JPH0577478B2 - - Google Patents

Info

Publication number
JPH0577478B2
JPH0577478B2 JP12483090A JP12483090A JPH0577478B2 JP H0577478 B2 JPH0577478 B2 JP H0577478B2 JP 12483090 A JP12483090 A JP 12483090A JP 12483090 A JP12483090 A JP 12483090A JP H0577478 B2 JPH0577478 B2 JP H0577478B2
Authority
JP
Japan
Prior art keywords
column
evaporation
section
condensation
waste liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12483090A
Other languages
Japanese (ja)
Other versions
JPH0418975A (en
Inventor
Masayuki Kurematsu
Nobutaka Goshima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Konica Minolta Inc
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc, Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Konica Minolta Inc
Priority to JP12483090A priority Critical patent/JPH0418975A/en
Priority to EP19910107861 priority patent/EP0457303B1/en
Priority to DE1991604545 priority patent/DE69104545T2/en
Priority to DE1991107861 priority patent/DE457303T1/en
Publication of JPH0418975A publication Critical patent/JPH0418975A/en
Publication of JPH0577478B2 publication Critical patent/JPH0577478B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Photographic Processing Devices Using Wet Methods (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は廃液の蒸発濃縮装置に関し、詳しくは
構造が簡単でコンパクトで濃縮効率が向上した例
えば写真処理廃液の蒸発濃縮装置に関する。 〔発明の背景〕 一般に、ハロゲン化銀写真感光材料の写真処理
は、黒白感光材料の場合には、現像、定着、水洗
等、カラー感光材料の場合には発色現像、漂白定
着(又は漂白、定着)、水洗、安定化等の機能の
1つ又は2つ以上を有する処理液を用いた工程を
組合わせて行なわれている。 そして、多量の感光材料を処理する写真処理に
おいては、処理によつて消費された成分を補充し
一方、処理によつて処理液中に溶出或は蒸発によ
つて濃厚化する成分(例えば現像液における臭化
物イオン、定着液における銀錯塩のような)を除
去して処理液成分を一定に保つことによつて処理
液の性能を一定に維持する手段が採られており、
上記補充のために補充液が処理液に補充され、写
真処理における濃厚化成分の除去のために処理液
の一部が廃棄されている。 近年、補充液は水洗の補充液である水洗水を含
めて公害上や経済的理由から補充の量を大幅に減
少させたシステムに変わりつつあるが、写真処理
廃液は自動現像機の処理槽から廃液管によつて導
かれ、水洗水の廃液や自動現像機の冷却水等で稀
釈されて下水道等に廃棄されていた。 しかしながら、近年の公害規制の強化により、
水洗水や冷却水の下水道や河川への廃棄は可能で
あるが、これら以外の写真処理液[例えば、現像
液、定着液、発色現像液、漂白定着液(又は漂白
液、定着液)、安定液等]の廃棄は、実質的に不
可能となつている。このため、各写真処理業者は
廃液を専門の廃液処理業者に回収料金を払つて回
収してもらつたり公害処理設備を設置したりして
いる。しかしながら、廃液処理業者に委託する方
法は、廃液を貯留しておくのにかなりのスペース
が必要となるし、またコスト的にも極めて高価で
あり、さらに公害処理設備は初期投資(イニシヤ
ルコスト)が極めて大きく、整備するのにかなり
広大な場所を必要とする等の欠点を有している。 さらに、具体的には、写真処理廃液の公害負荷
を低減させる公害処理方法としては、活性汚泥法
(例えば、特公昭51−12943号及び同昭51−7952号
等)、蒸発法(特開昭49−89437号及び同56−
33996号等)、電解酸化法(特開昭48−84462号、
同49−119458号、特公昭53−43478号、特開昭49
−119457号等)、イオン交換法(特公昭51−37704
号、特開昭53−383号、特公昭53−43271号等)、
逆浸透法(特開昭50−22463号等)、化学的処理法
(特開昭49−64257号、特公昭57−37396号、特開
昭53−12152号、同49−58833号、同53−63763号、
特公昭57−37395号等)等が知られているが、こ
れらは未だ充分ではない。 一方、水資源面からの制約、給排水コストの上
昇、自動現像機設備における簡易さと、自動現像
機周辺の作業環境上の点等から、近年、水洗に変
わる安定化処理を用い、自動現像機外に水洗の給
排水のための配管を要しない自動現像機(いわゆ
る無水洗自動現像機)による写真処理が普及しつ
つある。このような処理では処理液を温度コント
ロールするための冷却水も省略されたものが望ま
れている。このような実質的に水洗水や冷却水を
用いない写真処理では自動現像機からの写真処理
廃液がある場合と比べて水によつて稀釈されない
ためその公害負荷が極めて大きく一方において廃
液量が少ない特徴がある。 従つて、この廃液量が少ないことにより、給廃
液用の機外の配管を省略でき、それにより従来の
自動現像機の欠点と考えられる配管を設置するた
めに設置後は移動が困難であり、足下スペースが
狭く、設置時の配管工事に多大の費用を要し、温
水供給圧のエネルギー費を要する等の欠点が解消
され、オフイスマシンとして使用できるまでコン
パクト化、簡易化が達成されるという極めて大き
い利点が発揮される。 しかしながら、この反面、その廃液は極めて高
い公害負荷を有しており、河川はもとより下水道
にさえ、その公害規制に照らしてその廃液を捨て
うることは全く不可能となつてきている。さらに
このような写真処理(多量の流水を用いて、水洗
を行わない処理)の廃液量は少ないとはいえ、例
えば比較的小規模なカラー処理ラボでも、1日に
10程度となる。 従つて、一般には廃液回収業者によつて回収さ
れ、二次及び三次処理され無害化されているが、
回収費の高騰により廃液引き取り価格は年々高く
なるばかりでなく、ミニラボ等では回収効率は悪
いため、なかなか回収に来てもらうことができ
ず、廃液が店に充満する等の問題を生じている。 一方、これらの問題を解決するために写真処理
廃液の処理をミニラボ等でも容易に行えることを
目的として、写真処理廃液を加熱して水分を蒸発
乾固ないし固化することが研究されており、例え
ば実開昭60−70841号等に示されている。発明者
等の研究では写真処理廃液を蒸発処理した場合、
亜硫酸ガス、硫化水素、アンモニアガス等の有害
ないし極めて悪臭性のガスが発生する。これは写
真処理液の定着液や漂白定着液としてよく用いら
れるチオ硫酸アンモニウムや亜硫酸塩(アンモニ
ウム塩、ナトリウム塩又はカリウム塩)が高温の
ため分解することによつて発生することがわかつ
た。更に蒸発処理時には写真処理廃液中の水分等
が蒸気となつて気体化することにより体積が膨張
し、蒸発釜中の圧力が増大する。このためこの圧
力によつて蒸発処理装置から前記有害ないし悪臭
性のガスが装置外部へもれ出してしまい、作業環
境上極めて好ましくないことが起こる。 そこで、これらを解決するために実開昭60−
70841号には蒸発処理装置の排気管部に活性炭等
の排ガス処理部を設ける方法が開示されている。
しかし、この方法は写真処理廃液中の多量の水分
による水蒸気により、排ガス処理部で結露又は凝
結し、ガス吸収処理剤を水分が覆い、ガス吸収能
力を瞬時に失わせてしまう重大な欠点を有してお
り、未だ実用には供し得ないものであつた。 これらの問題点を解決するために、この出願人
等は写真処理廃液を蒸発処理するに際し、蒸発に
よつて生じる蒸気を凝縮させる冷却凝縮手段を設
け、さらに凝縮によつて生じる凝縮水を処理する
とともに非凝縮成分についても処理して外部へ放
出する写真処理廃液の処理方法及び装置について
先に提案した。 しかしながら、上記提案によれば、次のような
問題点があることを見い出した。すなわち、蒸発
処理によつて生じる蒸気は冷却凝縮手段で凝縮さ
れるが、冷却凝縮効率が悪いと、凝縮されないで
装置外部へ放出される蒸気の比率が高くなり、た
とえ活性炭で処理したとしても、悪臭で有害なガ
スが装置外部へ放出される比率も高くなる。さら
に冷却凝縮手段によつて凝縮された凝縮水も、た
とえ活性炭で処理したとしても、廃棄する時、臭
つたり、公害負荷が高くそのまま下水等に排出で
きない場合もある。 さらに、ミニラボでは店のスペースが極めて限
られており、写真処理液を処理することにより発
生する悪臭が特に問題となるばかりでなく、廃液
処理装置自体の設置スペースが問題となる。ま
た、装置の値段やランニングコストも重要な問題
である。従つて、写真処理廃液を、悪臭で有害な
ガスを発生することなく処理できるコンパクトで
安価でかつランニングコストが低く安定した処理
装置が要望されている。 このような産業の要望に答えるために本出願人
は特開昭63−151301号の写真処理廃液の蒸発濃縮
処理装置において写真処理廃液を減圧下でヒート
ポンプを用いて蒸発濃縮し発生する臭気を極力避
ける提案を行なつた。しかし、その装置において
は蒸発濃縮カラムから出る蒸発蒸気を別に設けた
冷却カラムに導き凝縮させており、カラムが2つ
並び場所をとることになり装置が大型化し好まし
くない。 一方、写真処理廃液以外の廃液の蒸発濃縮装置
については、特公昭56−36991号公報、特公昭57
−28281号公報およびドイツ特許DE3404248A1に
開示されている。 特公昭56−36991号公報にはヒートポンプを用
いて、大気圧以上の圧力・高温(105℃)で原水
を蒸発させた後、凝縮させる蒸発濃縮装置が記載
され、同公報の第2図には、外側に凝縮室、内側
に濃縮室を有する2重カラムの構造が開示されて
いる。 しかし、この装置は高温、高圧下で行うもので
あるので、蒸発濃縮を行なう原液に対して濃縮前
および濃縮後に温度を制御するために熱交換器を
複数設ける必要があり、構造が複雑になる欠点が
ある。 また特公昭57−28281号公報には、ヒートポン
プを用いて、減圧下で原水を蒸発させた後、凝縮
させる蒸発濃縮装置が記載され、同公報の図面に
は、凝縮器と濃縮器とが別体として設けられ、そ
れぞれが連通しており、減圧手段(真空ポンプ)
によつて凝縮器及び濃縮器を減圧する構成が開示
されている。さらにドイツ特許DE3404248A1号
明細書には、ヒートポンプを用いて、減圧下で原
水を蒸発させた後、凝縮させる蒸発濃縮装置であ
る。同明細書に添付された図面には、凝縮器と濃
縮器とが並列して設けられ、それぞれの上部が連
通しており、減圧手段(真空ポンプ)によつて、
凝縮器および濃縮器が減圧される構成が開示され
ている。なお、ヒートポンプは液中に配設され、
凝縮器および濃縮器の側面が閉じられた構成であ
る。 しかし、特公昭57−28281号公報およびドイツ
特許DE3404248A1号明細書には、減圧下で蒸発
濃縮する記載があるが、凝縮器と濃縮器が別体に
設けられるか、あるいは並列に設けられるため、
特開昭63−151301号公報に記載の技術と同様に場
所をとり、装置が大型化し、好ましくないという
問題がある。 〔発明の目的〕 そこで、本発明の目的は、構造が簡単でかつコ
ンパクトであり、しかも濃縮効率が向上した蒸発
濃縮装置を提供することにあり、また廃液が写真
処理廃液である場合には臭気の発生も抑制できる
蒸発濃縮装置を提供することにある。 〔課題を解決するための手段〕 この目的は次の(a),(b),(c),(d)の手段のいずれ
か1つによつて達成される。 (a) 熱媒体を加圧する加圧部と、前記熱媒体の放
熱を利用した加熱部と、前記熱媒体を膨張させ
る膨張部と、前記熱媒体の吸熱を利用した冷却
部とを備え、かつ、前記熱媒体が前記加圧部、
前記加熱部、前記膨張部および前記冷却部を閉
状態で順次循環するヒートポンプと、 廃液を貯留し、前記加熱部を利用して前記廃
液を加熱し、前記廃液の水分を蒸発させること
により、前記廃液を濃縮する蒸発カラムと、 前記蒸発カラムと上方にて連通され、かつ前
記蒸発カラムの内側あるいは外側に同心状に配
設されると共に、前記冷却部を利用して前記蒸
発カラムで蒸発した蒸気を冷却し、凝縮する凝
縮カラムと、 前記蒸発カラム内および前記凝縮カラム内を
減圧するために、前記凝縮カラム内を減圧する
と共に、前記凝縮カラムで凝縮された水を回収
するエジエクターと、を有し、 前記蒸発カラムまたは前記凝縮カラムのうち
外側に配設されたカラムの前記加熱部あるいは
前記冷却部を、内側に配設されたカラムの外壁
に沿つて螺旋状に配設することを特徴とする蒸
発濃縮装置。 (b) 前記蒸発カラムを内側に配設し、前記凝縮カ
ラムを外側に配設することを特徴とするa項記
載の蒸発濃縮装置。 (c) 前記エジユクターによる、前記凝縮カラムか
ら凝縮された水の回収と前記凝縮カラム内およ
び蒸発カラム内の減圧とを、前記凝縮カラムの
底部から行なうことを特徴とするa項またはb
項記載の蒸発濃縮装置。 (d) 前記冷却部の表面積が前記加熱部の表面積よ
りも大きいことを特徴とするa項、b項または
c項記載の蒸発濃縮装置。 〔実施例〕 本発明の蒸発濃縮装置の実施例を第1図の概要
図を用いて説明する。 減圧に耐える蒸発カラム1内に、例えば写真処
理廃液を注入貯留し、該カラム1とほぼ同心の内
側に凝縮カラム1Aを設け、両カラムを上部で連
通しておき、両カラム共通にエジクター7を接続
して、減圧する如くした。大気圧より低い減圧下
では、そのものの沸騰点以下で沸騰が起ることは
知られており、この実施例では、ガス発生の起こ
りにくい低温での蒸発をこの減圧下で行なうもの
である。 次に該カラム1内には、3次元配置とした加熱
部、例えば加熱手段2を設け、この加熱手段2
は、その下部を上記写真処理廃液の貯留部4に浸
し、該写真処理廃液を加熱する如くし、その上部
には、該写真処理廃液の貯留部4から突出して空
中にあり、この部分に、該写真処理廃液を、廃液
貯槽(容器)31から電磁バルブ6Aによる液給
