JPH0577852B2 - - Google Patents

Info

Publication number
JPH0577852B2
JPH0577852B2 JP7750889A JP7750889A JPH0577852B2 JP H0577852 B2 JPH0577852 B2 JP H0577852B2 JP 7750889 A JP7750889 A JP 7750889A JP 7750889 A JP7750889 A JP 7750889A JP H0577852 B2 JPH0577852 B2 JP H0577852B2
Authority
JP
Japan
Prior art keywords
gas
flow path
exhaust gas
regenerator
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7750889A
Other languages
Japanese (ja)
Other versions
JPH02256816A (en
Inventor
Yoshitada Uchama
Mitsuyo Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP7750889A priority Critical patent/JPH02256816A/en
Publication of JPH02256816A publication Critical patent/JPH02256816A/en
Publication of JPH0577852B2 publication Critical patent/JPH0577852B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2882Catalytic reactors combined or associated with other devices, e.g. exhaust silencers or other exhaust purification devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/02Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2290/00Movable parts or members in exhaust systems for other than for control purposes
    • F01N2290/02Movable parts or members in exhaust systems for other than for control purposes with continuous rotary movement
    • F01N2290/06Movable parts or members in exhaust systems for other than for control purposes with continuous rotary movement driven by auxiliary drive

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、セラミツクスガスタービン用再生器
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a regenerator for a ceramic gas turbine.

[従来の技術] 一般に、ガスタービンの熱効率は、燃焼器から
タービン入口に供給できる燃焼ガス温度を高くす
ることによつて向上させることができ、その際、
燃焼器へ取り入れる空気をタービンからの高温の
排気ガスと熱交換させて予熱することにより更に
向上させることができ、その熱交換に再生器が使
用される。
[Prior Art] Generally, the thermal efficiency of a gas turbine can be improved by increasing the temperature of the combustion gas that can be supplied from the combustor to the turbine inlet.
Further improvements can be made by preheating the air entering the combustor by exchanging heat with the hot exhaust gas from the turbine, and a regenerator is used for this heat exchange.

また、セラミツクスガスタービンは、タービン
入口温度をタービン材質の許容温度範囲まで高く
し、再生器を使用して高い熟効率が得られるよう
に設計されており、このようなセラミツクガスタ
ービンの熱効率が40%以上に保つためには、ター
ビンの入口温度を1350℃以上で保持しなければな
らず、この場合にタービン出口における排気ガス
温度におよそ1000℃に達するものと推測される。
In addition, ceramic gas turbines are designed to increase the turbine inlet temperature to the allowable temperature range of the turbine material and use a regenerator to achieve high ripening efficiency. % or higher, the turbine inlet temperature must be maintained at 1350°C or higher, and in this case it is estimated that the exhaust gas temperature at the turbine outlet would reach approximately 1000°C.

一方、上記燃焼ガス中には、煤(カーボン)の
他に、窒素酸化物(NO)や一酸化炭素(CO)、
炭化水素(HC)等の有害ガス成分が含まれてい
るため、この燃焼ガスを排気ガスとして大気に放
出する場合、これらの煤の有害ガス成分を除去し
て無害化することが必要であるが、専用の除去装
置を付設すると、設備が大型化したりコストアツ
プになる等の不都合を生じることになる。
On the other hand, in addition to soot (carbon), the combustion gas contains nitrogen oxides (NO), carbon monoxide (CO),
Because it contains harmful gas components such as hydrocarbons (HC), when this combustion gas is released into the atmosphere as exhaust gas, it is necessary to remove these harmful gas components and render it harmless. However, if a dedicated removal device is attached, there will be problems such as an increase in the size of the equipment and an increase in costs.

