JPH0577756B2 - - Google Patents

Info

Publication number
JPH0577756B2
JPH0577756B2 JP13554290A JP13554290A JPH0577756B2 JP H0577756 B2 JPH0577756 B2 JP H0577756B2 JP 13554290 A JP13554290 A JP 13554290A JP 13554290 A JP13554290 A JP 13554290A JP H0577756 B2 JPH0577756 B2 JP H0577756B2
Authority
JP
Japan
Prior art keywords
aluminum
oxide layer
layer
sealing
demineralized water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13554290A
Other languages
Japanese (ja)
Other versions
JPH0313597A (en
Inventor
Barutokobusuki Kurausuudeiitaa
Fuen Peetaa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson Controls Interiors GmbH and Co KG
Original Assignee
Gebrueder Happich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gebrueder Happich GmbH filed Critical Gebrueder Happich GmbH
Publication of JPH0313597A publication Critical patent/JPH0313597A/en
Publication of JPH0577756B2 publication Critical patent/JPH0577756B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/24Chemical after-treatment
    • C25D11/246Chemical after-treatment for sealing layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はアルミニウム又はアルミニウム合金か
らなる部材上の陽極酸化により生じた酸化物層の
シーリング法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for sealing oxide layers produced by anodization on parts made of aluminum or aluminum alloys.

従来の技術 アルミニウム部材、例えばアルミニウムプレス
異形材又は圧延異形材は、特に建築用金具産業及
び照明産業において、又は特に自動車製造におい
て、例えば窓わくシステム又はトリムフレーム、
トリムストリツプ等に使用される。従来、約20μ
mの陽極酸化層を有する部材が製造されている
が、これは例えば十分な腐蝕防止値を有する強力
な着色を製造するためにそのような層厚が必要で
あるということから出発していたためである。更
に、従来20μmの陽極酸化層が必要であり、これ
により層のシーリングの際に温度98℃で十分な結
晶水取り込みが生じ、これにより孔を密閉する層
の格子転換が達せられ、こういてあらかじめ層中
に取り込まれていた物質をしつかりと封入される
ということから出発していた。20μm及びそれ以
上の陽極酸化層は、表面の光沢度を著しく減少さ
せ、これにより視覚的にプラスの印象をマイナス
に変える。更に、機械的及び熱的負荷において、
20μm陽極酸化層に微細なヘアクラツクが生じる
ことがあることが確認された。このヘアクラツク
は腐蝕に導びくのでこの部材は使用不可能であ
る。更に20μm陽極酸化層を形成するためには陽
極酸化浴中で著しく長い滞留時間(100%)が必
要とされる。これにより、陽極酸化層の製造のた
めにより費用がかかる。
BACKGROUND OF THE INVENTION Aluminum parts, such as aluminum pressed profiles or rolled profiles, are used in particular in the building hardware and lighting industry or in particular in automotive manufacturing, for example in window sill systems or trim frames,
Used for trim strips, etc. Conventionally, about 20μ
Components with an anodized layer of m are produced, for example because such a layer thickness is necessary in order to produce a strong coloring with sufficient corrosion protection value. be. Furthermore, a 20 μm anodized layer is conventionally required, which results in sufficient crystallization water uptake at a temperature of 98 °C during layer sealing, thereby achieving a lattice transformation of the layer sealing the pores, thus preliminarily The starting point was to firmly encapsulate the substances that had been incorporated into the layer. An anodized layer of 20 μm and above significantly reduces the gloss of the surface, thereby turning a positive visual impression into a negative one. Furthermore, in mechanical and thermal loads,
It was confirmed that fine hair cracks were sometimes generated in the 20 μm anodic oxidation layer. These hair cracks lead to corrosion, making the component unusable. Furthermore, significantly longer residence times (100%) in the anodizing bath are required to form a 20 μm anodized layer. This makes the production of the anodized layer more expensive.

発明が解決しようとする課題 従つて、本発明の課題は冒頭にあげた方法を、
着色を有するか又は有さない比較的薄い陽極酸化
により生じた陽極酸化層を有するアルミニウム又
はアルミニウム合金からなる部材が高い耐摩耗性
と腐蝕防止値において達せられるように改良する
ことである。
Problem to be solved by the invention Therefore, the problem to be solved by the invention is to solve the problem by solving the method mentioned at the beginning.
The object of the present invention is to improve parts made of aluminum or aluminum alloys with a relatively thin anodized layer produced by anodization, with or without coloration, in order to achieve high wear resistance and corrosion protection values.