送手段3をもつて、カラム1内に給送し、減圧下
での加熱蒸発に加え、散布滴下過程での加熱蒸発
を繰り返し、効率よく急速に濃縮化を行なうもの
である。 ここで蒸発した水分は、この蒸発カラム1内の
上部に設けられた連通部に通じている凝縮カラム
1A内の凝縮水の案内部をも形成している螺旋パ
イプ状の冷却部、例えば冷却手段8Aと該カラム
1Aの底部の水受け8Cを設けることによつて、
コンパクト化と、両カラム内の減圧安定化のため
に寄与する如くした。 一方、上記の蒸発濃縮を繰り返して、高濃度に
固定化した成分はこの蒸発凝縮カラム1の下部に
連結可能な容器12で受け取り回収する。 この実施例において加熱手段2を液中と空中と
にまたがる3次元配置とした理由は液中部分はお
もに写真処理廃液の予熱に当たり空中の部分はこ
れに散布滴下する写真処理廃液との接触面積を大
きくする効果があり、ガス発生の無い低温蒸発を
均一に効率よく行なうのに効果がある。 さらにこの蒸発カラム1と同心的に内側に設け
られた凝縮カラム1Aには冷却手段8Aを設け
て、連通部を通じて入つて来る水蒸気を捕らえて
冷却凝縮して、水滴として回収する如くした。こ
れは発生蒸気によつて、この両カラム内の減圧バ
ランスが崩れ、エジエクター7で規定の減圧状態
を維持するために多大の負荷がかかるのを軽減す
る効果がある。即ち、発生蒸気により両カラム内
の圧力が上昇するところをすぐさま冷却凝縮して
圧力上昇を抑制するのである。 この構成において、加熱手段2の上記液中部分
を当該減圧蒸発に最適な温度とすると、この加熱
手段2と一体で上記空中にある部分も同じ温度で
管理され、伝熱効果の相違で、空中にある部分の
実質的な表面温度は高くなり、これに、写真処理
廃液が触れると急加熱による不快ガスの発生もあ
るので、上方から供給散布する写真処理廃液の量
を加減することが好ましい。 さらに上記加熱手段2及び冷却手段8Aは本発
明ではヒートポンプを使用した。そしてこの冷却
手段8Aの表面に水蒸気が触れて凝縮し、水滴と
なつて、この冷却手段8Aを伝わつて水回収容器
9に集められる。加熱手段2の表面温度は好まし
くは100℃以下で、写真処理廃液の場合の臭気ガ
ス発生を防止するには特に、20℃〜60℃が最も好
ましい。 上記加熱手段2にヒートポンプの加熱部を用
い、上記冷却手段8Aおよび水回収容器9内に設
けた冷却手段8Bにヒートポンプの冷却部を使用
してある。 そして加熱手段2を構成するヒートポンプの凝
縮機をチヤージさせるチヤージパイプ25及び該
加熱手段2の後に配置した膨張部の役目をするキ
ヤピラリーチユーブ26や、冷却手段8Aのアウ
ト側に配設される加圧部を構成する冷媒圧縮用の
コンプレツサー21およびその加圧圧縮されて高
温にされた熱媒体(冷媒)を適切な設置温度にま
で下げるために空冷凝縮させる空冷凝縮器22、
およびそのフアン24とフアンモータ23は蒸発
カラム1の更に外に置かれている。しかしこれ等
外置き部材の占めるスペースはそれ程大きくはな
く、設置面積の大半は両カラムによつて占められ
る。 前述の適切な設定温度は臭気ガスの発生が抑え
られしかも蒸発濃縮効率が著しく低下しないため
の温度であり、これが前述のように60℃以下20℃
以上にしておくことが効果的であることを本出願
人は実験的に確認した。 さて、熱媒体(冷媒)は、加熱手段2の加熱部
を通りキヤピラリーチユーブ26から、水回収容
器9内の冷却手段8Bに接続され、更にその延長
が冷却手段8A、即ち凝縮カラム1A内の冷媒蒸
発器に接続されたパイプ内を通り両カラム外のコ
ンプレツサー21に還るようにしてあり、閉状態
で循環している。 そして、水回収容器9内の冷水は水循環ポンプ
(P−2)33によつてエジエクター7につなげ
られ、凝縮カラム1Aの凝縮液回収口8Cからパ
イプ34で引かれた水を水回収容器9に入れると
共に同時に両カラム内の減圧を行なうようにして
ある。 また、水回収容器9からオーバーフローした水
はパイプ36によつて水槽35に送られる。そし
てこれは下水に排水される。 このようにしてかなり単純なヒートポンプによ
り蒸発蒸気は多くが液化され、わずかが排気口3
6Aから排気されるので、臭気は完全に防止され
るようになる。 なお、廃液の蒸発カラム1内への補給の量と時
期はレベルセンサー(LC)64の検知情報によ
つて行なわれるようにしてある。 本実施例では蒸発カラム1と凝縮カラム1Aを
別々に離して設けることなくほぼ同心に重ねて2
重にしたので場所を大きく占有することがなくな
り装置をかなり小型にしてしまうことが可能にな
つた。これにより小規模ラボに置いてもオンライ
ンで廃液処理を行なうことがそれ程スペースの増
設を求めることなく実現可能になつた。 なお、本実施例では外側が蒸発カラム1であり
内側を凝縮カラム1Aとしたが、第2図、第3
図、第4図、第5図に示すように内側を蒸発カラ
ム、外側を凝縮カラムとすることも可能である。 第5図aはそのような実施例の正面断面図であ
り、第5図bはその上面図、第5図cは第5図a
のX−X断面図である。 設置面は第5図bに示すように横l、縦mの長
さがそれぞれ500mm×300mmの非常に小さな面積で
あり、高さhは第5図aに示す通り950mmであり、
非常にコンパクトで小型の構成になつている。 そして凝縮カラム1Aの冷却部(冷媒パイプ)
8Aを蒸発カラム1の加熱部(冷媒パイプ)2の
外側に配置してあり冷媒パイプ8Aの表面積の大
きさは冷媒パイプ2の表面積の大きさよりも大き
くとつてある。これにより凝縮水の生成が速く、
減圧効率もよく、蒸発濃縮中に蒸発蒸気により減
圧量が減り蒸気圧が上がつていくという現象もな
くなり好ましい。 そして凝縮カラム1Aの冷却部の冷媒パイプの
表面積と蒸発カラム1の加熱部の冷媒パイプの表
面積とをつぎの表のような寸法割合にしてその表
に示すように蒸発濃縮効率を極度に向上させるこ
とに成功した。
[Industrial Application Field] The present invention relates to an evaporative concentration device for waste liquid, and more particularly to an evaporative concentration device for, for example, photographic processing waste liquid, which has a simple structure, is compact, and has improved concentration efficiency. [Background of the Invention] In general, photographic processing of silver halide photographic materials includes development, fixing, washing, etc. in the case of black and white materials, and color development, bleach-fixing (or bleaching, fixing, etc.) in the case of color photographic materials. ), washing with water, stabilization, etc., using a processing liquid having one or more of the following functions. In photographic processing in which a large amount of light-sensitive material is processed, components consumed during processing are replenished, while components that are concentrated by elution or evaporation into the processing solution (for example, developing solution) are replenished. Measures have been taken to maintain the performance of the processing solution at a constant level by removing bromide ions in the fixer and silver complex salts in the fixer to keep the processing solution components constant.
A replenisher is added to the processing solution for the above-mentioned replenishment, and a portion of the processing solution is discarded to remove thickening components in photographic processing. In recent years, systems have been changing to systems in which the amount of replenishment fluid, including washing water, which is used as a replenishment fluid for washing, has been significantly reduced due to pollution and economic reasons, but photographic processing waste fluid is removed from the processing tank of automatic processors. The waste liquid was led through a waste pipe, diluted with waste liquid from washing water, cooling water from automatic processing machines, etc., and then disposed of in sewers, etc. However, due to the tightening of pollution regulations in recent years,
It is possible to dispose of washing water and cooling water into sewers or rivers, but photographic processing solutions other than these [e.g., developer, fixer, color developer, bleach-fixer (or bleach, fixer), stable liquid, etc.] has become virtually impossible to dispose of. For this reason, each photo processing company pays a collection fee to a specialized waste liquid processing company to collect the waste liquid, or installs pollution treatment equipment. However, the method of outsourcing to a waste liquid treatment company requires a considerable amount of space to store the waste liquid, is extremely expensive, and requires an initial investment (initial cost) for pollution treatment equipment. It has drawbacks such as being extremely large and requiring a fairly large area to maintain. Furthermore, specifically, as pollution treatment methods for reducing the pollution load of photographic processing waste liquid, activated sludge method (for example, Japanese Patent Publication No. 51-12943 and Japanese Patent Publication No. 51-7952, etc.), evaporation method (Japanese Patent Publication No. 51-12943 and No. 7952, etc.), No. 49-89437 and No. 56-
33996, etc.), electrolytic oxidation method (JP-A-48-84462, etc.),
No. 49-119458, Special Publication No. 53-43478, Japanese Patent Application Publication No. 1973
-119457, etc.), ion exchange method (Special Publication No. 51-37704)
No., Japanese Patent Publication No. 53-383, Special Publication No. 53-43271, etc.),
Reverse osmosis method (JP-A-50-22463, etc.), chemical treatment method (JP-A-49-64257, JP-A-57-37396, JP-A-53-12152, JP-A-49-58833, JP-A-53) −63763,