[発明が解決しようとする課題] 本発明の課題は、セラミツクスガスタービンの
出口側における排気ガス温度が煤を酸化させるに
十分な高温状態にある点に着目し、熱交換用の再
生器を利用して、排気ガス中に含まれた煤やその
他の有害ガス成分を簡単且つ効率的に除去できる
ように構成することにある。
[Problem to be Solved by the Invention] The problem to be solved by the present invention is to focus on the fact that the exhaust gas temperature at the outlet side of a ceramic gas turbine is high enough to oxidize soot, and to utilize a regenerator for heat exchange. The object of the present invention is to provide a structure in which soot and other harmful gas components contained in exhaust gas can be easily and efficiently removed.

[課題を解決するための手段] 上記課題を解決するため、本発明は、セラミツ
クスガスタービンからの高温の排気ガスが流れる
ガス流路と、空気圧縮機からの空気が流れる空気
流路とを備え、上記ガス流路に、排気ガス中の煤
を触媒により酸化させる酸化触媒部と、排気ガス
中の有害ガス成分を触媒により除去する三元触媒
部とを設け、上記酸化触媒部におけるガス流路の
内壁面に突壁を設けることにより流路面積を拡大
させたことを特徴とするものである。
[Means for Solving the Problems] In order to solve the above problems, the present invention includes a gas flow path through which high-temperature exhaust gas from a ceramic gas turbine flows and an air flow path through which air from an air compressor flows. , the gas flow path is provided with an oxidation catalyst section that oxidizes soot in the exhaust gas using a catalyst, and a three-way catalyst section that uses a catalyst to remove harmful gas components from the exhaust gas; The channel area is expanded by providing a protruding wall on the inner wall surface of the channel.

[作用] 上記再生器には、セラミツクスガスタービンか
らの高温の排気ガスと空気圧縮機からの空気とが
供給され、それらの間の熱交換が行われる。この
とき、排気ガス温度は約1000℃と非常に高温状態
にあるため、この排気ガスがガス流路中の酸化触
媒部において触媒と接触することにより、排気ガ
ス中の煤の酸化が促進され、一酸化炭素や二酸化
炭素に変化する。続いて、この排気ガスは三元触
媒部において触媒と接触し、それに含まれる窒素
酸化物の還元と、一酸化炭素及び炭化水素の酸化
とが行われる。これにより排気ガスは無害化し、
大気に放出される。
[Function] The regenerator is supplied with high-temperature exhaust gas from the ceramic gas turbine and air from the air compressor, and heat exchange is performed between them. At this time, the exhaust gas temperature is extremely high at approximately 1000°C, so this exhaust gas comes into contact with the catalyst in the oxidation catalyst section in the gas flow path, promoting the oxidation of soot in the exhaust gas. Changes to carbon monoxide and carbon dioxide. Subsequently, this exhaust gas comes into contact with a catalyst in a three-way catalyst section, and the nitrogen oxides contained therein are reduced and the carbon monoxide and hydrocarbons contained therein are oxidized. This makes the exhaust gas harmless,
released into the atmosphere.

上記酸化触媒部においては、突壁によつて流路
面積が拡大されているので、煤と触媒との接触時
間が長くなり、その酸化が確実になる。
In the oxidation catalyst section, the flow path area is expanded by the protruding wall, so the contact time between the soot and the catalyst is increased, and its oxidation is ensured.

また、酸化触媒部において煤が酸化するとき、
及び三元触媒部において一酸化炭素及び炭化水素
が酸化するときには、それぞれ酸化熱が発生し、
この酸化熱が空気の予熱に使用されるため、熱効
率が一層向上することになる。
Also, when soot is oxidized in the oxidation catalyst section,
When carbon monoxide and hydrocarbons are oxidized in the three-way catalyst section, oxidation heat is generated,
Since this oxidation heat is used to preheat the air, thermal efficiency is further improved.