課題を解決するための手段 この課題は酸化物層を2工程でシーリングし、
その際部材を第1工程において完全脱塩水中にコ
バルト−フルオリド約6%及びニツケル−フルオ
リド約30%を含有する溶液中で約30℃で約10分間
前処理し、かつ第2工程においてトリアジン誘導
体約2ml/の被膜防止剤を添加して完全脱塩水
中で、作業温度約70℃で約50分間後処理すること
により解決する。
Means for solving the problem This problem involves sealing the oxide layer in two steps,
In this case, the component is pretreated in a first step in a solution containing about 6% cobalt fluoride and about 30% nickel fluoride in completely demineralized water at about 30° C. for about 10 minutes, and in a second step a triazine derivative. This is achieved by post-treatment in fully demineralized water for about 50 minutes at a working temperature of about 70° C. with the addition of about 2 ml/ml of anti-filming agent.

本発明の処置により、アルミニウム等の部材の
陽極酸化層を特に薄い陽極酸化層(10〜12μm)
で高い耐摩耗性値及び腐蝕防止値において製造す
ることができるという特別な利点が生じる。
By the treatment of the present invention, the anodic oxide layer of members such as aluminum can be reduced to a particularly thin anodic oxide layer (10 to 12 μm).
A particular advantage arises that it can be manufactured with high wear resistance and corrosion protection values.

アルミニウム又はアルミニウム合金からなる部
材の製造において次のように実施することができ
る: 本発明により、部材をまず機械的に研摩し、み
がき仕上げする。引き続き部材を脱脂、もしくは
清浄化し、これをアルカリ性で電解的に光沢処理
し、十分に輝やく青面反射を達成する。光沢処理
工程の後、部材をまず着色のために直流で電解的
に陽極酸化する。次の工程において部材を交流の
使用下に金属塩含有電解液中で暴露する。引き続
く工程において、生じた酸化物層の吸着性を利用
し、下地着色を有機アゾ染料の化学的取り込みに
より可変に変える。更なる2工程において(ここ
で本発明が始まるのであるが)部材の酸化物層は
最終工程としてシーリングされ、こうして外部か
らの作用に対して保護される。この際すでに前記
のように、この部材をまず完全脱塩水中のコバル
ト−フルオリド6%及びニツケル−フルオリド約
30%を含有する溶液中で30℃で約10分間前処理す
る。この際、酸化物層とニツケル−フルオリドと
の次の基礎反応が生じる。: Al2O3+Ni2+F+H2O30℃ ――→ Al(OH)F2+Ni(OH)2+OH+AlF3 このシーリングの第1の工程においては酸化物
層の安定な前シーリングが達せされる。
In the production of parts made of aluminum or aluminum alloys, the following can be carried out: According to the invention, the parts are first mechanically ground and polished. The component is then degreased or cleaned and then electrolytically brightened with alkaline to achieve a fully brilliant blue reflection. After the brightening step, the component is first electrolytically anodized with direct current for coloring. In the next step, the component is exposed to an electrolyte containing metal salts using an alternating current. In a subsequent step, the adsorption properties of the resulting oxide layer are utilized to variably change the base coloration by chemical incorporation of organic azo dyes. In two further steps (where the invention begins) the oxide layer of the component is sealed as a final step and thus protected against external influences. In this case, as already mentioned above, this component was first mixed with 6% cobalt fluoride and about 6% nickel fluoride in completely demineralized water.
Pretreat for approximately 10 minutes at 30 °C in a solution containing 30%. At this time, the following basic reaction between the oxide layer and the nickel fluoride takes place. : Al 2 O 3 +Ni 2 +F+H 2 O30°C --→ Al(OH)F 2 +Ni(OH) 2 +OH+AlF 3In the first step of this sealing, a stable pre-sealing of the oxide layer is achieved.

シーリングの第2の工程においては、すでに前
記のようにトリアジン誘導体2ml/の被膜防止
剤を添加して完全脱塩水中で70℃で処理する。こ
の際、まず水の結合下に化学反応が生じる
(Al2O3+H2O=2AlO×OH)。この際、層の容積
増大が孔の閉塞に作用する。この層は外部の影響
に対して今や保護されている。
In the second step of sealing, treatment is carried out at 70 DEG C. in completely demineralized water with the addition of 2 ml/film inhibitor of triazine derivatives, as already described above. At this time, a chemical reaction first occurs under the bond of water (Al 2 O 3 + H 2 O = 2AlO x OH). In this case, the increase in volume of the layer acts to block the pores. This layer is now protected against external influences.