Japanese Patent Publication No. 57-37395, etc.) are known, but these are still insufficient. On the other hand, due to constraints from water resources, rising water supply and drainage costs, the simplicity of automatic processor equipment, and the work environment around automatic processors, in recent years, stabilization treatments have been used instead of washing with water, and Photographic processing using automatic developing machines (so-called waterless automatic developing machines) that do not require piping for water supply and drainage is becoming popular. In such processing, it is desired that cooling water for controlling the temperature of the processing liquid can also be omitted. In this type of photographic processing that does not substantially use rinsing water or cooling water, compared to the case where there is photographic processing waste liquid from automatic processors, the pollution load is extremely large because it is not diluted with water, and on the other hand, the amount of waste liquid is small. It has characteristics. Therefore, due to the small amount of waste liquid, it is possible to omit the piping outside the machine for supplying and waste liquid, which is considered to be a disadvantage of conventional automatic processors, which is difficult to move after installation. It eliminates the drawbacks such as the small leg space, the high cost of piping work during installation, and the high energy cost of hot water supply pressure, and is extremely compact and simple enough to be used as an office machine. Great advantages will be realized. However, on the other hand, the waste liquid has an extremely high pollution load, and it has become completely impossible to dispose of the waste liquid not only in rivers but also in sewers in light of pollution regulations. Furthermore, although the amount of waste liquid from this type of photographic processing (processing that uses a large amount of running water and does not involve washing with water) is small, for example, even a relatively small-scale color processing laboratory can produce waste liquid in a day.
It will be about 10. Therefore, it is generally collected by waste liquid collection companies and rendered harmless through secondary and tertiary treatment.
Not only is the price of collecting waste liquid rising year by year due to rising collection costs, but the efficiency of collection at minilabs and other facilities is poor, making it difficult to get people to come and collect the waste, leading to problems such as stores being filled with waste liquid. On the other hand, in order to solve these problems, research has been conducted on heating the photographic processing waste liquid to evaporate the water to dryness or solidify it, with the aim of making it easier to process the photographic processing waste liquid even in minilabs. This is shown in Utility Model Application Publication No. 1987-70841. In the research conducted by the inventors, when photographic processing waste liquid is evaporated,
Harmful or extremely foul-smelling gases such as sulfur dioxide, hydrogen sulfide, and ammonia gas are generated. It has been found that this is caused by the decomposition of ammonium thiosulfate and sulfites (ammonium salt, sodium salt, or potassium salt), which are commonly used as fixing solutions and bleach-fixing solutions in photographic processing solutions, due to high temperatures. Further, during the evaporation process, moisture and the like in the photographic processing waste liquid becomes vapor and gasifies, thereby expanding the volume and increasing the pressure in the evaporation pot. Therefore, due to this pressure, the harmful or malodorous gas leaks out of the evaporation treatment apparatus to the outside of the apparatus, resulting in an extremely unfavorable working environment. Therefore, in order to solve these problems,
No. 70841 discloses a method of providing an exhaust gas treatment section such as activated carbon in the exhaust pipe section of an evaporation treatment device.
However, this method has the serious drawback that water vapor from a large amount of water in the photographic processing waste liquid condenses or condenses in the exhaust gas treatment section, covering the gas absorption processing agent and causing it to instantly lose its gas absorption ability. However, it was not yet possible to put it into practical use. In order to solve these problems, the present applicant et al. installed a cooling condensing means to condense the vapor generated by the evaporation when evaporating photographic processing waste liquid, and further treated the condensed water generated by the condensation. We have previously proposed a method and apparatus for treating photographic processing waste liquid, which also processes non-condensable components and discharges them to the outside. However, it has been discovered that the above proposal has the following problems. In other words, the vapor generated by the evaporation process is condensed by the cooling condensing means, but if the cooling condensation efficiency is poor, a high proportion of the vapor is released outside the device without being condensed, even if treated with activated carbon. The rate at which foul-smelling and harmful gases are released to the outside of the device also increases. Furthermore, even if the condensed water condensed by the cooling condensing means is treated with activated carbon, it may not be able to be discharged directly into the sewer system or the like because of its odor and high pollution load when it is disposed of. Furthermore, the space available in minilabs is extremely limited, and not only is the bad odor generated by processing photographic processing solutions a particular problem, but also the installation space for the waste solution processing equipment itself becomes a problem. Additionally, the price and running cost of the device are also important issues. Therefore, there is a need for a compact, inexpensive, stable processing device with low running costs that can process photographic processing waste liquid without producing foul-smelling and harmful gases. In order to meet the demands of the industry, the present applicant has developed a device for evaporating and concentrating photographic processing waste liquids as disclosed in Japanese Patent Application Laid-Open No. 151301/1983, by evaporating and concentrating photographic processing waste liquids under reduced pressure using a heat pump to minimize the odor generated. I made a suggestion to avoid it. However, in this apparatus, the evaporated vapor emitted from the evaporative concentration column is guided to a separately provided cooling column and condensed, which is undesirable because two columns are arranged side by side and take up space, which increases the size of the apparatus. On the other hand, regarding evaporative concentration devices for waste liquids other than photographic processing waste liquids, Japanese Patent Publication No. 56-36991 and Japanese Patent Publication No. 57
