged particle beam device | |
JPH02262227A (en) | Electron microscope | |
JPH06124677A (en) | Movement control device for sample image |