Claims (1)

【特許請求の範囲】[Claims] 1 アルミニウム又はアルミニウム合金からなる
部材上に陽極酸化により生じた酸化物層をシーリ
ングする方法において、酸化物層を2工程でシー
リングし、その際部材を第1工程において完全脱
塩水中にコバルト−フルオリド約6%及びニツケ
ル−フルオリド約30%を含有する溶液中で約30℃
で約10分間前処理し、かつ第2工程においてトリ
アジン誘導体約2ml/の被覆防止剤を添加し
て、完全脱塩水中で作業温度約70℃で約50分間後
処理することを特徴とするアルミニウム又はアル
ミニウム合金からなる部材上の陽極酸化により生
じた酸化物層のシーリング法。
1. A method for sealing an oxide layer produced by anodization on a member made of aluminum or an aluminum alloy, in which the oxide layer is sealed in two steps, the member being exposed to cobalt-fluoride in fully demineralized water in the first step. at about 30°C in a solution containing about 6% and about 30% nickel-fluoride.
aluminum for about 10 minutes, and post-treated in fully demineralized water for about 50 minutes at a working temperature of about 70° C., with the addition of about 2 ml of triazine derivative anti-coating agent in a second step. Or a method of sealing an oxide layer produced by anodization on a member made of an aluminum alloy.
JP13554290A 1989-05-26 1990-05-28 Sealing method of oxide layer produced by anodic oxidation on member composed of aluminum or aluminum alloy Granted JPH0313597A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3917187.6 1989-05-26
DE19893917187 DE3917187A1 (en) 1989-05-26 1989-05-26 METHOD FOR COMPRESSING AN ANODICALLY PRODUCED OXIDE LAYER ON PARTS MADE OF ALUMINUM OR ALUMINUM ALLOYS

Publications (2)

Publication Number Publication Date
JPH0313597A JPH0313597A (en) 1991-01-22
JPH0577756B2 true JPH0577756B2 (en) 1993-10-27

Family

ID=6381455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13554290A Granted JPH0313597A (en) 1989-05-26 1990-05-28 Sealing method of oxide layer produced by anodic oxidation on member composed of aluminum or aluminum alloy

Country Status (3)

Country Link
EP (1) EP0399168A1 (en)
JP (1) JPH0313597A (en)
DE (1) DE3917187A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5362569A (en) * 1993-03-22 1994-11-08 Bauman Albert J Anodizing and duplex protection of aluminum copper alloys

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH654853A5 (en) * 1982-08-07 1986-03-14 Sandoz Ag METHOD FOR COMPRESSING ANODICALLY OXYDED ALUMINUM SURFACES.
ES522048A0 (en) * 1983-05-03 1984-07-16 Alvarez Sanchis Elia Mari PROCEDURE FOR THE PROTECTION OF ALUMINUM, PREVIOUSLY ANODIZED.
DE3641766A1 (en) * 1986-12-06 1988-06-09 Erbsloeh Julius & August Method of producing light-fast and weather-resistant anodised and coloured layers on aluminium and aluminium alloys

Also Published As

Publication number Publication date
EP0399168A1 (en) 1990-11-28
DE3917187A1 (en) 1990-11-29
DE3917187C2 (en) 1991-02-28
JPH0313597A (en) 1991-01-22

Similar Documents

Publication Publication Date Title
CA1131160A (en) Electrolytic colouring of anodised aluminium by means of optical interference effects
US4042468A (en) Process for electrolytically coloring aluminum and aluminum alloys
US20140209467A1 (en) Method For Producing White Anodized Aluminum Oxide
JPH0313596A (en) Colored surface formation of member composed of aluminum or aluminum alloy
JPH0347994A (en) Method for coloring titanium or alloy thereof by controlling quantity of supplied electric current
US20030127338A1 (en) Process for brightening aluminum, and use of same
CA1223542A (en) Surface treatment of aluminum or aluminum alloys
US3616311A (en) Integral hard coat anodizing system
US4070255A (en) Process for electrolytically coloring aluminum and aluminum alloys
JPH0347937A (en) Aluminum alloy material having white color tone after subjected to anodic oxidation treatment
JPH0577756B2 (en)
US20030098240A1 (en) Method for producing gold-coloured surfaces pertaining to aluminium or aluminium alloys, by means of formulations containing silver salt
JP3445134B2 (en) Method for producing gray-colored aluminum material and its colored body
JPS633038B2 (en)
JPS60197897A (en) Formation of opaque white anodized film of aluminum or aluminum alloy
JP2003041382A (en) Method for manufacturing eyeglasses frame
US4042471A (en) Process for electrolytically coloring aluminum and aluminum alloys
US4917780A (en) Process for coloring anodized aluminum by AC electrolysis
EP0824571A1 (en) 1:2 chromium complexes, their production and use
JP3817772B2 (en) Method for coloring anodized film of aluminum material
JPH06240494A (en) Method for coloring anodically oxidized film of aluminum
US20190309434A1 (en) Method for producing an aluminium component having a coloured surface
JPS5920759B2 (en) Coloring method for aluminum or aluminum alloy
JPS5948879B2 (en) Aluminum electrolytic coloring method
JPS5956594A (en) Method for coloring aluminum