JPH0577695B2 - - Google Patents

Info

Publication number
JPH0577695B2
JPH0577695B2 JP15649588A JP15649588A JPH0577695B2 JP H0577695 B2 JPH0577695 B2 JP H0577695B2 JP 15649588 A JP15649588 A JP 15649588A JP 15649588 A JP15649588 A JP 15649588A JP H0577695 B2 JPH0577695 B2 JP H0577695B2
Authority
JP
Japan
Prior art keywords
film
polyester
density
polymer
apparent density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15649588A
Other languages
Japanese (ja)
Other versions
JPH026540A (en
Inventor
Satoshi Otonari
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Polyester Film Corp
Original Assignee
Mitsubishi Polyester Film Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Polyester Film Corp filed Critical Mitsubishi Polyester Film Corp
Priority to JP15649588A priority Critical patent/JPH026540A/en
Publication of JPH026540A publication Critical patent/JPH026540A/en
Publication of JPH0577695B2 publication Critical patent/JPH0577695B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〈産業上の利用分野〉 本発明は、表面及び内部に無数の微細気泡を含
有してなるポリエステルフイルムに関する。詳し
くは、微細な独立気泡を含有せしめることにより
単位体積当りの重量が軽減されたフイルムであつ
て隠蔽性及び平面性に優れた延伸ポリエステルフ
イルムに関する。 〈従来技術と発明が解決しようとする問題点〉 従来、ポリエステルフイルムは、優れた機械的
特性電気的特性耐薬品性などを有することから各
種産業用基材として広く利用されている。とりわ
け、二軸配向ポリエチレンテレフタレートフイル
ムは他のフイルムに比べ、平面性や寸法安定性な
どに優れ比較的安価で市場に提供されることか
ら、情報産業用や製版用基材として欠くことので
きない素材である。例えば、オフイスや会議室な
どで使用されている電子黒板のボード面用基材や
NTTのテレホンカードJRのオレンジカードで代
表される磁気カード用基材として高級蔽化ポリエ
チレンテレフタレートフイルムが用いられ、前述
したような優れた特性を遺憾なく発揮している。 しかしながら、該高隠蔽化フイルムは優れた特
性を有するものの、隠蔽力を高度に上げるため
に、例えば二酸化チタンのような比重の大きな無
機粒子が極めて多量に含まれていることから種々
の弊害を生じている。すなわち該フイルムの単位
体積当りの重量は通常のフイルムに比べ2〜4割
も大きいことから、電子黒板のボード面として垂
直状態で長期間使用しているとフイルム自身によ
るタルミが極めて早く起り、商品価値を著しく低
下させる要因となつている。また、フイルム中に
無機粒子が存在することによつて、フイルムのス
リツト加工やカード等のカツテイング加工におい
てナイフの寿命が著しく短くなり生産性が低下し
てしまつたり、フイルムのエツジで手を切傷する
など取扱い性においても問題があつた。 そこで本発明者らはかかる諸問題を解決するに
当りまずフイルムの単位体積当りの重量、すなわ
ちフイルム見掛け密度をいかにして低減させるか
が最大の改良ポイントであるとの認識から、フイ
ルムを発泡体構造化する研究に着手した。 従来、ポリエステルに関する発泡体製造方法は
数多く提案されており、例えば特開昭50−38765
号公報、特公昭57−46456号公報あるいは特開昭
57−34931号公報などに記載されているようなガ
ス又は気化可能な物質を添加して発泡体化する方
法や特開昭52−43871号公報や特公昭58−50625号
公報などに記載されているような化学的に分解し
てガスを発生する物質を添加して発泡体化する方
法、更には、特開昭51−34963号公報や特公昭52
−27666号公報に記載されているような成型後液
体を含浸させ溶剤に可溶な物質を抽出して発泡体
化する方法などが知られている。 しかし、これらの発泡化の方法を単純に二軸配
向ポリエステルフイルムに適用するのは極めて難
しい。すなわち、これらの方法は成型体を製造す
るために提案されたものであり、数百ミクロン以
下のフイルムに単純に応用できる方法とは言い難
く、数ミクロン〜数十ミクロンの気泡を均一に生
成させ、しかも押出シートを破断なく二軸配向す
ることは至難である。このことは従来二軸配向ポ
リエステルフイルムにおいて発泡化した具体的提
案例が殆ど見当らないことからも裏付けられる。 このように従来の発泡体化の方法を採用するの
は至難であつてもポリエステルフイルム中に微細
な気泡を無数に含有せしめることができれば見掛
け密度の低減に有効であることは言うまでもな
く、しかも含有せしめる気泡が数十ミクロンある
いは数ミクロン以下迄微細化できれば気泡による
光の散乱で付随的に隠蔽性向上も達成できる。 従つて、隠蔽性を付与するために配合する無機
粒子の配合量も当然少なくできることから、フイ
ルムの見掛け密度の低減を助長してフイルム自重
によるタルミ防止に寄与するとともに、スリツト
加工時などのフイルム生産性及び取扱い性の向上
も同時に達成できる。 そこで本発明者らは、従来の発泡化方法にとら
われることなくかかる微細な独立気泡を無数に含
有せしめてフイルム見掛け密度を低減させる方法
について検討した結果、先に特願昭61−313896を
提案した。すなわち芳香族ポリエステルに特定の
ポリマーを配合したシートを延伸することにより
フイルム見掛け密度の低減を達成した。しかも従
来の発泡化の方法とは異なり新たな装置を必要と
しない簡便な方法であることから画期的な方法で
ある。 しかしながら、かかる発明によつて得られたフ
イルムを表面特性の面から見直してみると必ずし
も十分な平面性を保持しているとは言い難く、ま
た、フイルムの生産性、すなわち連続製膜性にお
いても劣るためそれらの改良が必要であつた。 〈問題点を解決するための手段〉 本発明者らは、かかる実情に鑑みまず平面性を
阻害する要因について検討を重ねた結果、本来ポ
リエステルフイルム全層に微分散せしめるべき異
種のポリマーがフイルム表層部では繊維状で存在
し均一な気泡を形成していないばかりか、該繊維
状ポリマーの一部がフイルム表面に突出し、表面
形状を極めて悪化せしめていることを知見した。
そこでポリエステル中に微分散化すべきポリマー
を繊維状にならないように押出成形し、表層部が
内層部と同質になるように気泡を含有せしめれば
平面性が極めて向上するとともに、フイルムの連
続製膜性向上も同時に達成できることを見い出し
本発明に到達した。 すなわち、本発明の要旨は、ボイド形成性ポリ
マーとして、加熱溶融時の溶融粘度がポリエステ
ルに対し、剪段速度20〜1000sec-1の範囲で交差
する溶融特性を有する液晶性ポリエステルまたは
ポリフエニレンサルフアイドを3〜40重量%含有
し、少なくとも一軸方向に延伸してなるフイルム
であつて、該フイルムの表層から5μm深さまでの
部分における密度A(g/cm3)と表層から5μm深
さまでの部分を除く中央部分における密度B
(g/cm3)が下記式(1)〜(3)を同時に満足すること
を特徴とする微細気泡含有ポリエステルフイルム
に存する。 0.5≦A≦1.3 ……(1) 0.5≦B≦1.3 ……(2) A−B≦0.5 ……(3) 以下、本発明を詳細に説明する。 本発明でいうポリエステルとは、テレフタル
酸、イソフタル酸、ナフタレンジカルボン酸のご
とき芳香族ジカルボン酸又はそのエステルとエチ
レングリコール、ジエチレングリコール、1,4
−ブタンジオール、ネオペンチルグリコールのご
ときグリコールとを重縮合させて製造されるポリ
エステルである。 これらのポリエステルは芳香族ジカルボン酸と
グリコールとを直接反応させて製造されるほか、
芳香族ジカルボン酸のアルキルエステルとグリコ
ールとをエステル交換反応させた後、重縮合させ
るか、あるいは芳香族ジカルボン酸のジグリコー
ルエステルを重縮合させる等の方法によつても製
造できる。かかるポリエステルの代表例としては
ポリエチレンテレフタレートやポリエチレンナフ
タレートあるいはポリブチレンテレフタレートな
どが挙げられる。 このポリエステルはホモポリマーであつてもよ
く、第三成分を共重合したものであつてもよい。
いずれにしても、本発明においてはエチレンテレ
フタレート単位及び/又はエチレン2,6−ナフ
タレート単位及び/又はブチレンテレフタレート
単位を70モル%以上有するポリエステルが好まし
く、更に好ましくは80モル%以上、特に好ましく
は90モル%以上有するポリエステルである。ま
た、本発明においては、ポリエステルの重合度が
低すぎると機械的強度が低下するため、その固有
粘度は0.4以上が好ましく、更に好ましくは0.5〜
1.2特に好ましくは0.55〜0.85である。さて、通常
ポリエステルをフイルム化する場合フイルム同志
やフイルムと金属ロール間での滑り性を付与する
ために微細な不活性微粒子を適度に含有せしめた
ポリエステルを用いるが、本発明に用いるポリエ
ステルはかかる微粒子を含有しないものが好まし
く使用される。これは該微粒子が存在することに
よつて得られたフイルムの色調や隠蔽性の制御に
支障をきたす場合があるからである。 しかし、得られるフイルムに要求される色調や
隠蔽度に支障がない限りかかる不活性微粒子を含
有したポリエステルを使用しても差しつかえはな
い。 本発明においては、かかる芳香族ポリエステル
に対し、特定のポリマー、すなわちボイド形成性
ポリマーを配合するが、本発明でいうボイド形成
性ポリマーとは、芳香族ポリエステルに溶解又は
直ちにエステル交換などの反応を起こさず、溶融
混合時該ポリエステル中(海成分)に微粒子状に
分散して島成分を形成する熱可塑性ポリマーであ
り、海島形成シートを該ポリエステルのガラス転
移温度以上で延伸したとき、ポリエステルとの相
溶性が低いため、界面にてボイドすなわち空隙を
容易に形成するポリマーを指す。かかるポリマー
としては、液晶性ポリエステル、ポリフエニレン
サルフアイドポリプロピレンであつて、加熱溶融
時の溶融粘度がポリエステルに対し20〜
1000sec-1間で交又する溶融特性をもつたポリマ
ーである。すなわち溶融混合時の温度において溶
融粘度が低剪断速度側ではポリエステルより高
く、高剪断速度側で低くなるような剪断速度依存
性をもつポリマーである。これはポリエステル中
にはポリマーを微分散化して島成分を均一に形成
させるために欠くことのできない特性である。 本発明においては、かかる特性を有するボイド
形成性ポリマーを芳香族ポリエステルに配合する
が、その配合量は3〜40重量%であり、好ましく
は5〜30重量%、更に好ましくは5〜20重量%の
範囲である。かかる配合量が3重量%未満である
とフイルム中の微細気泡の生成量が少なくフイル
ム見掛け密度の低減を充分達成せず、一方40重量
%を越えると生成気泡が極めて多くなるためかフ
イルム延伸時の破断が多発し生産者が極めて劣る
ようになり好ましくない。 本発明では、上述した芳香族ポリエステルにボ