-28281 and German patent DE3404248A1. Japanese Patent Publication No. 56-36991 describes an evaporative concentrator that uses a heat pump to evaporate raw water at a pressure higher than atmospheric pressure and high temperature (105°C) and then condense it. , discloses a double column structure with a condensation chamber on the outside and a concentration chamber on the inside. However, since this equipment operates under high temperature and high pressure, it is necessary to install multiple heat exchangers to control the temperature of the stock solution to be evaporated and concentrated before and after concentration, making the structure complex. There are drawbacks. In addition, Japanese Patent Publication No. 57-28281 describes an evaporative concentrator that uses a heat pump to evaporate raw water under reduced pressure and then condense it. They are provided as a body, each communicates with each other, and there is a pressure reducing means (vacuum pump)
discloses a configuration for reducing pressure in a condenser and concentrator. Further, German Patent DE3404248A1 describes an evaporative concentration device that uses a heat pump to evaporate raw water under reduced pressure and then condense it. In the drawing attached to the same specification, a condenser and a concentrator are provided in parallel, the upper parts of each are in communication, and a pressure reducing means (vacuum pump) is used to
A configuration is disclosed in which the condenser and concentrator are under reduced pressure. In addition, the heat pump is installed in the liquid,
The sides of the condenser and concentrator are closed configurations. However, in Japanese Patent Publication No. 57-28281 and German Patent DE3404248A1, there is a description of evaporation concentration under reduced pressure, but since the condenser and concentrator are installed separately or in parallel,
Similar to the technique described in Japanese Patent Application Laid-Open No. 63-151301, there are problems in that it takes up a lot of space and the device becomes large, which is not desirable. [Object of the Invention] Therefore, an object of the present invention is to provide an evaporative concentration device which has a simple and compact structure and has improved concentration efficiency, and which also reduces odor when the waste liquid is photographic processing waste liquid. An object of the present invention is to provide an evaporation concentration device that can also suppress the occurrence of. [Means for solving the problem] This objective is achieved by any one of the following means (a), (b), (c), and (d). (a) comprising a pressurizing section that pressurizes a heat medium, a heating section that utilizes heat radiation of the heat medium, an expansion section that expands the heat medium, and a cooling section that utilizes heat absorption of the heat medium, and , the heat medium is the pressurizing section,
a heat pump that sequentially circulates the heating section, the expansion section, and the cooling section in a closed state; an evaporation column for concentrating waste liquid; and an evaporation column that communicates with the evaporation column above and is disposed concentrically inside or outside the evaporation column, and that utilizes the cooling section to collect the vapor evaporated in the evaporation column. a condensation column that cools and condenses the water; and an ejector that reduces the pressure in the condensation column and recovers water condensed in the condensation column in order to reduce the pressure in the evaporation column and the condensation column. The heating part or the cooling part of the outer column of the evaporation column or the condensation column is arranged in a spiral along the outer wall of the inner column. Evaporative concentration equipment. (b) The evaporation concentration device according to item a, wherein the evaporation column is disposed inside and the condensation column is disposed outside. (c) Item a or b, characterized in that the ejector recovers the water condensed from the condensation column and reduces the pressure in the condensation column and the evaporation column from the bottom of the condensation column.
Evaporative concentrator as described in section. (d) The evaporation concentration device according to item a, b, or c, wherein the surface area of the cooling part is larger than the surface area of the heating part. [Example] An example of the evaporation concentration apparatus of the present invention will be described using the schematic diagram of FIG. For example, a photographic processing waste liquid is injected and stored in an evaporation column 1 that can withstand reduced pressure, and a condensation column 1A is provided inside the column 1, which is almost concentric with the column 1. Both columns are connected at the top, and an ejector 7 is commonly connected to both columns. I connected it and tried to reduce the pressure. It is known that boiling occurs below the boiling point of the substance under reduced pressure lower than atmospheric pressure, and in this embodiment, evaporation is performed at a low temperature where gas generation is unlikely to occur. Next, in the column 1, a three-dimensionally arranged heating section, for example, a heating means 2, is provided.
The lower part thereof is immersed in the storage part 4 of the photographic processing waste liquid so as to heat the photographic processing waste liquid, and the upper part thereof protrudes from the storage part 4 of the photographic processing waste liquid and is in the air, and in this part, The photographic processing waste liquid is fed into the column 1 from the waste liquid storage tank (container) 31 using the liquid feeding means 3 using the electromagnetic valve 6A, and is subjected to heating evaporation under reduced pressure as well as heating evaporation during the spraying and dropping process. This process is repeated to achieve efficient and rapid concentration. The water evaporated here is stored in a spiral pipe-shaped cooling section, for example, a cooling means, which also forms a guide section for condensed water in the condensation column 1A, which communicates with a communication section provided at the upper part of the evaporation column 1. 8A and a water receiver 8C at the bottom of the column 1A,