[実施例] 以下、本発明の実施例を図面を参照しながら詳
細に説明する。
[Example] Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は本発明の再生器を使用したセラミツク
スガスタービンシステムを例示するもので、1は
セラミツクスガスタービン、2は空気圧縮機、3
は負荷、4は再生器、5はは燃焼器であつて、空
気圧縮機2で圧縮された空気が再生器4を経て燃
焼器5に送られ、ここで燃焼による熱の供給を受
けてガスタービン1に供給されることにより、こ
のガスタービン1を駆動する。そして、ガスター
ビン1を駆動した高温の排気ガスは再生器4に送
られ、空気圧縮機2からの空気と熱交換してこの
空気を予熱すると共に、排気ガス中の煤と有害ガ
ス成分とが除去された後、大気に開放されるよう
になつている。
FIG. 1 illustrates a ceramic gas turbine system using the regenerator of the present invention, where 1 is a ceramic gas turbine, 2 is an air compressor, and 3 is a ceramic gas turbine system.
is a load, 4 is a regenerator, and 5 is a combustor, where air compressed by the air compressor 2 is sent to the combustor 5 via the regenerator 4, where it receives heat from combustion and is converted into gas. The gas turbine 1 is driven by being supplied to the turbine 1. The high-temperature exhaust gas that drove the gas turbine 1 is sent to the regenerator 4, where it exchanges heat with the air from the air compressor 2 to preheat this air and remove soot and harmful gas components from the exhaust gas. After being removed, it is released to the atmosphere.

従つて上記再生器4は、本来の熱交換機能の
他、排気ガス中の煤と有害ガス成分の除去機能を
兼備するものであり、このような再生器4の実施
例を、以下に隔壁式のものと回転蓄熱式のものと
について説明する。
Therefore, in addition to the original heat exchange function, the regenerator 4 has a function of removing soot and harmful gas components from the exhaust gas. Examples of such a regenerator 4 are as follows: A rotary heat storage type and a rotating heat storage type will be explained below.

第2図は隔壁式の再生器4を示しており、この
再生器4は、ケーシング10内に、ガスタービン
1からの高温の排気ガスが流れるガス流路11
と、空気圧縮機2からの空気が流れる空気流路1
2とを、互いに交差する方向に設けたもので、こ
れらの流路11,12は、第3図に示すように、
セラミツクスからなる波形の伝熱板13と同様に
セラミツクスからなる平板状の伝熱板14とを、
波形の伝熱板13の向きを交互に90度変えながら
順次積層することにより多段状に形成されてい
る。上記ガス流路11には、その上流側から順
次、排気ガス中の煤を酸化させるための触媒を伝
熱板に担持させた酸化触媒部15と、排気ガス中
の有害ガス成分である窒素酸化物の還元と一酸化
炭素及び炭化水素の酸化とを行う三元触媒を伝熱
板に担持させた三元触媒部16とが設けられ、酸
化触媒部15においては、第4図に示すように、
伝熱板13,14の内壁面に突壁17等を設ける
ことにより、ガス流路11の流路面積を拡大して
いる。
FIG. 2 shows a partition type regenerator 4, which includes a gas flow path 11 in a casing 10 through which high-temperature exhaust gas from the gas turbine 1 flows.
and an air flow path 1 through which air from the air compressor 2 flows.
2 are provided in directions that intersect with each other, and these channels 11 and 12 are, as shown in FIG.
A corrugated heat exchanger plate 13 made of ceramics and a flat heat exchanger plate 14 made of ceramics,
The corrugated heat exchanger plates 13 are formed in a multi-tiered shape by sequentially stacking them while alternating their orientations by 90 degrees. In the gas flow path 11, sequentially from the upstream side, an oxidation catalyst section 15 in which a heat exchanger plate supports a catalyst for oxidizing soot in exhaust gas, and an oxidation catalyst section 15 for oxidizing nitrogen, which is a harmful gas component in exhaust gas, are installed. A three-way catalyst section 16 is provided in which a three-way catalyst for reducing carbon monoxide and oxidizing carbon monoxide and hydrocarbons is supported on a heat transfer plate. ,
By providing protruding walls 17 and the like on the inner wall surfaces of the heat transfer plates 13 and 14, the flow path area of the gas flow path 11 is expanded.