イド形成性ポリマーを配合してフイルムとする
が、本発明の目的とする最終的にフイルムの表面
及び内部に微細な独立気泡を含有せしめて見掛け
密度を低減させることを達成させるためには、か
かる配合物の未延伸シートを少なくとも一軸方向
に延伸する必要がある。 すなわち、かかる配合物を単に押出成形して得
たシートの表面及び内部には未だ十分な独立気泡
は生成せず延伸工程を経て初めて見掛け密度低減
に有効な独立気泡が無数形成される。すなわち、
ポリエステル中(海成分)島成分として微分散し
た微粒子状のボイド形成性ポリマーの周囲に延伸
によつて強制的に空隙を形成させるのである。延
伸条件自体の特殊ではないが、ポリエステルのガ
ラス転移点以上の温度下にて延伸する。該ガラス
転移点未満であるポリエステルの延伸が均一に行
なわれないため好ましくない。 更に具体的には、芳香族ポリエステルとボイド
形成性ポリこの混合物を原料として押出機にて
250〜320℃の温度で溶融混練しダイからスリツト
状に押出し約70℃以下の温度に冷却して、実質的
に無定形のシートとする。次いで該シートを芳香
族ポリエステルのガラス転移点以上の温度で縦及
び/又は横方向に面積倍率で4倍以上、好ましく
は9倍以上に延伸し、更に120〜250℃で熱処理を
行なうことにより製造する。ボイド形成性ポリマ
ーの配合方法について特に限定されるものではな
く、例えば予めポリエステルチツプとボイド形成
性ポリマーチツプとを混合して押出機ホツパーに
投入すればよいが、具体的には押出機投入口にポ
リエステルチツプとボイド形成性ポリマーチツプ
をそれぞれ定量的にフイードする方法が簡便で配
合ムラも少ないことから好ましく採用される。本
発明においては基本的には芳香族ポリエステルと
ボイド形成性ポリマーとを用いることにより、フ
イルム見掛け密度が0.5〜1.3g/cm3で隠蔽度が0.2
以上のフイルムを得ることができるが、かかる物
性を満足する限り、その他添加物などの第三成分
を配合しても構わない。かかる第三成分として、
例えば抗酸化剤、帯電防止剤、紫外線吸収剤、顔
料、染料、滑剤、マツト化剤、蛍光増白剤などが
挙げられ、必要に応じ適切な方法で必要なだけ添
加することができる。 このようにして本発明の目的とするフイルム見
掛け密度0.5〜1.3g/cm3であり、且つ隠蔽度0.2以
上のフイルムを得るが、最終的には該フイルムの
表層から5μm深さ迄の部分における見掛け密度A
が0.5〜1.3g/cm3であつて、表層から5μm深さ迄
の部分を除く中央部分の見掛け密度Bが0.5〜1.3
g/cm3であり、更に該Aと該Bの見掛け密度差が
0.5g/cm3以下、好ましくは0〜0.3g/cm3、更に
好ましくは0〜0.2g/cm3であることが必要であ
り、これらの条件を同時に満足しなければならな
い。すなわち、該A及び該Bが0.5g/cm3未満で
はフイルムの機械的強度が著しく低下するため好
ましくなく、一方1.3g/cm3を超えるとフイルム
の自重によるタルミ抑制効果に対して有効でない
ため好ましくない。また、該Aと該Bの見掛け密
度差が0.5g/cm3を超えると後述する現象のため
フイルム表面の表面粗度が極めて大きくなり、う
ねり状の表面凹凸を形成してフイルムの平面性が
極めて劣るようになり好ましくない。 一方、該Aと該Bの差が0未満すなわち該Bが
該Aより大きくなつても差しつかえはないが現実
的にはそのようなフイルムの製造は困難である。 さて、本発明においては、以上述べた最終的に
フイルムの表層部と中央部でフイルム見掛け密度
差の少ないすなわち含有微細気泡量に差がない均
一な発泡構造を有するポリエステルフイルムを得
るところに特徴があるが、該フイルムとするため
には、芳香族ポリエステルにボイド形成性ポリマ
ーを配合して溶融押出し、実質的に無定形シート
とする際の押出成形条件が重要である。すなわち
溶融ポリマーがスリツト状ダイのリツプ間を通過
する時に剪断速度γ〓は通常200sec-1以下好ましく
は5〜100sec-1に制御され、また、溶融ポリマー
がダイリツプ出口から冷却ドラムに接する迄のド
ラフト比は通常、1〜20に制御される。また、γ〓
の二乗にドラフト比を乗じた値に通常8万以下好
ましくは4万以下になるよう制御される。γ〓が
200sec-1を超えたりドラフト比が20を超える条件
あるいはγ〓の二乗にドラフト比を乗じた値が8万
を超える条件にて無定形シートを得た場合、該シ
ート中に島成分として存在するボイド形成性ポリ
マーが表層部にて繊維状に細長く引き伸ばされた
状態で存在するため、次いで該シートを少なくと
も一軸方向に延伸した時もはやボイドの形成がで
きなくなり、フイルム見掛け密度の低減を阻害す
るばかりか、該繊維状ポリマーの一部がフイルム
表面に突出し、表面性を悪化せしめる。また、フ
イルム表面に突出しない繊維状ポリマーであつて
も該繊維状ポリマーが表層部に存在することか
ら、延伸ムラを誘発しフイルム表面がざらついた
状態になり、平面性を極めて悪化せしめる。更に
は、該繊維状ポリマーの存在によりテンターにお
ける横延伸時破断多発を余儀なくされ、生産性が
極めて低下してしまう。 このような弊害は、得ようとするフイルムが薄
くなればなる程、影響は大きくなり、かかる無定
形シート中に微分散して存在するポリマーが表層
から中央迄均一な形状で存在せしめる押出成形条
件を採用することが本発明における重要なポイン
トである。 このようにして本発明のフイルムを得るが、該
フイルムの表面特性例えば接着性や帯電防止性な
どを改良するために各種表面処理を行なつても何
ら構わない。表面処理としては、例えばプライマ
ー処理、コロナ処理、プラズマ処理、溶剤処理、
紫外線処理、サンドブラスト処理などが挙げら
れ、本発明のフイルムの片面又は両面に適当な時
期に必要な量だけ行なうことができる。 〈実施例〉 以下本発明を実施例にて具体的に説明するが、
本発明はその要旨を越えない限り、以下の実施例
に限定されるものではない。本発明における諸物
性の測定及び評価は、次に示す方法にて行なつ
た。 (1) フイルム見掛け密度(g/cm3) フイルムの任意の部分から5点サンプリング
し、それぞれのサンプルの単位体積当りの重量を
求め、その平均値をフイルム見掛り密度値とし
た。次に、フイルム両面をミクロトームにて、そ
れぞれ5μm厚ずつ削し、該サンプルの単体体積当
りの重量を求め中央部分の密度Bとした。かかる
フイルム全体の密度と中央部分の密度Bから表層
部の密度Aを算出した。 (2) 隠蔽度 マクベス濃度計TR−927型を使用しビジユア
ル光における透過濃度を測定した。測定は3点行
ない、その平均値を穏蔽度値とした。この値が大
きい程、隠蔽力が高いことを示す。 (3) 表面粗度Ra(μm) (株)小坂研究所製表面粗さ測定器SE−3F型を使
用し、JISB−0601−1976の方法に準じて測定し
た。詳細条件として触針径2μm、触針圧30mg、カ
ツトオフ値0.8mm及び2.5mmとしそれぞれ測定数12
回行ない最大・最小値を除いた10回の平均値を中
心線平均粗さRa0.8及びRa2.5値とした。 (4) 平均性外観評価 フイルム表面状態を目視観察し表面のザラツキ
があり明らかに平面性が劣るものを×、殆んど認
めないものを〇として評価した。 (5) 製膜性の評価 無定形シートを、縦方向に延伸後、テンターに
て横延伸を行なう際、フイルムの破断状況を観察
し、度々延伸部その他にて破断し明らかに生産性
に劣るものを×、殆んど破断せず生産性良好なも
のを〇として評価した。 実施例 1 極限粘度(以下〔η〕と略す)0.66のポリエチ
レンテレフタレートチツプに液晶ポリエステルa
〔テレフタル酸/イソフタル酸/パラオキシ安息
香酸/エチレングリコール系ポリマー;290℃に
おける溶融粘度(以下ηと略す)が剪断速度(下
下γ〓と略す)50sec-1下で5000ポイズ、γ〓1000sec-1
下で1000ポイズを示すポリマー〕を30重量%配合
し、均一に混合した原料を押出機にて290℃で溶
融し、スリツト状ダイリツプ部のγ〓50sec-1ドラフ
ト比4の条件下にて40℃の冷却ドラム上にシート
状に押出し約370μm厚の無定形シートを得た。次
いで該シートを縦方向に3倍、横方向に3倍延伸
し220℃で5秒間熱処理して最終的にフイルム厚
75μm、見掛け密度076g/cm3、隠蔽度0.55の二軸
延伸フイルムを得た。製膜時の破断は殆どなく生
産性は良好であつた。かかるフイルムの表層部の
密度は0.77g/cm3、中央部の密度は0.76g/cm3
あり、又、フイルム表面のRa0.8が0.29μm、Ra2.5
が0.62μmを示し目視観察でもザラツキは認めら
れず良好な平面性を示した。 実施例 2 実施例1で用いた液晶ポリエステルaの代りに
溶融特性の異なる液晶ポリエステルb(290℃にお
けるηがγ〓50sec-1下で10000ポイズ、γ〓1000sec-1
下で2000ポイズを示すポリマー)を15重量%配合
し、溶融押出成形時のγ〓を100sec-1、ドラフト比
を3の条件下で約330μmの無定形のシートとする
以外は実施例1と同様にしてフイルム化を行ない
最終的にフイルム厚50μm、見掛け密度1.02g/
cm3、隠蔽度0.42の二軸延伸フイルムを得た。製膜
時の破断は実施例1と同様殆んどなかつた。得ら
れたフイルムの表層部の密度は1.06g/cm3、中央
部の密度は1.01g/cm3であり、両者間の密度差は
殆どなく、フイルム表面の平面性もRa0.80.25μm、
Ra2.50.58μmと良好であつた。 実施例 3 実施例1で用いた液晶ポリエステルaの代りに
ポリフエニレンサルフアイド(290℃におけるη
がγ〓50sec-1下で4000ポイズγ〓1000sec-1下で800ポ
イズを示すポリマー)を15重量%配合し、溶融押
出成形時のγ〓を150sec-1ドラフト比を2の条件下
にて約355μm厚の無定形シートとする以外は実施
例1と同様にして最終的に50μm厚、見掛け密度
1.10g/cm3隠蔽度0.43の二軸延伸フイルムを殆ど
破断なく得た。 かかるフイルムの表層部の密度は1.18g/cm3
中央部の密度は1.08g/cm3であり、また、表面の
Ra0.8は0.26μm、Ra2.5は0.68μmを示し、若干の密
度差があるものの良好な平面性を示した。 比較例 1 実施例1で用いた配合物を全く使用せず溶融押
出成形時のγ〓を125sec-1、ドラフト比を1.5とし、
約680μm厚の無定形シートとする以外は実施例1
と同様にして最終的に75μm厚、見掛け密度1.4
g/cm3、隠蔽度0.07の二軸延伸フイルムを得た。
得られたフイルムの物性は下記表−1に示すよう
に表層部と内層部の密度差や表面性については全
く問題ないが全く隠蔽性を有しない透明なフイル
ムであつた。 比較例 2 実施例1で用いた液晶ポリエステルaを15重量
%配合し、溶融押出成形時のγ〓を250sec-1、ドラ
フト比を1とし、約705μm厚の無定形シートとす
る以外は実施例1と同様にして、最終的にフイル
ム厚150μm、見掛け密度0.73g/cm3隠蔽度0.62の
二軸延伸フイルムを得た。製膜時、時々破断を起
し、生産性は若干劣るものであつた。得られたフ
イルムの表面部密度は1.30g/cm3、中央部密度は
0.69g/cm3と両者間の密度差は0.61g/cm3もあ
り、その結果フイルムの表面はRa0.8で0.51μmで
あるものの、Ra2.5で5.2μmと極めて大きな値を示
し平面性に劣るものであつた。また、目視観察で
も表面がザラザラした感じが顕著に認められた。 比較例 3 実施例3と同じ原料を使用し、溶融押出成形時
のγ〓を200sec-1、ドラフト比を3として約230μm
厚の無定形シートとする以外は実施例1と同様に
して、最終的にフイルム厚38μm、見掛け密度
1.12g/cm3、隠蔽度0.31の二軸延伸フイルムを得
た。製膜時度々破断を起し、生産性に劣るもので
あつた。 得られたフイルムの中央部密度は1.0g/cm3
あつたが表層部密度は1.41g/cm3と大きく、フイ
ルム表面のRa0.8は0.37μm、Ra2.5は4.37μmとフイ