This contributes to compactness and stabilization of the vacuum inside both columns. On the other hand, by repeating the above evaporative concentration, the components fixed at a high concentration are received and recovered in a container 12 connectable to the lower part of the evaporative condensation column 1. In this embodiment, the heating means 2 is arranged three-dimensionally in both the liquid and the air. It is effective in uniformly and efficiently performing low-temperature evaporation without gas generation. Furthermore, a cooling means 8A is provided in the condensation column 1A provided concentrically inside the evaporation column 1, so that water vapor entering through the communication portion is captured, cooled and condensed, and collected as water droplets. This has the effect of reducing the great load placed on the ejector 7 to maintain a specified reduced pressure state, which is caused by the generated steam disrupting the vacuum balance in both columns. That is, when the pressure in both columns increases due to generated steam, the pressure is immediately cooled and condensed to suppress the pressure increase. In this configuration, when the above-mentioned submerged part of the heating means 2 is set to the optimum temperature for the reduced-pressure evaporation, the above-mentioned part in the air that is integrated with the heating means 2 is also controlled at the same temperature, and due to the difference in heat transfer effect, the above-mentioned part in the air is controlled at the same temperature. The actual surface temperature of the portion located in the area becomes high, and if the photographic processing waste comes in contact with this, unpleasant gas may be generated due to rapid heating. Therefore, it is preferable to adjust the amount of the photographic processing waste that is supplied and sprayed from above. Further, in the present invention, a heat pump is used as the heating means 2 and the cooling means 8A. The water vapor comes in contact with the surface of the cooling means 8A, condenses, becomes water droplets, and is collected in the water recovery container 9 through the cooling means 8A. The surface temperature of the heating means 2 is preferably 100 DEG C. or less, and most preferably 20 DEG C. to 60 DEG C. in order to prevent the generation of odor gas in the case of photographic processing waste liquid. A heating part of a heat pump is used as the heating means 2, and a cooling part of a heat pump is used as the cooling means 8A and the cooling means 8B provided in the water recovery container 9. A charge pipe 25 for charging the condenser of the heat pump constituting the heating means 2, a capillary reach tube 26 disposed after the heating means 2 and serving as an expansion section, and a pressurization disposed on the outside of the cooling means 8A. a compressor 21 for compressing refrigerant and an air-cooled condenser 22 that air-cools and condenses the heat medium (refrigerant) that has been pressurized and compressed to a high temperature to an appropriate installation temperature;
The fan 24 and fan motor 23 are placed further outside the evaporation column 1. However, the space occupied by these external members is not so large, and most of the installation area is occupied by both columns. The above-mentioned appropriate setting temperature is the temperature that suppresses the generation of odor gas and does not significantly reduce the evaporation concentration efficiency, and as mentioned above, this is a temperature of 60°C or less and 20°C.
The applicant has experimentally confirmed that the above settings are effective. Now, the heat medium (refrigerant) passes through the heating section of the heating means 2 and is connected from the capillary reach tube 26 to the cooling means 8B in the water recovery container 9, and its extension is the cooling means 8A, that is, the condensation column 1A. The refrigerant passes through a pipe connected to the refrigerant evaporator and returns to the compressor 21 outside both columns, and circulates in a closed state. The cold water in the water recovery container 9 is connected to the ejector 7 by a water circulation pump (P-2) 33, and the water drawn through the pipe 34 from the condensate recovery port 8C of the condensation column 1A is transferred to the water recovery container 9. At the same time, the pressure inside both columns is reduced at the same time. Further, water overflowing from the water recovery container 9 is sent to a water tank 35 through a pipe 36. This is then drained into the sewer. In this way, with a fairly simple heat pump, most of the evaporated vapor is liquefied, and only a small amount is left at the exhaust port 3.
Since the air is exhausted from 6A, odor is completely prevented. The amount and timing of replenishment of waste liquid into the evaporation column 1 is determined based on information detected by a level sensor (LC) 64. In this embodiment, the evaporation column 1 and the condensation column 1A are not provided separately but are stacked almost concentrically.
Since it is made heavier, it does not take up much space, making it possible to make the device considerably smaller. This has made it possible to perform online waste liquid treatment even in small-scale laboratories without requiring much additional space. In this example, the outer side is the evaporation column 1 and the inner side is the condensation column 1A.
As shown in FIGS. 4 and 5, it is also possible to use an evaporation column on the inside and a condensation column on the outside. Figure 5a is a front cross-sectional view of such an embodiment, Figure 5b is a top view thereof, and Figure 5c is the same as Figure 5a.
It is a XX sectional view of. As shown in Figure 5b, the installation surface has a very small area of 500mm x 300mm in width L and length m, respectively, and the height h is 950mm as shown in Figure 5a.
It has a very compact and small structure. And the cooling part (refrigerant pipe) of condensation column 1A
8A is arranged outside the heating section (refrigerant pipe) 2 of the evaporation column 1, and the surface area of the refrigerant pipe 8A is set larger than that of the refrigerant pipe 2. This results in faster formation of condensate water.
The efficiency of pressure reduction is also good, and the phenomenon that the amount of pressure reduction decreases due to evaporated steam and the vapor pressure increases during evaporation and concentration is eliminated, which is preferable. Then, the surface area of the refrigerant pipe in the cooling section of the condensing column 1A and the surface area of the refrigerant pipe in the heating section of the evaporation column 1 are set in the dimensional ratio as shown in the following table, and the evaporation concentration efficiency is extremely improved as shown in the table. It was very successful.