上記酸化触媒としては、例えば塩化マンガン
(MnCl2)があり、これを使用することにより、
その不使用時に比べ、煤の酸化が急激に進行する
酸化反応温度を約80℃近く低下させることができ
る。
The above oxidation catalyst includes, for example, manganese chloride (MnCl 2 ), and by using this,
Compared to when it is not used, the oxidation reaction temperature at which soot oxidation proceeds rapidly can be lowered by approximately 80°C.

上記構成を有する再生器4において、セラミツ
クスガスタービン1からの高温の排気ガスはガス
流路11に、空気圧縮機2からの空気は空気流路
12にそれぞれ矢印A,B方向に供給され、それ
らの間の熱交換が行われる。このとき、排気ガス
温度は約1000℃と非常に高温状態にある。この排
気ガスは、ガス流路11を流通するとき、まず酸
化触媒部15において触媒と接触し、それに含ま
れる煤が酸化されて一酸化炭素や二酸化炭素に変
化する。続いて、この排気ガスは三元触媒部16
において触媒と接触し、ガス中の窒素酸化物の還
元と一酸化炭素及び炭化水素の酸化とが行われる
ことにより無害化され、大気に放出される。この
とき、上記酸化触媒部15においては、突壁17
によつて流路面積が拡大されているので、煤と触
媒との接触が確実に行われると共にその接触時間
も長く、酸化が十分に促進されることになる。
In the regenerator 4 having the above configuration, high-temperature exhaust gas from the ceramic gas turbine 1 is supplied to the gas flow path 11, and air from the air compressor 2 is supplied to the air flow path 12 in the directions of arrows A and B, respectively. Heat exchange takes place between the two. At this time, the exhaust gas temperature is extremely high at approximately 1000°C. When this exhaust gas flows through the gas flow path 11, it first comes into contact with a catalyst in the oxidation catalyst section 15, and the soot contained therein is oxidized and changed into carbon monoxide and carbon dioxide. Next, this exhaust gas is passed through the three-way catalyst section 16.
The gas is brought into contact with a catalyst, and the nitrogen oxides in the gas are reduced and the carbon monoxide and hydrocarbons in the gas are oxidized, making the gas harmless and released into the atmosphere. At this time, in the oxidation catalyst section 15, the projecting wall 17
Since the flow path area is expanded by this, the contact between the soot and the catalyst is ensured, and the contact time is also long, so that oxidation is sufficiently promoted.

また、酸化触媒部15において煤が酸化すると
き、及び三元触媒部16において一酸化炭素及び
炭化水素が酸化するときには、それぞれ酸化熱が
発生し、この酸化熱が空気の予熱に使用されるた
め、熱効率が一層向上することになる。
Furthermore, when soot is oxidized in the oxidation catalyst section 15, and when carbon monoxide and hydrocarbons are oxidized in the three-way catalyst section 16, oxidation heat is generated, and this oxidation heat is used to preheat the air. , thermal efficiency will be further improved.

第5図及び第6図は回転蓄熱式の再生器を示し
ている。この再生器4は、ケーシング20の内部
に、多数の通孔22を軸線方向に貫設したセラミ
ツクス製のロータ21を支軸23により回転自在
に軸支し、このロータ21の一半部を通過するよ
うに排気ガス流路24を設けると共に、他半部を
通過するように空気流路25を設けたもので、減
速歯車装置26でロータ21を所定の速度で回転
させながら排気ガス及び空気をそれぞれ矢印A,
B方向に流通させると、各通孔22中を高温の排
気ガスと低温の空気とを交互に流通し、排気ガス
の熱が一旦ロータ21に蓄熱された後空気に伝達
されるようになつている。従つて、ロータ21の
通孔22はガス流路24と空気流路25の両方の
兼用することになる。
5 and 6 show a rotary regenerator type regenerator. This regenerator 4 has a rotor 21 made of ceramics, which has a large number of through holes 22 extending through it in the axial direction, rotatably supported by a support shaft 23 inside a casing 20. An exhaust gas flow path 24 is provided as shown in FIG. Arrow A,
When flowing in direction B, high-temperature exhaust gas and low-temperature air alternately flow through each through hole 22, and the heat of the exhaust gas is temporarily stored in the rotor 21 and then transferred to the air. There is. Therefore, the through hole 22 of the rotor 21 serves as both the gas flow path 24 and the air flow path 25.