ルム平面性に劣るものであつた。目視観察でも比
較例2と同様極めて悪い外観を示した。 比較例 4 実施例2で用いた液晶ポリエステルbを45重量
%配合し、溶融押出成形時のγ〓を5sec-1ドラフト
比を30として約150μm厚の無定形シートとする以
外は実施例1と同様にしてフイルム化したが、製
膜時破断が頻発して最終的な二軸延伸フイルムは
得られなかつた。 以上述べた実施例1〜3及び比較例1〜4のフ
イルム物性及び製膜性評価結果その他をまとめて
下記表−1に示す。
<Industrial Application Field> The present invention relates to a polyester film containing countless microscopic bubbles on its surface and inside. Specifically, the present invention relates to a stretched polyester film which has a reduced weight per unit volume by containing fine closed cells and has excellent hiding properties and flatness. <Prior Art and Problems to be Solved by the Invention> Conventionally, polyester films have been widely used as various industrial base materials because of their excellent mechanical properties, electrical properties, chemical resistance, and the like. In particular, biaxially oriented polyethylene terephthalate film has superior flatness and dimensional stability compared to other films, and is available on the market at a relatively low price, making it an indispensable material for the information industry and plate-making. It is. For example, the base material for the board surface of electronic blackboards used in offices and conference rooms, etc.
High-grade shielded polyethylene terephthalate film is used as the base material for magnetic cards, such as NTT's telephone card and JR's Orange Card, and fully exhibits the excellent properties mentioned above. However, although the high-hidden film has excellent properties, in order to increase the hiding power to a high degree, it contains extremely large amounts of inorganic particles with a large specific gravity such as titanium dioxide, which causes various problems. ing. In other words, since the weight per unit volume of the film is 20 to 40% larger than that of ordinary film, if it is used vertically for a long period of time as the board surface of an electronic blackboard, the film itself will sag very quickly, causing the product to sag. This is a factor that significantly reduces the value. In addition, the presence of inorganic particles in the film can significantly shorten the life of the knife during film slitting and cutting processes such as cards, reducing productivity, and may cause cuts to the hands due to the edges of the film. There were also problems in handling. Therefore, in order to solve these problems, the present inventors recognized that the most important point for improvement was how to reduce the weight per unit volume of the film, that is, the apparent density of the film. We started research to create a structure. In the past, many methods for producing polyester foams have been proposed, such as Japanese Patent Application Laid-Open No. 50-38765.
Publication No. 57-46456 or Japanese Patent Application Publication No. 1987-46456
A method of adding a gas or a vaporizable substance to form a foam as described in Japanese Patent Publication No. 57-34931, etc., and a method described in Japanese Patent Application Laid-open No. 52-43871 and Japanese Patent Publication No. 58-50625, etc. A method of forming a foam by adding a substance that chemically decomposes and generates gas, such as that described in Japanese Patent Application Laid-Open No. 51-34963 and Japanese Patent Publication No. 52
A method is known, such as that described in Japanese Patent No. 27666, in which after molding, the material is impregnated with a liquid and a substance soluble in a solvent is extracted to form a foam. However, it is extremely difficult to simply apply these foaming methods to biaxially oriented polyester films. In other words, these methods have been proposed for producing molded bodies, and cannot be said to be methods that can be simply applied to films with a size of several hundred microns or less. Moreover, it is extremely difficult to biaxially orient an extruded sheet without breaking it. This is supported by the fact that there have been almost no concrete proposals for foaming biaxially oriented polyester films. Although it is extremely difficult to employ conventional foaming methods, it goes without saying that it is effective to reduce the apparent density if a large number of fine air bubbles can be incorporated into the polyester film. If the bubbles can be made as fine as several tens of microns or even a few microns, the scattering of light by the bubbles can incidentally improve the hiding property. Therefore, the amount of inorganic particles added to impart hiding properties can naturally be reduced, which helps reduce the apparent density of the film and helps prevent sagging due to its own weight, as well as reducing film production during slitting. Improved properties and handling properties can also be achieved at the same time. Therefore, the present inventors investigated a method of reducing the apparent density of the film by incorporating countless such fine closed cells without being bound by the conventional foaming method, and as a result, they previously proposed Japanese Patent Application No. 313,896/1986. . That is, by stretching a sheet made of aromatic polyester blended with a specific polymer, a reduction in the apparent density of the film was achieved. Moreover, unlike conventional foaming methods, this is a