【表】 ちなみに比較したものは、蒸発濃縮用と冷却凝
縮用の冷媒パイプを殆ど同寸法にして表面積を同
じにし、両者を2重カラムでなく前者を下部、後
者を上部にしてほぼ同心の2階建式としたもので
ある。上表で外径の単位はmmである。 第3図はヒートポンプによる加熱部の液面より
上の部分の冷媒パイプを2重巻きにしたものであ
り、第4図は加熱の冷媒パイプを全部2重にした
ものである。しかし、これにより該パイプの表面
積を増加させないようにすることが必要であり、
該パイプ径を小さくして蒸発濃縮効率が向上する
ようにした。 また図示はしないが両カラムは同心的に2階建
て構造とし、1階部分を蒸発カラム、2階部分を
凝縮カラムとし、これによつても占有面積を極力
小さくすることが可能になる。但し、蒸発濃縮装
置をあまり上方に高くしたくないことがあり、こ
の場合は、前述のいくつかの実施例のように2重
構造にした方がよい。 〔発明の効果〕 請求項1に記載の発明によれば、蒸発カラムと
凝縮カラムとを同心状に配設してなる構成、即
ち、2重カラムの構成であるので、非常にコンパ
クトな装置が提供できる。 また、エジエクターにより、蒸発カラムおよび
凝縮カラムを減圧し、減圧下で蒸発・濃縮するの
で、系全体(装置)の運転温度が低くて済み、構
造が簡単になり、コンパクトにまとめることがで
きる。 更に減圧下で蒸発濃縮を行なうという構成及び
蒸発カラムと凝縮カラムとの2重カラム構造を組
み合わせることにより、蒸発カラム内で蒸発した
蒸気は、直ちに凝縮カラムに移動し、凝縮カラム
内で凝縮され、従つて、蒸気の流れに伴う圧力損
失を小さくしてヒートポンプの加熱部の温度を低
く抑えることができ、ヒートポンプの成績係数が
大きくなり、濃縮効率が向上するという効果を奏
する。 更にまた、外側に配設されたカラムの加熱部あ
るいは冷却部を、内側に配設されたカラムの外壁
に沿つて螺旋状に配設することにより、必要とさ
れる加熱部あるいは冷却部の表面積を容易に確保
することができ、蒸発濃縮装置自体をコンパクト
にまとめることができるという効果を奏する。 さらに、蒸発カラムおよび凝縮カラムを減圧す
る手段として、エジエクターを用い、しかもこの
エジエクターは単に減圧するだけでなく、凝縮さ
れた水を回収することができるので、連続運転が
でき、凝縮カラム内の冷却部を蒸気(蒸発カラム
で蒸発した蒸気)に常に接触させることが可能と
なるという効果を奏する。 次に請求項2に記載の発明によれば、凝縮カラ
ムの内側に蒸発カラムを配設するので、容積の小
さな蒸発カラムで液体を効率よく蒸発させなが
ら、容積の大きな凝縮カラムで蒸気を効率よく凝
縮させることができ、コンパクトな装置で、効率
の良い熱交換を行わせることができる。 次に請求項3に記載の発明によれば、凝縮カラ
ムから凝縮された水の回収と、凝縮カラム内およ
び蒸発カラム内の減圧とを、エジエクターにより
凝縮カラムの底部から行なう構成によつて、連続
運転が可能であるばかりでなく、凝縮カラム内に
凝縮された水を素早く回収することができ、凝縮
カラム内の冷却部を蒸気に常に接触させることが
でき、冷却部と蒸気との接触面積を大きくするこ
とができ、凝縮水の生成の効率・凝縮能率が向上
するという効果を奏する。 次に請求項4に記載の発明によれば、凝縮カラ
ムの冷却部の表面積を蒸発カラムの加熱部の表面
積より大きくする構成により、写真処理廃液等を
濃縮させる場合のように、蒸気中に不凝縮ガスが
存在する状況下においても、凝縮水の生成が不凝
縮ガスによつて損なわれないようにでき(凝縮効
率の向上)、それに伴つて凝縮水が適正量生成さ
れ、凝縮水によつて不凝縮ガスが再吸着されるた
め、エジエクターによつて不凝縮ガスを凝縮水と
一緒に系外に排出させることができるという効果
が得られる。
[Table] By the way, in the comparison, the refrigerant pipes for evaporation concentration and cooling condensation are made to have almost the same dimensions and the same surface area, and instead of using double columns, the former is at the bottom and the latter is at the top, so that the refrigerant pipes are almost concentric. It is a storied structure. In the table above, the unit of outer diameter is mm. Fig. 3 shows a case in which the refrigerant pipe in the portion above the liquid level of the heating section by a heat pump is wound twice, and Fig. 4 shows a case in which all heating refrigerant pipes are wound twice. However, it is necessary to ensure that this does not increase the surface area of the pipe;
The diameter of the pipe was reduced to improve the efficiency of evaporation and concentration. Although not shown, both columns are concentrically arranged in a two-story structure, with the first floor serving as an evaporation column and the second floor serving as a condensation column. This also makes it possible to minimize the occupied area. However, there are cases where it is not desirable to place the evaporation concentration device too high above the top, and in this case, it is better to have a double structure as in some of the above-mentioned embodiments. [Effects of the Invention] According to the invention described in claim 1, since the evaporation column and the condensation column are arranged concentrically, that is, the structure is a double column, a very compact device can be obtained. Can be provided. In addition, since the evaporation column and the condensation column are depressurized by the ejector and evaporated and concentrated under reduced pressure, the operating temperature of the entire system (device) is low, and the structure is simple and can be made compact. Furthermore, by combining the structure of performing evaporation concentration under reduced pressure and the double column structure of an evaporation column and a condensation column, the vapor evaporated in the evaporation column immediately moves to the condensation column and is condensed in the condensation column. Therefore, it is possible to reduce the pressure loss accompanying the flow of steam and keep the temperature of the heating section of the heat pump low, thereby increasing the coefficient of performance of the heat pump and improving the concentration efficiency. Furthermore, by arranging the heating section or cooling section of the outer column in a spiral manner along the outer wall of the inner column, the required surface area of the heating section or cooling section can be reduced. can be easily secured, and the evaporation concentration device itself can be made compact. Furthermore, an ejector is used as a means to reduce the pressure in the evaporation column and condensation column, and this ejector not only reduces the pressure but also recovers condensed water, allowing continuous operation and cooling the condensation column. This has the effect of making it possible to constantly bring the parts into contact with steam (vapor evaporated in the evaporation column). Next, according to the second aspect of the invention, since the evaporation column is disposed inside the condensation column, the liquid can be efficiently evaporated in the evaporation column with a small volume, while the vapor can be efficiently evaporated in the condensation column with a large volume. It can be condensed, and a compact device can perform efficient heat exchange. Next, according to the invention described in claim 3, the recovery of condensed water from the condensation column and the pressure reduction in the condensation column and the evaporation column are continuously carried out from the bottom of the condensation column by an ejector. Not only is it possible to operate, but the water condensed in the condensation column can be quickly recovered, and the cooling section in the condensation column can be kept in constant contact with the steam, reducing the contact area between the cooling section and the steam. This has the effect of improving the production efficiency and condensation efficiency of condensed water. Next, according to the invention set forth in claim 4, the surface area of the cooling part of the condensation column is made larger than the surface area of the heating part of the evaporation column, so that it is possible to prevent condensation from occurring in the vapor, such as when concentrating photographic processing waste liquid. Even in the presence of condensed gas, the production of condensed water can be prevented from being impaired by non-condensable gas (improvement of condensation efficiency), and as a result, an appropriate amount of condensed water is produced, and the condensed water Since the non-condensable gas is re-adsorbed, an effect can be obtained in that the non-condensable gas can be discharged from the system together with the condensed water by the ejector.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の例えば写真処理廃液の蒸発濃
縮装置の概要図であり、第2図、第3図、第4図
は、蒸発カラムと凝縮カラムの別の実施例の概略
断面図であり、第5図aは本発明の1実施例の正
面断面図、第5図bはその上面図、第5図cは第
5図aのX−X断面図である。 1……蒸発カラム、1A……凝縮カラム、2…
…加熱手段、6A……電磁バルブ、8A,8B…
…冷却手段、21……コンプレツサー、22……
空冷凝縮器、23……フアンモータ、24……フ
アン。
FIG. 1 is a schematic diagram of an evaporative concentration apparatus for photographic processing waste liquid according to the present invention, and FIGS. 2, 3, and 4 are schematic sectional views of other embodiments of an evaporation column and a condensation column. , FIG. 5a is a front sectional view of one embodiment of the present invention, FIG. 5b is a top view thereof, and FIG. 5c is a sectional view taken along line XX in FIG. 5a. 1... Evaporation column, 1A... Condensation column, 2...
...Heating means, 6A...Solenoid valve, 8A, 8B...
...Cooling means, 21... Compressor, 22...
Air-cooled condenser, 23...fan motor, 24...fan.