上記ロータ21における各通孔22の内部に
は、ガス流路24の上流側から順次、排気ガス中
の煤を酸化させるための触媒を伝熱板に担持させ
た酸化触媒部27と、排気ガス中の有害ガス成分
である窒素酸化物の還元と一酸化炭素及び炭化水
素の酸化とを行う三元触媒を伝熱板を担持させた
三元触媒部28とが設けられ、酸化触媒部27に
おいては、第7図に示すように、通孔22の内壁
面に突壁29を設けることにより、ガス流路の流
路面積を拡大している。
Inside each of the through holes 22 in the rotor 21, an oxidation catalyst section 27 in which a heat transfer plate carries a catalyst for oxidizing soot in the exhaust gas, and an oxidation catalyst section 27 in which a heat transfer plate carries a catalyst for oxidizing soot in the exhaust gas are arranged in order from the upstream side of the gas flow path 24. A three-way catalyst section 28 in which a heat exchanger plate is supported is provided with a three-way catalyst that reduces nitrogen oxides and oxidizes carbon monoxide and hydrocarbons, which are harmful gas components in the oxidation catalyst section 27. As shown in FIG. 7, by providing a projecting wall 29 on the inner wall surface of the through hole 22, the flow area of the gas flow path is expanded.

なお、図中30はガス流路24と空気流路25
とを隔絶する密封手段であつて、一方の流路から
の流体圧力によつてロータ21に押圧されてい
る。
In addition, 30 in the figure indicates the gas flow path 24 and the air flow path 25.
It is a sealing means that isolates the two passages from each other, and is pressed against the rotor 21 by fluid pressure from one of the channels.

[発明の効果] このように本発明によれば、熱交換用の再生器
を利用して、排気ガス中に含まれる煤やその他の
有害ガス成分を簡単且つ効率的に除去することが
できる。
[Effects of the Invention] As described above, according to the present invention, soot and other harmful gas components contained in exhaust gas can be easily and efficiently removed using a heat exchange regenerator.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の再生器を使用したセラミツク
スガスタービンシステムの構成図、第2図は再生
器の第1実施例の部分断面図、第3図はその要部
斜視図、第4図は同要部拡大断面図、第5図は再
生器の第2実施例の縦断面図、第6図はその側断
面図、第7図は同要部拡大断面図である。 1……ガスタービン、2……空気圧縮機、4…
…再生器、11,24……ガス流路、12,25
……空気流路、15,27……酸化触媒部、1
6,28……三元触媒部、17,29……突壁。
Fig. 1 is a block diagram of a ceramic gas turbine system using the regenerator of the present invention, Fig. 2 is a partial sectional view of the first embodiment of the regenerator, Fig. 3 is a perspective view of the main part thereof, and Fig. 4 is a block diagram of a ceramic gas turbine system using the regenerator of the present invention. FIG. 5 is a longitudinal sectional view of the second embodiment of the regenerator, FIG. 6 is a side sectional view thereof, and FIG. 7 is an enlarged sectional view of the essential portion. 1...Gas turbine, 2...Air compressor, 4...
... Regenerator, 11, 24 ... Gas flow path, 12, 25
... Air flow path, 15, 27 ... Oxidation catalyst section, 1
6, 28... Three-way catalyst section, 17, 29... Projection wall.