simple method that does not require any new equipment, making it an epoch-making method. However, when the film obtained by this invention is reviewed from the viewpoint of surface characteristics, it is difficult to say that it necessarily maintains sufficient flatness, and it is also difficult to say that the film has poor productivity, that is, continuous film formation. Because of their inferiority, it was necessary to improve them. <Means for Solving the Problems> In view of the above circumstances, the present inventors first investigated the factors that inhibit flatness, and found that different types of polymers, which should originally be finely dispersed throughout the entire layer of the polyester film, are dispersed in the surface layer of the film. It has been found that not only are the fibrous polymers present in the film and do not form uniform bubbles, but also that some of the fibrous polymers protrude onto the film surface, severely deteriorating the surface shape.
Therefore, if the polymer to be finely dispersed in polyester is extruded so as not to become fibrous, and air bubbles are included so that the surface layer is of the same quality as the inner layer, the flatness will be greatly improved, and the film can be formed continuously. The present invention was achieved by discovering that it is possible to simultaneously improve properties. That is, the gist of the present invention is to use, as a void-forming polymer, a liquid crystalline polyester or polyphenylene sulfur having a melt viscosity that crosses that of polyester at a shear rate of 20 to 1000 sec -1 when heated and melted. A film containing 3 to 40% by weight of id and stretched in at least one axis, where the density A (g/cm 3 ) in a portion of the film up to a depth of 5 μm from the surface layer and the portion up to a depth of 5 μm from the surface layer of the film. Density B in the central part excluding
(g/cm 3 ) satisfies the following formulas (1) to (3) at the same time. 0.5≦A≦1.3 (1) 0.5≦B≦1.3 (2) A−B≦0.5 (3) The present invention will be described in detail below. Polyester as used in the present invention refers to aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, and naphthalene dicarboxylic acid or their esters, ethylene glycol, diethylene glycol, 1,4
- It is a polyester produced by polycondensing glycols such as butanediol and neopentyl glycol. These polyesters are manufactured by directly reacting aromatic dicarboxylic acids and glycols, and
It can also be produced by carrying out a transesterification reaction between an alkyl ester of an aromatic dicarboxylic acid and a glycol, followed by polycondensation, or by polycondensing a diglycol ester of an aromatic dicarboxylic acid. Typical examples of such polyesters include polyethylene terephthalate, polyethylene naphthalate, and polybutylene terephthalate. This polyester may be a homopolymer or may be one copolymerized with a third component.
In any case, in the present invention, polyesters having 70 mol% or more of ethylene terephthalate units and/or ethylene 2,6-naphthalate units and/or butylene terephthalate units are preferred, more preferably 80 mol% or more, particularly preferably 90 mol% or more. It is a polyester having mol% or more. In addition, in the present invention, if the degree of polymerization of the polyester is too low, the mechanical strength will decrease, so the intrinsic viscosity is preferably 0.4 or more, more preferably 0.5 to 0.5.
1.2 Particularly preferably 0.55 to 0.85. Normally, when polyester is made into a film, a polyester containing an appropriate amount of fine inert particles is used to provide slipperiness between the films or between the film and a metal roll, but the polyester used in the present invention contains such fine particles. Preferably, those containing no . This is because the presence of the fine particles may impede control of the color tone and hiding power of the obtained film. However, there is no problem in using polyester containing such inert fine particles as long as it does not interfere with the color tone and degree of hiding required for the resulting film. In the present invention, a specific polymer, that is, a void-forming polymer is blended with the aromatic polyester. The void-forming polymer in the present invention refers to a polymer that is dissolved in the aromatic polyester or immediately subjected to a reaction such as transesterification. It is a thermoplastic polymer that disperses in the form of fine particles in the polyester (sea component) during melt mixing to form island components, and when the sea-island forming sheet is stretched at a temperature higher than the glass transition temperature of the polyester, it forms an island component. Refers to polymers that easily form voids or voids at interfaces due to low compatibility. Examples of such polymers include liquid crystalline polyester and polyphenylene sulfide polypropylene, which have a melt viscosity of 20 to 20% when melted by heating compared to polyester.