Claims (1)

【特許請求の範囲】 1 熱媒体を加圧する加圧部と、前記熱媒体の放
熱を利用した加熱部と、前記熱媒体を膨張させる
膨張部と、前記熱媒体の吸熱を利用した冷却部と
を備え、かつ、前記熱媒体が前記加圧部、前記加
熱部、前記膨張部および前記冷却部を閉状態で順
次循環するヒートポンプと、 廃液を貯留し、前記加熱部を利用して前記廃液
を加熱し、前記廃液の水分を蒸発させることによ
り、前記廃液を濃縮する蒸発カラムと、 前記蒸発カラムと上方にて連通され、かつ前記
蒸発カラムの内側あるいは外側に同心状に配設さ
れると共に、前記冷却部を利用して前記蒸発カラ
ムで蒸発した蒸気を冷却し、凝縮する凝縮カラム
と、 前記蒸発カラム内および前記凝縮カラム内を減
圧するために、前記凝縮カラム内を減圧すると共
に、前記凝縮カラムで凝縮された水を回収するエ
ジエクターと、を有し、 前記蒸発カラムまたは前記凝縮カラムのうち外
側に配設されたカラムの前記加熱部あるいは前記
冷却部を、内側に配設されたカラムの外壁に沿つ
て螺旋状に配設することを特徴とする蒸発濃縮装
置。 2 前記蒸発カラムを内側に配設し、前記凝縮カ
ラムを外側に配設することを特徴とする請求項1
記載の蒸発濃縮装置。 3 前記エジユクターによる、前記凝縮カラムか
ら凝縮された水の回収と前記凝縮カラム内および
蒸発カラム内の減圧とを、前記凝縮カラムの底部
から行なうことを特徴とする請求項1または2記
載の蒸発濃縮装置。 4 前記冷却部の表面積が前記加熱部の表面積よ
りも大きいことを特徴とする請求項1,2または
3記載の蒸発濃縮装置。
[Scope of Claims] 1. A pressurizing section that pressurizes a heat medium, a heating section that uses heat radiation of the heat medium, an expansion section that expands the heat medium, and a cooling section that uses heat absorption of the heat medium. a heat pump comprising: a heat pump in which the heat medium sequentially circulates through the pressurizing section, the heating section, the expansion section, and the cooling section in a closed state; an evaporation column that concentrates the waste liquid by heating and evaporating water in the waste liquid; an evaporation column that communicates with the evaporation column above and is disposed concentrically inside or outside the evaporation column; a condensation column that uses the cooling section to cool and condense the vapor evaporated in the evaporation column; an ejector for recovering water condensed in the column, and the heating part or the cooling part of the column disposed on the outside of the evaporation column or the condensation column is connected to the ejector of the column disposed on the inside. An evaporation concentration device characterized by being arranged spirally along an outer wall. 2. Claim 1, wherein the evaporation column is disposed on the inside, and the condensation column is disposed on the outside.
The described evaporative concentrator. 3. The evaporative concentration according to claim 1 or 2, wherein the ejector collects the water condensed from the condensation column and reduces the pressure in the condensation column and the evaporation column from the bottom of the condensation column. Device. 4. The evaporation concentration device according to claim 1, 2 or 3, wherein the surface area of the cooling section is larger than the surface area of the heating section.
JP12483090A 1990-05-15 1990-05-15 Evaporating and thickening method for waste photographic processing liquid Granted JPH0418975A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP12483090A JPH0418975A (en) 1990-05-15 1990-05-15 Evaporating and thickening method for waste photographic processing liquid
EP19910107861 EP0457303B1 (en) 1990-05-15 1991-05-15 Apparatus for concentrating waste liquor from photographic process
DE1991604545 DE69104545T2 (en) 1990-05-15 1991-05-15 Device for concentrating a contaminated liquid from a photographic process.
DE1991107861 DE457303T1 (en) 1990-05-15 1991-05-15 DEVICE FOR CONCENTRATING A POLLUTED LIQUID FROM A PHOTOGRAPHIC METHOD.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12483090A JPH0418975A (en) 1990-05-15 1990-05-15 Evaporating and thickening method for waste photographic processing liquid