Claims (1)

【特許請求の範囲】[Claims] 1 セラミツクスガスタービンからの高温の排気
ガスが流れるガス流路と、空気圧縮機からの空気
が流れる空気流路とを備えた再生器において、上
記ガス流路に、排気ガス中の煤を触媒により酸化
させる酸化触媒部と、排気ガス中の有害ガス成分
を触媒により除去する三元触媒部とを設け、上記
酸化触媒部におけるガス流路の内壁面に突壁を設
けることにより流路面積を拡大させたことを特徴
とするセラミツクスガスタービン用再生器。
1. In a regenerator equipped with a gas flow path through which high-temperature exhaust gas from a ceramic gas turbine flows and an air flow path through which air from an air compressor flows, soot in the exhaust gas is removed by a catalyst into the gas flow path. An oxidation catalyst section that oxidizes and a three-way catalyst section that catalytically removes harmful gas components from exhaust gas are provided, and a projecting wall is provided on the inner wall surface of the gas flow path in the oxidation catalyst section to expand the flow path area. A regenerator for a ceramic gas turbine characterized by:
JP7750889A 1989-03-29 1989-03-29 Regenerator for ceramics gas turbine Granted JPH02256816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7750889A JPH02256816A (en) 1989-03-29 1989-03-29 Regenerator for ceramics gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7750889A JPH02256816A (en) 1989-03-29 1989-03-29 Regenerator for ceramics gas turbine

Publications (2)

Publication Number Publication Date
JPH02256816A JPH02256816A (en) 1990-10-17
JPH0577852B2 true JPH0577852B2 (en) 1993-10-27

Family

ID=13635907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7750889A Granted JPH02256816A (en) 1989-03-29 1989-03-29 Regenerator for ceramics gas turbine

Country Status (1)

Country Link
JP (1) JPH02256816A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05256161A (en) * 1992-03-11 1993-10-05 Honda Motor Co Ltd Gas-turbine engine
JP2943641B2 (en) * 1994-12-21 1999-08-30 トヨタ自動車株式会社 Exhaust gas purification device
US6584760B1 (en) 2000-09-12 2003-07-01 Hybrid Power Generation Systems, Inc. Emissions control in a recuperated gas turbine engine
KR100763959B1 (en) * 2001-03-22 2007-10-05 삼성테크윈 주식회사 Heat exchanger for air compressor
DE102006021436A1 (en) * 2006-05-09 2007-11-15 Mtu Aero Engines Gmbh Gas turbine engine

Also Published As

Publication number Publication date
JPH02256816A (en) 1990-10-17

Similar Documents

Publication Publication Date Title
JP5690460B2 (en) Compact radial counter-flow recuperator
ES2481447T3 (en) Method and system for the purification of diesel engine exhaust gas
JP2659720B2 (en) Exhaust heat exchanger
US3641763A (en) Gas turbine catalytic exhaust system
JP2007506893A (en) Exhaust gas aftertreatment unit with backflow housing and corresponding process for exhaust gas aftertreatment
JPS6112095B2 (en)
JPH0577852B2 (en)
JP2001517292A (en) Rotary regenerative oxidizer
JP4041888B2 (en) Self heat exchange type heat exchanger
US7152407B2 (en) Thermal energy recovery device
JPH03168595A (en) Heat-transmitting element assembly
JP3527742B2 (en) Contact purification equipment
JPH10141049A (en) Exhaust emission control converter
JP3754507B2 (en) Radiant tube burner
JP6064498B2 (en) Denitration system
JPH0711309Y2 (en) Catalytic combustion device
ATE236349T1 (en) EXHAUST CATALYST
JP4613355B2 (en) Reactor using self heat exchange type heat exchanger
JP4288377B2 (en) Radiant heater using self-heat exchange type heat exchanger
JP2803679B2 (en) Preheating method of air preheating device and its heat transfer body
JP3718828B2 (en) Regenerative heat exchanger
JPH11137968A (en) Heat exchange-type denitrification device
JPH0725212U (en) Exhaust gas purification device for internal combustion engine
JPH0241506Y2 (en)
JPS6193257A (en) Air preheater in stirling engine

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term