It is a polymer with a melting characteristic that crosses between 1000 sec -1 . That is, it is a polymer with shear rate dependence such that at the temperature during melt mixing, the melt viscosity is higher than that of polyester at low shear rates and lower at high shear rates. This is an indispensable characteristic in polyester for finely dispersing the polymer and uniformly forming island components. In the present invention, a void-forming polymer having such characteristics is blended into the aromatic polyester in an amount of 3 to 40% by weight, preferably 5 to 30% by weight, and more preferably 5 to 20% by weight. is within the range of If the blending amount is less than 3% by weight, the amount of microbubbles generated in the film is small and the apparent density of the film cannot be sufficiently reduced, while if it exceeds 40% by weight, the number of bubbles generated is extremely large, which may cause problems during film stretching. This is undesirable because it causes frequent breakage and makes the producers extremely inferior. In the present invention, a void-forming polymer is blended with the above-mentioned aromatic polyester to form a film, but the final objective of the present invention is to contain fine closed cells on the surface and inside of the film to reduce the apparent density. In order to achieve this, it is necessary to stretch an unstretched sheet of such a blend in at least one direction. That is, sufficient closed cells are not yet generated on the surface and inside of a sheet obtained by simply extrusion molding such a compound, and numerous closed cells effective in reducing the apparent density are formed only after the stretching process. That is,
By stretching, voids are forcibly formed around the finely dispersed void-forming polymer in the form of fine particles as an island component in the polyester (sea component). The stretching conditions themselves are not special, but the stretching is carried out at a temperature higher than the glass transition point of polyester. This is not preferred because the polyester having a temperature below the glass transition point cannot be stretched uniformly. More specifically, a mixture of aromatic polyester and void-forming polyester is used as raw material in an extruder.
The mixture is melt-kneaded at a temperature of 250 to 320°C, extruded into slits through a die, and cooled to a temperature of about 70°C or less to form a substantially amorphous sheet. Next, the sheet is stretched in the longitudinal and/or transverse directions at a temperature equal to or higher than the glass transition point of the aromatic polyester to an area magnification of 4 times or more, preferably 9 times or more, and further heat treated at 120 to 250°C. do. There are no particular limitations on the method of blending the void-forming polymer; for example, polyester chips and void-forming polymer chips may be mixed in advance and then fed into the extruder hopper. A method of quantitatively feeding polyester chips and void-forming polymer chips is preferably adopted because it is simple and causes less unevenness in blending. In the present invention, basically, by using an aromatic polyester and a void-forming polymer, the film has an apparent density of 0.5 to 1.3 g/cm 3 and a hiding degree of 0.2.
Although the film described above can be obtained, third components such as other additives may be added as long as the above physical properties are satisfied. As such third component,
Examples include antioxidants, antistatic agents, ultraviolet absorbers, pigments, dyes, lubricants, matting agents, optical brighteners, etc., and they can be added in the required amount by an appropriate method as needed. In this way, a film with an apparent density of 0.5 to 1.3 g/cm 3 and a hiding degree of 0.2 or more, which is the object of the present invention, is obtained. Apparent density A
is 0.5 to 1.3 g/ cm3 , and the apparent density B of the central part excluding the part from the surface layer to a depth of 5 μm is 0.5 to 1.3.
g/ cm3 , and the apparent density difference between A and B is
It is necessary that it is 0.5 g/cm 3 or less, preferably 0 to 0.3 g/cm 3 , and more preferably 0 to 0.2 g/cm 3 , and these conditions must be satisfied at the same time. That is, if A and B are less than 0.5 g/cm 3 , the mechanical strength of the film will be significantly reduced, which is undesirable, while if it exceeds 1.3 g/cm 3 , it will not be effective in suppressing sagging due to the film's own weight. Undesirable. Furthermore, if the difference in apparent density between A and B exceeds 0.5 g/cm 3 , the surface roughness of the film surface will become extremely large due to the phenomenon described below, forming undulating surface irregularities and impairing the flatness of the film. This is not desirable as it becomes extremely inferior. On the other hand, there is no problem even if the difference between A and B is less than 0, that is, B is larger than A, but in reality, it is difficult to produce such a film. Now, the feature of the present invention is that it finally obtains a polyester film having a uniform foam structure with little difference in apparent density between the surface layer and the center of the film, that is, no difference in the amount of fine bubbles contained. However, in order to produce such a film, the extrusion conditions are important when blending a void-forming polymer with an aromatic polyester and melt-extruding it to form a substantially amorphous sheet. That is, when the molten polymer passes between the lips of the slit-shaped die, the shear rate γ is usually controlled to 200 sec -1 or less, preferably 5 to 100 sec -1 , and the draft from the die lip exit to the point where the molten polymer contacts the cooling drum is controlled. The ratio is usually controlled between 1 and 20. Also, γ〓