Publications (2)

Publication Number Publication Date
JPH0418975A JPH0418975A (en) 1992-01-23
JPH0577478B2 true JPH0577478B2 (en) 1993-10-26

Family

ID=14895154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12483090A Granted JPH0418975A (en) 1990-05-15 1990-05-15 Evaporating and thickening method for waste photographic processing liquid

Country Status (1)

Country Link
JP (1) JPH0418975A (en)

Also Published As

Publication number Publication date
JPH0418975A (en) 1992-01-23

Similar Documents

Publication Publication Date Title
US5439560A (en) Low pressure evaporation concentrating apparatus for a photographic process waste disposl
EP0457303B1 (en) Apparatus for concentrating waste liquor from photographic process
JPH0577478B2 (en)
JPH0857202A (en) Heat pump type evaporation-concentration apparatus and treatment method using the apparatus
JP2959039B2 (en) Evaporation and concentration equipment for photographic processing waste liquid
JP2949357B2 (en) Method and apparatus for evaporative concentration of photographic processing waste liquid
JP3023687B2 (en) Method and apparatus for evaporative concentration of photographic processing waste liquid
JP2956940B2 (en) Vacuum evaporator for photographic processing waste liquid
JPS63151301A (en) Apparatus for evaporation and concentration treatment of waste photographic treatment liquid
JPH03267189A (en) Evaporation concentrating device for waste photographic processing liquid
JPH03238079A (en) Vacuum evaporative concentrating device for photographic processing liquid waste
JP2811109B2 (en) Automatic processing equipment for photographic photosensitive materials
JPH044086A (en) Evaporating and concentrating device for waste photographic processing liquid
JPH0411984A (en) Vacuum evaporative concentrator for waste photographic processing solution
JPH03293079A (en) Vaporizing and concentrating equipment for photographic processing waste liquid
JPH0691101A (en) Method for concentrating solution by using heat transfer medium and device therefor
JPH03293082A (en) Vaporizing and concentrating equipment for photographic processing waste liquid
JPH03293078A (en) Vaporizing and concentrating equipment for photographic processing waste liquid
JP2941451B2 (en) Aqueous solution evaporator
JPH03293077A (en) Vaporizing and concentrating method for photographic processing waste liquid
JPH05184801A (en) Evaporating concentrator for water solution
JP2941450B2 (en) Aqueous solution evaporator
JPH03242281A (en) Vacuum evaporating and concentrating device for waste photographic processing liquid
JPH03293081A (en) Vaporizing and concentrating equipment for photographic processing waste liquid
JPH03258386A (en) Device for evaporating and concentrating waste photographic processing solution under reduced pressure

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081026

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20081026

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 16

Free format text: PAYMENT UNTIL: 20091026

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 17

Free format text: PAYMENT UNTIL: 20101026

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 17