The value obtained by multiplying the square of the draft ratio by the draft ratio is normally controlled to be 80,000 or less, preferably 40,000 or less. γ〓 is
If an amorphous sheet is obtained under conditions where the temperature exceeds 200 sec -1 , the draft ratio exceeds 20, or the value obtained by multiplying the square of γ by the draft ratio exceeds 80,000, an island component exists in the sheet. Since the void-forming polymer exists in the surface layer in the form of elongated fibers, when the sheet is then stretched in at least one direction, voids can no longer be formed, which only hinders the reduction of the film's apparent density. Alternatively, a portion of the fibrous polymer protrudes onto the film surface, deteriorating the surface properties. Further, even if the fibrous polymer does not protrude from the surface of the film, the presence of the fibrous polymer in the surface layer induces uneven stretching, resulting in a rough surface of the film and extremely deteriorating the flatness. Furthermore, the presence of the fibrous polymer causes frequent breakage during transverse stretching in a tenter, resulting in extremely low productivity. The thinner the film to be obtained, the greater the effect of this problem, and the extrusion molding conditions are such that the polymer, which is finely dispersed in the amorphous sheet, exists in a uniform shape from the surface layer to the center. It is an important point in the present invention to employ this. Although the film of the present invention is obtained in this manner, various surface treatments may be carried out to improve the surface properties of the film, such as adhesiveness and antistatic properties. Examples of surface treatments include primer treatment, corona treatment, plasma treatment, solvent treatment,
Examples include ultraviolet treatment and sandblasting treatment, which can be applied to one or both sides of the film of the present invention at an appropriate time and in the required amount. <Example> The present invention will be specifically explained below with reference to Examples.
The present invention is not limited to the following examples unless it exceeds the gist thereof. Measurement and evaluation of various physical properties in the present invention were performed by the following methods. (1) Film apparent density (g/cm 3 ) Five points were sampled from any part of the film, the weight per unit volume of each sample was determined, and the average value was taken as the film apparent density value. Next, both sides of the film were shaved to a thickness of 5 μm each using a microtome, and the weight per unit volume of the sample was determined, and the density of the central portion was determined as B. The density A of the surface layer portion was calculated from the density of the entire film and the density B of the central portion. (2) Hiding degree Transmission density in visual light was measured using a Macbeth densitometer model TR-927. Measurements were made at three points, and the average value was taken as the mildness value. The larger this value is, the higher the hiding power is. (3) Surface roughness Ra (μm) Measured using a surface roughness measuring instrument SE-3F model manufactured by Kosaka Institute Co., Ltd. according to the method of JISB-0601-1976. The detailed conditions were a stylus diameter of 2 μm, a stylus pressure of 30 mg, a cut-off value of 0.8 mm and 2.5 mm, and the number of measurements was 12 each.
The average value of 10 times excluding the maximum and minimum values was taken as center line average roughness Ra 0.8 and Ra 2.5 value. (4) Evaluation of average appearance The surface condition of the film was visually observed and evaluated as × if the surface had roughness and clearly poor flatness, and 〇 if it was hardly observed. (5) Evaluation of film formability When an amorphous sheet is stretched in the longitudinal direction and then laterally stretched in a tenter, the state of breakage of the film is observed, and it is found that the film often breaks at the stretched part and other areas, which clearly indicates poor productivity. Items were evaluated as ×, and items with almost no breakage and good productivity were evaluated as ○. Example 1 Liquid crystal polyester a was added to a polyethylene terephthalate chip with an intrinsic viscosity (hereinafter abbreviated as [η]) of 0.66.
[Terephthalic acid/isophthalic acid/paraoxybenzoic acid/ethylene glycol polymer; Melt viscosity (hereinafter abbreviated as η) at 290°C is 5000 poise at a shear rate (abbreviated as 下下γ〓) of 50sec -1 , γ〓1000sec - 1
The uniformly mixed raw materials containing 30 wt . An amorphous sheet with a thickness of about 370 μm was obtained by extruding it into a sheet on a cooling drum at ℃. Next, the sheet is stretched 3 times in the longitudinal direction and 3 times in the transverse direction, and heat-treated at 220°C for 5 seconds to finalize the film thickness.
A biaxially stretched film having a diameter of 75 μm, an apparent density of 076 g/cm 3 and a degree of opacity of 0.55 was obtained. There was almost no breakage during film formation, and productivity was good. The density of the surface layer of this film is 0.77 g/cm 3 , and the density of the central portion is 0.76 g/cm 3 , and the Ra 0.8 of the film surface is 0.29 μm, and the Ra 2.5 is 0.76 g/cm 3 .
was 0.62 μm, and no roughness was observed even by visual observation, indicating good flatness. Example 2 Instead of liquid crystal polyester a used in Example 1, liquid crystal polyester b with different melting properties (η at 290°C is 10000 poise under γ 50 sec -1 , γ 1000 sec -1
Same as Example 1 except that 15% by weight of 2000 poise polymer) was blended, and an amorphous sheet of about 330 μm was formed under the conditions of γ = 100 sec -1 and draft ratio of 3 during melt extrusion molding. A film was made in the same way, and the final film thickness was 50μm and the apparent density was 1.02g/
A biaxially stretched film was obtained with a thickness of cm 3 and a degree of hiding of 0.42. Similar to Example 1, there was almost no breakage during film formation. The density of the surface layer of the obtained film was 1.06 g/cm 3 and the density of the central portion was 1.01 g/cm 3 , and there was almost no difference in density between the two, and the flatness of the film surface was Ra 0.8 0.25 μm.
It was good with Ra 2.5 0.58 μm. Example 3 Polyphenylene sulfide (η at 290°C) was used instead of the liquid crystal polyester a used in Example 1.
is 4000 poise under γ = 50 sec -1 . 15% by weight of a polymer exhibiting 800 poise under γ = 1000 sec -1 is blended, and γ = 150 sec -1 during melt extrusion and the draft ratio is 2. The final thickness was 50 μm and the apparent density was obtained in the same manner as in Example 1 except that the amorphous sheet was approximately 355 μm thick.
A biaxially stretched film with a hiding degree of 0.43 of 1.10 g/cm 3 was obtained with almost no breakage. The density of the surface layer of such a film is 1.18 g/cm 3 ,
The density of the central part is 1.08g/ cm3 , and the density of the surface is 1.08g/cm3.
Ra 0.8 was 0.26 μm, Ra 2.5 was 0.68 μm, and although there was a slight density difference, good flatness was shown. Comparative Example 1 The compound used in Example 1 was not used at all, and the γ value during melt extrusion molding was 125 sec -1 and the draft ratio was 1.5.
Example 1 except that the amorphous sheet is approximately 680 μm thick.
Finally, the thickness is 75μm and the apparent density is 1.4.
A biaxially stretched film with a density of g/cm 3 and a degree of hiding of 0.07 was obtained.
As for the physical properties of the obtained film, as shown in Table 1 below, there was no problem with the difference in density between the surface layer and the inner layer and the surface properties, but it was a transparent film with no hiding properties at all. Comparative Example 2 Example except that 15% by weight of the liquid crystal polyester a used in Example 1 was blended, γ = 250 sec -1 during melt extrusion molding, draft ratio was 1, and an amorphous sheet with a thickness of about 705 μm was made. In the same manner as in Example 1, a biaxially stretched film having a film thickness of 150 μm and an apparent density of 0.73 g/cm 3 and a hiding degree of 0.62 was finally obtained. During film formation, breakage sometimes occurred, and productivity was slightly inferior. The surface density of the obtained film was 1.30 g/cm 3 and the center density was
The difference in density between the two is 0.69g/cm 3 and 0.61g/cm 3 .As a result, the surface of the film is 0.51μm at Ra 0.8 , but it is extremely large at 5.2μm at Ra 2.5 , resulting in inferior flatness. It was hot. In addition, visual observation also revealed that the surface had a noticeable rough feel. Comparative Example 3 Using the same raw materials as in Example 3, γ = 200 sec -1 during melt extrusion molding, draft ratio 3, and about 230 μm.
The final film thickness was 38 μm and the apparent density was
A biaxially stretched film with a weight of 1.12 g/cm 3 and a degree of hiding of 0.31 was obtained. The film often broke during film formation, resulting in poor productivity. The central density of the obtained film was 1.0 g/cm 3 , but the surface density was as high as 1.41 g/cm 3 , and the film surface had poor flatness, with Ra 0.8 of 0.37 μm and Ra 2.5 of 4.37 μm. It was hot. Visual observation also showed an extremely poor appearance similar to Comparative Example 2. Comparative Example 4 Same as Example 1 except that 45% by weight of the liquid crystal polyester b used in Example 2 was blended, γ = 5 sec -1 draft ratio was 30 during melt extrusion molding, and an amorphous sheet with a thickness of about 150 μm was made. A film was formed in the same manner, but the final biaxially stretched film could not be obtained due to frequent breakage during film formation. The film physical properties and film formability evaluation results of Examples 1 to 3 and Comparative Examples 1 to 4 described above are summarized in Table 1 below.

【表】【table】

【表】 ・
*2 高化式フロテスターにより290℃におけるr=5
0及び1000時の溶融粘度値(単位;ポイズ)
〈発明の効果〉 以上詳述したように、本発明の微細気泡含有ポ
リエステルフイルムは、微細な独立気泡を無数に
含有せしめてフイルム見掛け密度を低減し、隠蔽
性を付与したことから、フイルム自重によるタル
ミの経目的変化を極めて遅延できる。 また、フイルムスリツト性も改良されフイルム
加工時の生産性を向上せしめたばかでなく、フイ
ルムエツジによる切傷事故も漸減した。更にはフ
イルムの表層部と中央部の密度差を少なくするこ
とによりフイルム平面性は極めて良化し、フイル
ム品質の著しい向上を達成した。
【table】 ·
*2 r = 5 at 290℃ using Koka type float tester
Melt viscosity value at 0 and 1000 (unit: poise)
<Effects of the Invention> As detailed above, the polyester film containing microcells of the present invention contains countless fine closed cells to reduce the film's apparent density and impart hiding properties. It is possible to significantly delay the change in talumi over time. In addition, film slitting properties have been improved, which not only improves productivity during film processing, but also reduces accidents caused by film edges. Furthermore, by reducing the difference in density between the surface layer and the center of the film, the flatness of the film was significantly improved, resulting in a significant improvement in film quality.

Claims (1)

【特許請求の範囲】 1 ボイド形成性ポリマーとして、加熱溶融時の
溶融粘度がポリエステルに対し、剪段速度20〜
1000sec-1の範囲で交差する溶融特性を有する液
晶性ポリエステルまたはポリフエニレンサルフア
イドを3〜40重量%含有し、少なくとも一軸方向
に延伸してなるフイルムであつて、該フイルムの
表層から5μm深さまでの部分における密度A
(g/cm3)と表層から5μm深さまでの部分を除く
中央部分における密度B(g/cm3)が下記式(1)〜
(3)を同時に満足することを特徴とする微細気泡含
有ポリエステルフイルム。 0.5≦A≦1.3 ……(1) 0.5≦B≦1.3 ……(2) A−B≦0.5 ……(3)
[Claims] 1. As a void-forming polymer, the melt viscosity when melted by heating is higher than that of polyester at a shearing rate of 20~
A film containing 3 to 40% by weight of liquid crystalline polyester or polyphenylene sulfide having melting characteristics that intersect in the range of 1000 sec -1 and stretched in at least one axis, the film being 5 μm deep from the surface layer of the film. Density A in the part between
(g/cm 3 ) and the density B (g/cm 3 ) in the central part excluding the part from the surface layer to a depth of 5 μm is calculated by the following formula (1) ~
A polyester film containing microcells, which satisfies (3) at the same time. 0.5≦A≦1.3 …(1) 0.5≦B≦1.3 …(2) A−B≦0.5 …(3)
JP15649588A 1988-06-24 1988-06-24 Polyester film containing fine cell Granted JPH026540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15649588A JPH026540A (en) 1988-06-24 1988-06-24 Polyester film containing fine cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15649588A JPH026540A (en) 1988-06-24 1988-06-24 Polyester film containing fine cell

Publications (2)

Publication Number Publication Date
JPH026540A JPH026540A (en) 1990-01-10
JPH0577695B2 true JPH0577695B2 (en) 1993-10-27

Family

ID=15629002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15649588A Granted JPH026540A (en) 1988-06-24 1988-06-24 Polyester film containing fine cell

Country Status (1)

Country Link
JP (1) JPH026540A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0774283B2 (en) * 1991-01-30 1995-08-09 東洋紡績株式会社 Cavity-containing polyester film
WO2020138571A1 (en) * 2018-12-28 2020-07-02 주식회사 휴비스 Foam sheet comprising skin layer, method for manufacturing same, and food container comprising same

Also Published As

Publication number Publication date
JPH026540A (en) 1990-01-10

Similar Documents

Publication Publication Date Title
KR100717092B1 (en) Polyester film composite, light diffuser plate, and utilization thereof
JPS63193938A (en) Polyester film containing fine bubble
JP5399894B2 (en) Aliphatic polyester film
JP5191898B2 (en) Thermoplastic resin composition foam sheet and method for producing the same
JPWO2005123385A1 (en) Laminated film for reflector
JPS63168441A (en) Micro-cellular polyester film
JPH02147641A (en) Microcellular polyester film
JP2707691B2 (en) Polyester film containing fine bubbles
JPH0577695B2 (en)
JP4678662B2 (en) Laminated polyester film
KR101450840B1 (en) White porous polyester film and preparing method therefof
JP2008088209A (en) Polyester resin composition foam sheet and method for producing the same
JP2002037898A (en) Polyester film
JP5464996B2 (en) Light reflector and surface light source device
JP2666449B2 (en) White polyester film
JPS63235338A (en) White polyethylene terephthalate film
JP2908051B2 (en) Polyester film containing microvoids
KR100256557B1 (en) Method for preparing polypropylene film
KR0151808B1 (en) Polymer film
KR960015625B1 (en) Polyester film
JPH01230641A (en) Biaxially oriented polyester film
KR100252828B1 (en) Process for the preparation of coextruded polypropylene film having low weight and excellent opaqueness
KR19990052884A (en) Paper Substitute White Porous Polymer Film
JPH0216130A (en) Microcellular polyester film
JP2707691C (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees