JPH0577302B2 - - Google Patents

Info

Publication number
JPH0577302B2
JPH0577302B2 JP61104900A JP10490086A JPH0577302B2 JP H0577302 B2 JPH0577302 B2 JP H0577302B2 JP 61104900 A JP61104900 A JP 61104900A JP 10490086 A JP10490086 A JP 10490086A JP H0577302 B2 JPH0577302 B2 JP H0577302B2
Authority
JP
Japan
Prior art keywords
film
hydrocarbon group
branching point
branching
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61104900A
Other languages
Japanese (ja)
Other versions
JPS62262457A (en
Inventor
Junko Shigehara
Akira Yamada
Masahiko Hara
Hidenari Nakahama
Seizo Myata
Takashige Murata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
RIKEN Institute of Physical and Chemical Research
Original Assignee
NOF Corp
RIKEN Institute of Physical and Chemical Research
Nippon Oil and Fats Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOF Corp, RIKEN Institute of Physical and Chemical Research, Nippon Oil and Fats Co Ltd filed Critical NOF Corp
Priority to JP61104900A priority Critical patent/JPS62262457A/en
Priority to EP87106525A priority patent/EP0244835B1/en
Priority to DE8787106525T priority patent/DE3781315T2/en
Priority to US07/047,887 priority patent/US4907038A/en
Priority to CA000536706A priority patent/CA1285732C/en
Publication of JPS62262457A publication Critical patent/JPS62262457A/en
Publication of JPH0577302B2 publication Critical patent/JPH0577302B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Thyristors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は導電性ないし半導体基板上に累積され
た、厚さ10A以上の平滑かつ均質な有機絶縁性
(超)薄膜上に導電性ないし半導体電極を設置し
てなる高分子LB膜電気素子に関する。 [従来の技術] バリスタ、サイリスタ、ダイオード、フオトダ
イオード、発光ダイオード、トランジスタ、それ
らを集積してなるLSI等は、基本的にMIM
(Metal/Insulator/Metal:金属/絶縁体/金
属)、MIS(Metal/Insulator/Semiconductor:
金属/絶縁体/半導体)、MS(Metal/
Semiconductor:金属/半導体=シヨツトキー素
子)、SIS(Semiconductor/Insulator/
Semiconductor)、等の構造に分類される。この
うちI層を必要とするMIM、MIS、MSM素子に
関しては、通常アルミニウムやベリウム等の基板
やシリコン基板表面を薄く酸化して金属酸化物な
いしSiO2絶縁層を形成させ、しかるのちに対向
電極を設ける手法がとられている。しかしながら
こ手法は上記以外の金属ないし半導体基板には適
用できず、特に化合物半導体を含めたSi以外の半
導体を用いた場合は、ダイオード、フオトダイオ
ード、発光ダイオード、電界効果トランジスタ、
等応用範囲の広いMIS型素子への適用ができな
い。従つて有機の絶縁性(超)薄膜をI層に用い
ることができれば、すべての組み合わせを達成で
きるはずである。その際、用いる絶縁性(超)薄
膜は50A以下、好ましくは20A以下の膜厚であ
り、かつ平滑かつ均質であることが要求される。 分子配向の揃つた、平滑かつ均質な有機超薄膜
の作成法の一つにラングミユア・ブロジエツト法
(以下LB法)がある。LB法は、有機分子を好ま
しくは水と混和しない有機溶媒の希薄溶液とし、
それを清浄な水平面上に展開して、溶媒が蒸散し
た後に残る気体膜を平面方向に圧縮して分子が密
にパツキングされた固体膜を形成させ、しかる後
に固体基板を水平面と垂直方向に上下することに
より固体基板表面に固体膜を移し取り、累積させ
る方法を言い、この結果形成された基板上の
(超)薄膜をLB膜と称する(例えば、文献K.B.
Blodgett、J.Am.Chem.Soc.、55、1007(1935)
を参照)。これに対し、固体膜表面に基板が水平
に接するように上下して累積する水平付着法も開
発され(文献K.Fukuda他、J.Colloid Interface
Sci.、54、430(1976))、現在では水平付着法によ
る基板上の(超)薄膜もLB膜と呼ばれている。
LB膜の特長は、分子オーダーの超薄膜から、積
層を繰り返せば任意の厚みの累積膜まで作成で
き、かつ分子配向の揃つた平滑・均質な膜である
ことにある。従つてLB膜は、[発明の効果]に後
述するように種々のエレクトロニクス用材料とし
て期待され、炭素数16以上の直鎖脂肪酸ないしそ
のアルカリ土類金属塩、カドミウム塩のLB膜化
は広く検討されて来た[例えば、福田清成、中原
弘雄(分担執筆)、化学総説40“分子集合体”p82
−104、1983、及びその文献]。しかしながら、こ
れら脂肪酸ないしその金属塩のLB膜は力学強度、
耐熱性等に乏しく実用に供せられない。そこで重
合性脂肪酸をLB膜化してから重合処理を施すか、
あるいは水面上で重合してからLB膜化する手法
が考案されたが(文献、同上)、後重合法では重
合時に膜のひきつりやクラツクの形成が甚だし
く、水面上重合法では重合条件の設定が難しく、
かつ垂直浸せき・水平付着両方による基板上への
移し取りが極めて難しくなる。従つて、力学強
度、耐熱性等に優れた高分子のLB膜が可能にな
れば、その産業に与える波乃効果は極めて大きい
と考えられる。 一般に、柔軟・線状高分子はいかなる希薄溶液
に於いても糸まり状の集合状態を有しており、水
面状に展開したときに気体膜状態が取れないので
LB化に適さない。例外的にポリペプチドのLB膜
が報告されているが(文献、J.H.McAlear 他、
Symposium on VLSI Technology、Digest of
Tech.Papers,82(1981))、それらは例えばクロ
ロフオルム/トリクロロ酢酸/メタノール、等の
特殊な多成分溶媒にしか溶けず、かつ溶解性を保
つための必須成分であるトリクロロ酢酸が基板と
して用いる金属の表面を劣化させる可能性があ
り、やはり上述の素子を作製するための材料とし
て適さない。 [発明の目的] 従つて本発明の目的は、力学強度、耐熱性、等
に優れる式(1)のポリフマレートの高分子LB膜を
層とする高分子LB膜電気素子およびその製造
法を提供することである。 [発明の構成] 本発明は、一般式(1)で示されるポリフマレート
を、水と混和しない有機溶剤の0.1−3mg/mlの
濃度の溶液とし、それを清浄な水平面上に静かに
展開して有機溶剤を蒸散させて表面圧1dyne/cm
以下の気体膜を形成させ、それに水平面方向に圧
力を加えて表面圧10−30dyne/cmに制御して得
られる単分子固体膜を垂直浸せき法または水平付
着法により固体基板上に累積してなる高分子LB
膜を層とする高分子LB膜電気素子およびその
製造方法に関する。
[Industrial Field of Application] The present invention is a high-density film in which a conductive or semiconductor electrode is placed on a smooth and homogeneous organic insulating (ultra) thin film with a thickness of 10A or more accumulated on a conductive or semiconductor substrate. Regarding molecular LB membrane electrical devices. [Conventional technology] Varistors, thyristors, diodes, photodiodes, light emitting diodes, transistors, and LSIs that integrate them are basically MIM
(Metal/Insulator/Metal: Metal/Insulator/Metal), MIS (Metal/Insulator/Semiconductor:
Metal/Insulator/Semiconductor), MS(Metal/
Semiconductor: Metal/Semiconductor = Schottky element), SIS (Semiconductor/Insulator/
Semiconductor), etc. For MIM, MIS, and MSM devices that require an I layer, the surface of a substrate made of aluminum, beryum, or silicon is usually thinly oxidized to form a metal oxide or SiO 2 insulating layer, and then a counter electrode is formed. A method of establishing a However, this method cannot be applied to metals or semiconductor substrates other than those mentioned above, and especially when semiconductors other than Si, including compound semiconductors, are used, it can be applied to diodes, photodiodes, light emitting diodes, field effect transistors,
It cannot be applied to MIS type elements, which have a wide range of applications. Therefore, if an organic insulating (ultra)thin film can be used for the I layer, all combinations should be achievable. In this case, the insulating (ultra)thin film used is required to have a thickness of 50A or less, preferably 20A or less, and be smooth and homogeneous. One of the methods for producing smooth, homogeneous, ultra-thin organic films with uniform molecular orientation is the Langmiur-Blodget method (hereinafter referred to as the LB method). In the LB method, organic molecules are preferably dissolved in a dilute solution of an organic solvent that is immiscible with water;
It is spread on a clean horizontal surface, and the gas film that remains after the solvent evaporates is compressed in the plane direction to form a solid film with densely packed molecules.Then, the solid substrate is moved vertically vertically to the horizontal surface. This refers to a method of transferring and accumulating a solid film on the surface of a solid substrate, and the (ultra)thin film formed on the substrate as a result is called an LB film (for example, reference KB
Blodgett, J.Am.Chem.Soc., 55 , 1007 (1935)
). In response, a horizontal adhesion method has been developed in which the substrate is stacked up and down so that it is in horizontal contact with the solid film surface (References K. Fukuda et al., J. Colloid Interface
Sci., 54 , 430 (1976)), and (ultra)thin films on substrates produced by the horizontal deposition method are also now called LB films.
The advantage of LB films is that they can be made from ultra-thin films on the molecular order to cumulative films of arbitrary thickness by repeating lamination, and are smooth and homogeneous films with uniform molecular orientation. Therefore, LB films are expected to be used as materials for various electronics, as will be described later in [Effects of the Invention], and the use of linear fatty acids with carbon atoms of 16 or more, their alkaline earth metal salts, and cadmium salts as LB films has been widely studied. [For example, Kiyonari Fukuda, Hiroo Nakahara (co-author), Chemistry Review 40 “Molecular Assemblies” p82
-104, 1983, and references thereof]. However, the mechanical strength of LB films of these fatty acids or their metal salts is
It has poor heat resistance and cannot be put to practical use. Therefore, either the polymerizable fatty acid is made into an LB film and then subjected to polymerization treatment.
Alternatively, a method has been devised in which the LB film is formed after polymerization on the water surface (reference, same as above), but the post-polymerization method causes severe twitching and crack formation of the film during polymerization, and the above-water polymerization method requires setting of polymerization conditions. difficult,
In addition, it becomes extremely difficult to transfer onto the substrate by both vertical dipping and horizontal adhesion. Therefore, if a polymeric LB film with excellent mechanical strength, heat resistance, etc. becomes possible, it would have an extremely large impact on the industry. In general, flexible linear polymers have a thread-like aggregated state in any dilute solution, and cannot form a gas film state when spread on the water surface.
Not suitable for LB. Exceptionally, polypeptide LB membranes have been reported (References, JHMcAlear et al.
Symposium on VLSI Technology, Digest of
Tech.Papers, 82 (1981)), they are soluble only in special multicomponent solvents such as chloroform/trichloroacetic acid/methanol, and trichloroacetic acid, which is an essential component to maintain solubility, is the metal used as a substrate. It is also not suitable as a material for producing the above-mentioned element. [Object of the Invention] Therefore, the object of the present invention is to provide a polymer LB film electric element having a layer of a polymer LB film of polyfumarate of formula (1) which has excellent mechanical strength, heat resistance, etc., and a method for manufacturing the same. That's true. [Structure of the Invention] The present invention provides a solution of the polyfumarate represented by the general formula (1) in an organic solvent that is immiscible with water at a concentration of 0.1 to 3 mg/ml, and then gently spreading the solution on a clean horizontal surface. The organic solvent is evaporated and the surface pressure is 1dyne/cm.
A monomolecular solid film obtained by forming the following gas film and applying pressure in the horizontal direction to control the surface pressure to 10-30 dyne/cm is deposited on a solid substrate by vertical dipping method or horizontal deposition method. Polymer LB
This invention relates to a polymer LB film electric device having a film layer and a method for manufacturing the same.

【化】 但し式(1)において、Rは、次の(a)−(d)のいずれ
かより選ばれる基である。 (a) 炭素数3以上30以下の枝分かれ炭化水素基で
あり、フマレートエステルから数えたとき3つ
目の炭素より内側に1つ目の枝分かれ点を持
ち、同様にある枝分かれ点から次の枝分から点
までの炭素数が3以下である炭化水素基。 (b) 第一アミド、第二アミド、ヒドロキシ、チオ
ール等の易動性水素を含まず、かつN、O、
P、Sより選ばれるヘテロ原子をふくんでお
り、水素を除く構成原子数が3以上30以下の枝
分かれ炭化水素系基であり、フマレートエステ
ルから数えたとき構成原子数3以内に1つ目の
枝分かれ点を持ち、同様にある枝分かれ点から
次の枝分かれ点までの構成原子数が3以下であ
る炭化水素系基。 (c) トリフロロメチル、ペンタフロロエチル、ヘ
プタフロロ−n−プロピル、あるいは(a)の炭化
水素基の水素の一部ないし全部がフツ素に置き
換わつた基より選ばれるフツ素系炭化水素基。 (d) ヒドロキシ基を含まず、構成原子数、枝分か
れの様子が(b)と同様であるシロキサン系炭化水
素基。 本発明に用いられるポリフマレートは、大津ら
により開発された方法(文献、T.Otsu et al.、
Makromol.Chem.、Rapid Commun.、2725
(1981))に基づき合成され、それらは参考例にて
詳述する。 これらポリフマレートはガラス転移温度Tgが
200℃以上(分解)であり、汎用の有機溶媒、例
えばクロロフオルム、二塩化エチレン、ジオキサ
ン、テトラヒドロフラン、ベンゼン、などに易溶
である。ポリフマレートをこれらの有機溶媒の希
薄溶液とし、水面上に展開して溶媒を蒸散させる
と、各々の分子が互いに相互作用していない気体
膜状態が得られる。これは本発明で用いられるポ
リフマレートが剛直な側鎖を有し、分子形態が棒
状であるため、糸まり状の会合体にならないから
である。水面上への展開に際しては、ポリフマレ
ート溶液の濃度および溶媒種に注意を払う必要が
あり、濃厚溶液ないし水と混和する溶媒の溶液を
用いると単なる水面展開膜になりやすく、その場
合、膜の分子配向、表面平滑度、均質性、等を制
御できないばかりでなく、分子オーダーの例えば
10A内外の超薄膜は調製すべくもない。従つて、
水と混和しない溶媒、例えばクロロフオルム、二
塩化エチレン、ベンゼン、等を選ぶ必要があり、
その蒸散速度から鑑み、クロロフオルムが最も好
ましい。また、展開する溶液の濃度は10mg/ml以
下である必要があり、好ましくは0.1−3mg/ml
の範囲である。溶媒種と濃度の選択は作業温度に
よつても若干変化する必要があり、高温になる程
高沸点溶剤、例えばベンゼンや二塩化エチレン等
が選択され、またより希薄な溶液にすべきであ
る。但し通常の作業温度、10−35℃の範囲では先
に述べた[クロロフオルム−10mg/ml以下]の条
件で十分である。なお、脂肪酸(およびその金属
塩)のLB膜では、そのゾルーゲル転移温度Tc
(固体膜から液晶状態膜への転移)が低いため概
ね25℃以下で作業する必要があるが、本発明の高
分子LB膜ではTgが200℃以上であるため、70−
80℃に至る高い温度でもLB化が可能である特長
を有する。従つて、作業条件の選択幅が広いだけ
ではなく、このような高温でしか溶解しない機能
分子との混合溶媒から混合LB膜を形成させるこ
ともできる。 以上のようにして得られた気体膜に対し、水平
方向から表面圧を加え10−30dyne/cmに保つと
固体膜状態になる。どの程度の表面圧に設定する
かは用いるポリフマレートの種類に依存し、あら
かじめ表面圧−面積(FA)等温曲線を止めてお
き、その固体膜相に相当するFA曲線の鋭い立ち
上がり部分の表面圧に設定する。これに関しては
実施例をもつて詳述する。次に、この固体膜を垂
直浸せき法または水平付着法により基板表面に移
し取るとLB膜が形成される。垂直浸せき法では、
基板の引き上げ、押し下げ両時に累積されるので
Y膜が形成され、水平付着法ではZ膜となる。但
し、脂肪酸のように非対称な線状分子と異なり、
このポリフマレートは剛直・円筒状線状高分子で
あり、X、Y、Z膜の区別がなくいずれにしろ同
じ形式のLB膜となる。なお、例えばポリ(ジ−
イソプロピル)フマレートの場合、分子模型から
計算される円筒の直径は10A程度と見積られる
が、LB膜の厚み測定から計算される1層当たり
の厚さは10−11Aであり、従つてこのLB膜およ
び水面上のラングミユア膜は、平面上に円滑が横
にパツキングされた分子配向状態を取つているこ
とがわかる。通常の脂肪酸ないしその金属塩の
LB膜は、Tcおよび溶解性によりLB化が可能な
鎖長の下限が炭素数にして16(これ以下では水相
に溶け込んでミセルを形成する)、膜厚にして
20A程度である。しかし本発明のポリフマレート
を用いれば、トンネル効果が発現され、上述の素
子が成立する10A程度の単層膜を容易に得ること
ができる。 垂直浸せき法においては、基板の上下動の速度
が形成されるLB膜の特性に大きく影響し、脂肪
酸等では0.5−1mm/min以下の速度で累積しな
いと膜欠陥が多くなる。しかし本発明のポリフマ
レートのLB化では、10mm/minの極めて大きな
基板移動速度であつても十分累積可能である。例
えばポリ(ジ−イソプロピル)フマレートを10
mm/minで20層累積して400倍の微分干渉光学顕
微鏡を用いて写真撮影し、1000倍に引き伸ばして
観察した結果では少なくとも0.05μm以上の大き
さの膜欠陥は認められない。一方、同条件で累積
したアラキン酸カドミウム塩のLB膜は、1−5μ
mに及ぶ大きな膜欠陥がいたるところに見うけら
れる。このように本発明のLB膜は10mm/min以
下の基板移動速度であれば累積可能であるが、安
全性を鑑み5mm/min以下、好ましくは操作性を
合わせ考え2−3mm/minが適当である。水平付
着法においては、水面上の固体膜と基板が接する
瞬間の基板移動速度が5mm/min以下、好ましく
は1−3mm/minに制御すべきである。 垂直浸せき法においては、強親水的材料、例え
ばポリビニルアルコールやポリアクリルアミドな
どの素材、及びテフロン系材料を除き、殆ど全て
の金属、プラスチツク、セラミツクスを基板素材
として用いることができる。また、水平付着法に
おいてはテフロン上にも積層可能である。但し、
基板表面の平滑度には影響されるが、肉眼観察で
研磨痕跡が認められない程度のミラー表面であれ
ば十分である。素子を形成する場合に基板として
特に有用かつ累積し易いものを例示すると、Al、
Si、Ge、Ni、Fe、Co、Cu、Pt、Au、希土類金
属、金属酸化物及び金属酸化物半導体、例えば、
SiO2、NiO、SnO2、In2O3、インジウムスズネサ
ガラス(以下ITOネサンと略)、酸化スズネサガ
ラス(以下ネサと略)など、化合物半導体、例え
ば、ガリウムヒ素、ガリウムリン、インジウムリ
ンなど、カルコゲン類、例えばセレン化亜鉛、硫
化亜鉛などの遷移金属セレン化物、硫化物など、
WO3系カルコゲニド、VO2系カルコゲニドなど、
ポリカーボネート、ポリエチレンテレフタレート
ポリエチレン、ポリプロピレン、等であるが、こ
れらのみに限定されるものではない。 このようにして得た基板上のLB膜に、さらに
導電性ないし半導体電極を適当な方法、例えば真
空蒸着、高周波スパツタリング、イオンビームス
パツタリング、分子線エピタキシー、等の諸法に
より設ければ、本発明の目的とする高分子LB膜
電気素子が得られる。 [発明の効果] 本発明の高分子LB膜電気素子は、力学強度、
耐熱性、耐湿性、耐光性、透明性、絶縁性に優れ
た10AオーダーのポリフマレートLB膜を層と
して採用しているため、MとSのすべての材料系
に適用可能であり、次のように利用される。 (1) MIM(Metal/Insulator/Metal)型素子、
即ち、バリスタ、サイリスタ、など。 (2) MIS型素子、即ち、ダイオード、フオトダイ
オード、発光ダイオード(LED)、など。 (3) SIS(p−Semiconductor/Insulator/n−
Seiconductor)型素子、即ち、ダイオード、
フオトダイオード、発光ダイオード(LED)、
など。 [実施例の説明] 次に実施例をもつて本発明を詳述するが、それ
に先立ち、本発明に使用されるポリフマレートの
作成法及びポリフマレートLB膜の作製法に参考
例をもつて記述する。 参考例 1 ジイソプロピルフマレートをガラスアンプル中
に10gとり、ラジカル重合開始剤として、2,
2′−アゾビスイソブチロニトリルを0.1g添加し、
次にアンプル内を窒素置換および脱気をくり返し
た後密封し、40℃で48時間塊状重合を行ない、重
合後内容物をベゼンに溶解し、大量のメタノール
に投入してポリマーを沈殿させ、ロ別し十分メタ
ノール洗浄を行なつた後、減圧乾燥して目的の、
ポリ(ジイソプロピルフマレート)(以下PDiPF
と略)を得た。 参考例 2 ジターシヤリブチルフマレートをガラスアンプ
ル中に10gとり、ベンゼン10mlを加え、ラジカル
重合開始剤として、ベンゾイルペルオキシド0.2
gを添加し、次にアンプル内を窒素置換および脱
気を繰り返した後密封し、60℃で10時間溶液重合
を行なつた。重合後の処理は、参考例1と同様に
行なつて目的のポリ(ジターシヤリブチルフマレ
ート)(以下PDtBFと略)を得た。 参考例 3 ジシクロヘキシルフマレートをガラスアンプル
中に10gとり、ラジカル重合開始剤として、2,
2′−アゾビスイソブチロニトリルを0.1g添加し、
次にアンプル内を窒素置換および脱気をくり返し
た後密封し、60℃で10時間塊状重合を行なつた。
重合後の処理は、参考例1と同様に行なつて目的
のポリ(ジシクロヘキシルフマレート)(以下
PDcHFと略)を得た。 参考例 4 内面積20X20cm、深さ3cmのテフロン製トラフ
に純水を2.5cmの深さになるように入れ、部屋全
体の温度を20℃に設定する。濃度1mg/mlの
PDiPFのクロロフオルム溶液を150μ水面上に
静かに展開し、溶媒を蒸散させる。水面に半分差
し込まれるように設置されたNo.4の粗さの2.5X5
cmのろ紙の重さを量ることにより表面圧を検知し
ながら、水面上に設置された長さ20cmのテフロン
製浮子を2mm/minの速度で平行移動させて水表
面を狭くして行き、表面積と表面圧を観測するこ
とにより第1図aに示すFA曲線を求めた。これ
によりPDiPFは表面圧15−25dyne/cmの範囲で
固体膜を形成することがわかる。厚さ1.0mm、面
積2.5X5cmの清浄なITOネサガラス(表面抵抗10
Ω/cm)を、水面に対して垂直に2.0mm/minの
速度で上下させ、表面圧が常に20dyne/cmとな
るようにテフロン浮子を移動させながら垂直浸せ
き法により1及び20層累積した。このLB膜を400
倍の微分干渉光学顕微鏡で写真撮影し、1000倍程
度に引き伸ばして観察した結果からは、いずれも
少なくとも0.05μm以上の大きさの膜欠陥は認め
られなかつた。また、表面粗さ系により20層累積
したLB膜について求めた全膜厚は210Aであり、
これより1層当たりの厚さは10.5Aと計算され
る。 このLB膜を乾燥アルゴン雰囲気下、100℃で12
時間置いた後、再び顕微鏡観察、および膜厚測定
を行なつたが、なんらの変化も認められなかつ
た。 実施例 1 参考例4のPDiPFの20層累積したLB膜に対向
電極としてAlを約400Aの厚さに蒸着し、ITO及
びAl層を伝導度測定装置に接続して直流2端子
法1Vで伝導度を測定したところ、アルゴン雰囲
気下20℃で10-13S/cm以下であることがわかつ
た。更に、5℃ずつ昇温し、その温度に12時間放
置した後同様の測定をおこなつたところ、160℃
に至るも絶縁特性になんら変化は認められなかつ
た。また、1層積層したときのITO/PDiPF−
LB膜/Alの三層構造はサイリスタに相当し、サ
イリスタに特有な第2図に示す電流−電圧(I−
V)特性を示した。 参考例 5 参考例4と同様の方法で、但しアラキン散を
PDiPFの代わりに用い、水相中に4mMの濃度
になるように塩化カドミウムを入れて、表面圧を
15dyne/cmに保つてITO基板上にをアラキン酸
カドミウム塩20層累積したLB膜を作成した。ア
ラキン酸カドミウム塩一層当たりの厚さは28Aで
あることが知られているのでこのLB膜の全膜厚
は220Aである。このLB膜上に対向電極として
A1を約400Aの厚さに蒸着し、ITO及びAl層を伝
導度測定装置に接続して直流2端子法1Vで伝導
度を測定したところ、アルゴン雰囲気下20℃で
10-13S/cm以下であることがわかつた。更に、5
℃ずつ昇温し、その温度に12時間放置した後同様
の測定をおこなつたところ、45−50℃の間で絶縁
破壊が起きることを確かめた。 参考例 6 参考例4と同様に、但しPDiPFの代わりに
PDtBFの1mg/mlクロロフオルム溶液を用いて
FA曲線を求め、その結果を第1図bに示した。
次に表面圧20dyne/cmで1及び20層積層したLB
膜を作成した。全膜厚は220Aであり、一層当た
りの膜厚は11Aに相当する。実施例1と同様に微
分干渉顕微鏡観察を行なつた結果、少なくとも
0.05μm以上の膜欠陥は認められなかつた。 このLB膜を乾燥アルゴン雰囲気下、100℃で12
時間置いた後、再び顕微鏡観察、および膜厚測定
を行なつたが、なんらの変化も認められなかつ
た。 実施例 2 参考例6のようにしてPDtBFを20層累積した
LB膜に参考例5と同様に対向電極を設けて伝導
度測定を行なつた結果、20℃で10-13S/cm以下の
良好な絶縁性を示し、昇温実験では160℃に至る
もの絶縁特性になんら変化は認められなかつた。
また、1層累積した場合のITO/PDtBF−LB
膜/Alの三層構造はサイリスタに相当し、サイ
リスタに特有なI−V特性を示した。 参考例 7 参考例4と同様に、但しPDiPFの代わりに
PDcHFの1mg/mlクロロフオルム溶液を用いて
FA曲線を求め、その結果を第1図cに示した。
次に表面圧20dyne/cmで20層積層したLB膜を作
成した。全膜厚は220Aであり、一層当たりの膜
厚は11Aに相当する。実施例1と同様に微分干渉
顕微鏡観察を行なつた結果、少なくとも0.05μm
以上の膜欠陥は認められなかつた。 このLB膜を乾燥アルゴン雰囲気下、100℃で12
時間置いた後、再び顕微鏡観察、および膜厚測定
を行なつたが、なんらの変化も認められなかつ
た。 実施例 3 参考例7のLB膜に実施例1と同様に対向電極
を設けて伝導度測定を行なつた結果、20℃で
10-13S/cm以下の良好な絶縁性を示し、昇温実験
では160℃に至るも絶縁特性になんら変化は認め
られなかつた。また、積層数が1のこのITO/
PDcHF−LB膜/Alの三層構造はサイリスタに
相当し、サイリスタに特有な−V特性を示し
た。 実施例 4−12 参考例4と同様に、但し第一表に示す各条件で
ポリフマレートのLB膜を作成した。参考例4と
同様に微分干渉顕微鏡観察を行なつた結果、少な
くとも0.05μm以上の膜欠陥は認められなかつた。 このLB膜を乾燥アルゴン雰囲気下、100℃で12
時間置いた後、再び顕微鏡観察、および膜厚測定
を行なつたが、なんらの変化も認められなかつ
た。また、実施例1と同様に対向電極を設けて電
流−電圧測定を行なつた結果、第一表に示す特性
を示し、昇温実験では160℃に至るもこの特性に
なんら変化は認められなかつた。 実施例 13 基板にGaPを用いた他は参考例4と同様にし
て、PDiPFを1層積層したLB膜を作成した。対
向電極として実施例1と同様にALを約200Aの厚
さに蒸着し、電流−電圧特性を測定した。その結
果良好な整流効果が認められ、このi−Si/
PDiPF−LB膜/Alの三層構造がMIS型の素子と
して働くことが確かめられた。また、この素子
に、0.4mW/cm2の白色光を照射すると第3図b
のようになり、光電変換能を有することがわかつ
た。 実施例 14 基板に(GaP)0.9−AS0.1を用いた他は実施例13
と同様にLB化を行ない、PDiPFが1層積層した
のち実施例13と同様に対向電極を設けた。この素
子に、直流電位5Vをあたえると赤色に発光し、
発光ダイオード、エレクトロルミネツセントデイ
スプレイ等に応用可能であることがわかつた。 実施例 15〜20 参考例1に準じた方法で下記に示すポリフマレ
ートを合成し、参考例4の方法に従つて高分子
LB膜を作成し、さらに実施例1の方法に準じて
対向電極を設けて電流・電圧特性を測定した。第
一表にこれらの電気素子の構成および電気特性を
示した。 実施例15 ポリ(2−シアノエチル−イソプロピ
ルフマレート) 実施例16 ポリ(グリシジル−イソプロピルフマ
レート) 実施例17 ポリ(ジエチルホスホノメチル−イソ
プロピルフマレート) 実施例18 ポリ(2−メチルチオエチル−イソプ
ロピルフマレート) 実施例19 ポリ(2−パーフルオロオクチルエチ
ル−ウソピロピルフマレート) 実施例20 ポリ(3−トリストリメチルシロキシ
シリルプロピル−イソプロピルフマレート
embedded image In formula (1), R is a group selected from any of the following (a) to (d). (a) A branched hydrocarbon group having 3 to 30 carbon atoms, with the first branching point inside the third carbon when counted from the fumarate ester, and similarly from one branching point to the next branch. A hydrocarbon group in which the number of carbon atoms from minute to point is 3 or less. (b) Does not contain mobile hydrogen such as primary amide, secondary amide, hydroxy, thiol, etc., and does not contain N, O,
It is a branched hydrocarbon group containing a heteroatom selected from P and S, and the number of constituent atoms excluding hydrogen is 3 to 30, and the first one within 3 constituent atoms when counted from the fumarate ester. A hydrocarbon group that has a branching point and the number of constituent atoms from one branching point to the next branching point is 3 or less. (c) A fluorine-based hydrocarbon group selected from trifluoromethyl, pentafluoroethyl, heptafluoro-n-propyl, or a group in which some or all of the hydrogen atoms in the hydrocarbon group in (a) are replaced with fluorine. . (d) A siloxane hydrocarbon group that does not contain a hydroxy group and has the same number of constituent atoms and branching as in (b). The polyfumarate used in the present invention is prepared by the method developed by Otsu et al.
Makromol.Chem., Rapid Commun., 2725
(1981)), and they are detailed in the reference examples. These polyfumarates have a glass transition temperature Tg
It has a temperature of 200°C or higher (decomposition) and is easily soluble in general-purpose organic solvents such as chloroform, ethylene dichloride, dioxane, tetrahydrofuran, and benzene. When polyfumarate is made into a dilute solution of these organic solvents and spread on the water surface to evaporate the solvent, a gas film state is obtained in which the molecules do not interact with each other. This is because the polyfumarate used in the present invention has a rigid side chain and a rod-like molecular form, so that it does not form a thread-like aggregate. When spreading on the water surface, it is necessary to pay attention to the concentration of the polyfumarate solution and the type of solvent.If a concentrated solution or a solution of a solvent that is miscible with water is used, it tends to become a mere water surface spreading film, and in that case, the molecules of the film Not only is it not possible to control orientation, surface smoothness, homogeneity, etc., but also molecular order e.g.
There is no way to prepare ultra-thin films around 10A. Therefore,
It is necessary to choose a solvent that is immiscible with water, such as chloroform, ethylene dichloride, benzene, etc.
In view of its transpiration rate, chloroform is most preferred. In addition, the concentration of the solution to be developed must be 10 mg/ml or less, preferably 0.1-3 mg/ml.
is within the range of The selection of solvent type and concentration also needs to change slightly depending on the working temperature; the higher the temperature, the higher the boiling point solvent, such as benzene or ethylene dichloride, should be selected, and the solution should be more dilute. However, at normal working temperatures in the range of 10-35°C, the above-mentioned conditions of [chloroform - 10 mg/ml or less] are sufficient. In addition, in the LB film of fatty acids (and their metal salts), its sol-gel transition temperature Tc
(Transition from a solid film to a liquid crystal state film) is low, so it is necessary to work at temperatures below 25°C, but the polymer LB film of the present invention has a Tg of 200°C or higher, so
It has the feature that it can be made into LB even at high temperatures up to 80℃. Therefore, not only is there a wide range of selection of working conditions, but a mixed LB film can also be formed from a mixed solvent with functional molecules that dissolve only at such high temperatures. When surface pressure is applied horizontally to the gas film obtained as described above and maintained at 10-30 dyne/cm, it becomes a solid film. How much surface pressure to set depends on the type of polyfumarate used.The surface pressure-area (FA) isotherm curve is stopped in advance, and the surface pressure is set at the sharp rising part of the FA curve corresponding to the solid film phase. Set. This will be explained in detail with examples. Next, this solid film is transferred to the substrate surface by a vertical dipping method or a horizontal deposition method to form an LB film. In the vertical immersion method,
Since it is accumulated when the substrate is lifted and pushed down, a Y film is formed, and in the horizontal deposition method, it becomes a Z film. However, unlike asymmetric linear molecules such as fatty acids,
This polyfumarate is a rigid, cylindrical linear polymer, and there is no distinction between X, Y, and Z films, and in any case, the LB films are of the same type. In addition, for example, poly(di-
In the case of isopropyl) fumarate, the diameter of the cylinder calculated from the molecular model is estimated to be about 10A, but the thickness per layer calculated from the thickness measurement of the LB film is 10-11A, so this LB film It can be seen that the Langmiur film on the water surface has a molecular orientation state in which the molecules are smooth on the plane but are packed laterally. Normal fatty acids or their metal salts
For LB films, the lower limit of the chain length that can be converted into LB due to Tc and solubility is 16 carbons (less than this, it dissolves in the aqueous phase and forms micelles), and the film thickness is 16.
It is about 20A. However, if the polyfumarate of the present invention is used, a tunneling effect will be produced, and a single layer film of about 10A, which can form the above-mentioned device, can be easily obtained. In the vertical dipping method, the speed of vertical movement of the substrate greatly affects the properties of the LB film formed, and with fatty acids, etc., film defects will increase unless the film is accumulated at a speed of 0.5-1 mm/min or less. However, in the polyfumarate LB according to the present invention, sufficient accumulation is possible even at an extremely high substrate movement speed of 10 mm/min. For example, poly(di-isopropyl) fumarate at 10
When 20 layers were accumulated at a rate of mm/min, a photograph was taken using a differential interference optical microscope at a magnification of 400 times, and the film was enlarged to a magnification of 1000 times and observed, no film defects with a size of at least 0.05 μm or more were observed. On the other hand, the LB film of cadmium arachic acid salt accumulated under the same conditions was 1-5μ
Large membrane defects up to m can be seen everywhere. As described above, the LB film of the present invention can be accumulated if the substrate movement speed is 10 mm/min or less, but from the viewpoint of safety, 5 mm/min or less, preferably 2-3 mm/min considering operability is appropriate. be. In the horizontal deposition method, the substrate movement speed at the moment when the solid film on the water surface contacts the substrate should be controlled to 5 mm/min or less, preferably 1-3 mm/min. In the vertical immersion method, almost all metals, plastics, and ceramics can be used as substrate materials, except for strongly hydrophilic materials such as polyvinyl alcohol and polyacrylamide, and Teflon-based materials. Furthermore, in the horizontal deposition method, it is also possible to laminate on Teflon. however,
Although it is affected by the smoothness of the substrate surface, it is sufficient if the mirror surface has no polishing traces observed with the naked eye. Examples of substrates that are particularly useful and easy to accumulate when forming elements include Al,
Si, Ge, Ni, Fe, Co, Cu, Pt, Au, rare earth metals, metal oxides and metal oxide semiconductors, e.g.
Compound semiconductors such as SiO 2 , NiO, SnO 2 , In 2 O 3 , indium tin nesa glass (hereinafter abbreviated as ITO nesa), tin oxide nesa glass (hereinafter abbreviated as nesa), such as gallium arsenide, gallium phosphide, indium phosphide, etc. Chalcogens, such as transition metal selenides and sulfides such as zinc selenide and zinc sulfide,
WO 3 -based chalcogenides, VO 2 -based chalcogenides, etc.
These include, but are not limited to, polycarbonate, polyethylene terephthalate, polyethylene, and polypropylene. If a conductive or semiconductor electrode is further provided on the LB film on the substrate obtained in this way by an appropriate method such as vacuum evaporation, radio frequency sputtering, ion beam sputtering, molecular beam epitaxy, etc., the present invention can be realized. A polymer LB film electric device, which is the object of the invention, is obtained. [Effects of the invention] The polymer LB membrane electrical element of the present invention has mechanical strength,
Since it uses a 10A order polyfumarate LB film with excellent heat resistance, moisture resistance, light resistance, transparency, and insulation as a layer, it can be applied to all M and S material systems, and has the following properties. used. (1) MIM (Metal/Insulator/Metal) type element,
i.e. barista, thyristor, etc. (2) MIS type devices, i.e. diodes, photodiodes, light emitting diodes (LEDs), etc. (3) SIS (p-Semiconductor/Insulator/n-
Seiconductor) type elements, i.e. diodes,
Photodiode, light emitting diode (LED),
Such. [Description of Examples] Next, the present invention will be described in detail with reference to Examples. Prior to that, the method for producing polyfumarate and the method for producing a polyfumarate LB film used in the present invention will be described using reference examples. Reference Example 1 10g of diisopropyl fumarate was placed in a glass ampoule, and 2,
Add 0.1g of 2′-azobisisobutyronitrile,
Next, the inside of the ampoule was repeatedly purged with nitrogen and degassed, then sealed, and bulk polymerization was carried out at 40℃ for 48 hours. After polymerization, the contents were dissolved in bezene and poured into a large amount of methanol to precipitate the polymer. After separating and thoroughly washing with methanol, dry under reduced pressure to obtain the desired
Poly(diisopropyl fumarate) (PDiPF)
) was obtained. Reference Example 2 Take 10g of ditertiary butyl fumarate in a glass ampoule, add 10ml of benzene, and add 0.2 benzoyl peroxide as a radical polymerization initiator.
Then, the inside of the ampoule was repeatedly purged with nitrogen and degassed, and then sealed, and solution polymerization was carried out at 60° C. for 10 hours. The treatment after polymerization was carried out in the same manner as in Reference Example 1 to obtain the target poly(ditertyabutyl fumarate) (hereinafter abbreviated as PDtBF). Reference Example 3 10g of dicyclohexyl fumarate was placed in a glass ampoule, and 2,
Add 0.1g of 2′-azobisisobutyronitrile,
Next, the inside of the ampoule was repeatedly purged with nitrogen and degassed, and then sealed, and bulk polymerization was carried out at 60°C for 10 hours.
The treatment after polymerization was carried out in the same manner as in Reference Example 1 to obtain the desired poly(dicyclohexyl fumarate) (hereinafter referred to as
PDcHF) was obtained. Reference example 4 Pour pure water to a depth of 2.5 cm into a Teflon trough with an inner area of 20 x 20 cm and a depth of 3 cm, and set the temperature of the entire room to 20°C. Concentration 1mg/ml
Gently spread a chloroform solution of PDiPF on a 150μ water surface and evaporate the solvent. 2.5X5 with No.4 roughness installed so that it is half inserted into the water surface
While detecting the surface pressure by weighing a cm filter paper, a 20 cm long Teflon float placed on the water surface was moved in parallel at a speed of 2 mm/min to narrow the water surface. By observing the surface area and surface pressure, the FA curve shown in Figure 1a was determined. This shows that PDiPF forms a solid film at a surface pressure in the range of 15-25 dyne/cm. Clean ITO Nesa glass with thickness 1.0mm and area 2.5X5cm (surface resistance 10
Ω/cm) was raised and lowered perpendicularly to the water surface at a speed of 2.0 mm/min, and 1 and 20 layers were accumulated by the vertical immersion method while moving the Teflon float so that the surface pressure was always 20 dyne/cm. This LB membrane is 400
Photographs were taken with a differential interference optical microscope at a magnification of 1,000 times and observed after enlarging them to a magnification of about 1,000 times. As a result, no film defects with a size of at least 0.05 μm or more were observed in any case. In addition, the total film thickness determined for the 20-layer LB film based on the surface roughness system is 210A,
From this, the thickness per layer is calculated to be 10.5A. Dry this LB membrane at 100 °C under an argon atmosphere for 12
After a period of time, microscopic observation and film thickness measurement were performed again, but no changes were observed. Example 1 Al was evaporated to a thickness of about 400A as a counter electrode on the LB film of 20 layers of PDiPF of Reference Example 4, and the ITO and Al layers were connected to a conductivity measuring device and conduction was conducted using a DC two-terminal method of 1V. When the temperature was measured, it was found to be less than 10 -13 S/cm at 20°C in an argon atmosphere. Furthermore, when we raised the temperature in 5℃ increments and left it at that temperature for 12 hours, we performed the same measurement and found that it was 160℃.
No change was observed in the insulation properties even though the temperature was reached. In addition, ITO/PDiPF− when laminated in one layer
The three-layer structure of LB film/Al corresponds to a thyristor, and the current-voltage (I-
V) Characteristics were shown. Reference example 5 Using the same method as reference example 4, but adding Araquin powder.
Used in place of PDiPF, cadmium chloride was added to the aqueous phase to a concentration of 4mM, and the surface pressure was adjusted.
An LB film was prepared by accumulating 20 layers of cadmium arachinate salt on an ITO substrate at a constant density of 15 dyne/cm. Since it is known that the thickness of one layer of cadmium arachidic acid salt is 28A, the total thickness of this LB film is 220A. As a counter electrode on this LB film
A1 was evaporated to a thickness of about 400A, the ITO and Al layers were connected to a conductivity measuring device, and the conductivity was measured using a DC two-terminal method of 1V.
It was found that it was less than 10 -13 S/cm. Furthermore, 5
When the temperature was raised in increments of 12°C and the temperature was left at that temperature for 12 hours, similar measurements were performed, and it was confirmed that dielectric breakdown occurred between 45 and 50°C. Reference example 6 Same as reference example 4, but instead of PDiPF
Using a 1 mg/ml chloroform solution of PDtBF
The FA curve was determined and the results are shown in Figure 1b.
Next, LB was laminated with 1 and 20 layers at a surface pressure of 20 dyne/cm.
A membrane was created. The total film thickness is 220A, and the film thickness per layer is equivalent to 11A. As a result of performing differential interference microscope observation in the same manner as in Example 1, at least
No film defects larger than 0.05 μm were observed. Dry this LB membrane at 100 °C under an argon atmosphere for 12
After a period of time, microscopic observation and film thickness measurement were performed again, but no changes were observed. Example 2 20 layers of PDtBF were accumulated as in Reference Example 6.
Conductivity measurements were carried out by providing a counter electrode on the LB film in the same manner as in Reference Example 5, and the results showed good insulation properties of 10 -13 S/cm or less at 20°C, which reached 160°C in temperature raising experiments. No change in insulation properties was observed.
Also, ITO/PDtBF−LB when one layer is accumulated
The three-layer structure of film/Al corresponded to a thyristor and exhibited IV characteristics characteristic of a thyristor. Reference example 7 Same as reference example 4, but instead of PDiPF
Using a 1 mg/ml chloroform solution of PDcHF
The FA curve was determined and the results are shown in Figure 1c.
Next, we created a 20-layer LB film with a surface pressure of 20 dyne/cm. The total film thickness is 220A, and the film thickness per layer is equivalent to 11A. As a result of performing differential interference microscope observation in the same manner as in Example 1, it was found that at least 0.05 μm
No film defects above were observed. Dry this LB membrane at 100 °C under an argon atmosphere for 12
After a period of time, microscopic observation and film thickness measurement were performed again, but no changes were observed. Example 3 The LB film of Reference Example 7 was provided with a counter electrode in the same manner as in Example 1, and the conductivity was measured.
It exhibited good insulation properties of less than 10 -13 S/cm, and no change was observed in the insulation properties even at temperatures up to 160°C in temperature-raising experiments. In addition, this ITO/
The three-layer structure of PDcHF-LB film/Al corresponds to a thyristor and exhibited -V characteristics unique to thyristors. Example 4-12 A polyfumarate LB film was prepared in the same manner as in Reference Example 4, but under the conditions shown in Table 1. As a result of differential interference microscopy observation in the same manner as in Reference Example 4, no film defects of at least 0.05 μm or more were observed. Dry this LB membrane at 100 °C under an argon atmosphere for 12
After a period of time, microscopic observation and film thickness measurement were performed again, but no changes were observed. In addition, as in Example 1, a counter electrode was provided and current-voltage measurements were performed, and the results showed the characteristics shown in Table 1. In the temperature increase experiment, no change was observed in these characteristics even when the temperature reached 160°C. Ta. Example 13 An LB film in which one layer of PDiPF was laminated was prepared in the same manner as in Reference Example 4 except that GaP was used for the substrate. As a counter electrode, AL was deposited to a thickness of about 200 A in the same manner as in Example 1, and the current-voltage characteristics were measured. As a result, a good rectifying effect was observed, and the i-Si/
It was confirmed that the three-layer structure of PDiPF-LB film/Al works as an MIS type device. Furthermore, when this element is irradiated with white light of 0.4 mW/cm 2 , Figure 3b
It was found that it has photoelectric conversion ability. Example 14 Example 13 except that (GaP) 0.9 −AS 0.1 was used for the substrate
LB was formed in the same manner as in Example 13, and after one layer of PDiPF was laminated, a counter electrode was provided in the same manner as in Example 13. When a DC potential of 5V is applied to this element, it emits red light,
It was found that it can be applied to light emitting diodes, electroluminescent displays, etc. Examples 15-20 The polyfumarate shown below was synthesized according to the method of Reference Example 1, and the polymer was synthesized according to the method of Reference Example 4.
An LB film was prepared, and a counter electrode was provided according to the method of Example 1, and the current/voltage characteristics were measured. Table 1 shows the configuration and electrical characteristics of these electrical elements. Example 15 Poly(2-cyanoethyl-isopropyl fumarate) Example 16 Poly(glycidyl-isopropyl fumarate) Example 17 Poly(diethylphosphonomethyl-isopropyl fumarate) Example 18 Poly(2-methylthioethyl-isopropyl fumarate) Example 19 Poly(2-perfluorooctylethyl-usopyropyl fumarate) Example 20 Poly(3-tristrimethylsiloxysilylpropyl-isopropyl fumarate)

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は高分子LB膜の表面圧と表面積との関
係を示す図である。 a……参考例4に記載のPDiPFの20℃におけ
る表面圧−表面積曲線、b……参考例5に記載の
PDtBFの20℃における表面圧−表面積曲線、c
……参考例6に記載のPDeHFの20℃における表
面圧−表面積曲線。 第2図は実施例1に記載のサイリスタの20℃に
おける電流−電圧特性図である。第3図は実施例
14に記載のMIS型素子の電流−電圧特性図であ
る。 a……暗下における電流−電圧特性、b……明
下(白色光0.4mW/cm2)における電流−電圧特
性。
FIG. 1 is a diagram showing the relationship between surface pressure and surface area of a polymer LB film. a…Surface pressure-surface area curve at 20°C of PDiPF described in Reference Example 4, b…Surface area curve described in Reference Example 5
Surface pressure-surface area curve of PDtBF at 20℃, c
...Surface pressure-surface area curve at 20°C of PDeHF described in Reference Example 6. FIG. 2 is a current-voltage characteristic diagram at 20° C. of the thyristor described in Example 1. Figure 3 is an example
15 is a current-voltage characteristic diagram of the MIS type element described in No. 14. FIG. a...Current-voltage characteristics in the dark, b...Current-voltage characteristics in the light (white light 0.4 mW/ cm2 ).

Claims (1)

【特許請求の範囲】 1 一般式(1)で示されるポリフマレートを、水と
混和しない有機溶剤の0.1−3mg/mlの濃度の溶
液とし、それを清浄な水平面上に静かに展開して
有機溶剤を蒸散させて表面圧1dyne/cm以下の気
体膜を形成させ、それに水平面方向に圧力を加え
て表面圧10−30dyne/cmに制御して得られる単
分子固体膜を垂直浸せき法または水平付着法によ
り導電性または半導体基板上に累積してなる高分
子LB膜上に、導電性ないし半導体電極を設置し
てなる高分子LB膜電気素子。 【化】 但し式(1)において、Rは、次の(a)−(b)のいずれ
かより選ばれる基である。 (a) 炭素数3以上30以下の枝分かれ炭化水素基で
あり、フマレートエステルから数えたとき3つ
目の炭素より内側に1つ目の枝分かれ点を持
ち、同様にある枝分かれ点から次の枝分かれ点
までの炭素数が3以下である炭化水素基。 (b) 第一アミド、第二アミド、ヒドロキシ、チオ
ール等の易動性水素を含まず、かつN、O、
P、Sより選ばれるヘテロ原子をふくんでお
り、水素を除く構成原子数が3以上30以下の枝
分かれ炭化水素系基であり、フマレートエステ
ルから数えたとき構成原子数3以内に1つ目の
枝分かれ点を持ち、同様にある枝分かれ点から
次の枝分かれ点までの構成原子数が3以下であ
る炭化水素系基。 (c) トリフロロメチル、ペンタフロロエチル、ヘ
アタフロロ−n−プロピル、あるいは(a)の炭化
水素基の水素の一部ないし全部がフツ素に置き
換わつた基より選ばれるフツ素系炭化水素基。 (d) ヒドロキシ基を含まず、構成原子数、枝分か
れの様子が(b)と同様であるシロキサン系炭化水
素基。
[Claims] 1. A polyfumarate represented by general formula (1) is made into a solution with a concentration of 0.1-3 mg/ml in an organic solvent that is immiscible with water, and the solution is gently spread on a clean horizontal surface to remove the organic solvent. is evaporated to form a gas film with a surface pressure of 1 dyne/cm or less, and a monomolecular solid film obtained by applying pressure in the horizontal direction to control the surface pressure to 10-30 dyne/cm is produced using the vertical dipping method or horizontal deposition method. A polymer LB film electrical element in which a conductive or semiconductor electrode is placed on a polymer LB film accumulated on a conductive or semiconductor substrate. embedded image In formula (1), R is a group selected from any of the following (a) to (b). (a) A branched hydrocarbon group with a carbon number of 3 to 30, with the first branching point inside the third carbon when counted from the fumarate ester, and the next branching occurs from one branching point in the same way. A hydrocarbon group having 3 or less carbon atoms up to the point. (b) Does not contain mobile hydrogen such as primary amide, secondary amide, hydroxy, thiol, etc., and does not contain N, O,
It is a branched hydrocarbon group containing a heteroatom selected from P and S, and the number of constituent atoms excluding hydrogen is 3 to 30, and the first one within 3 constituent atoms when counted from the fumarate ester. A hydrocarbon group that has a branching point and the number of constituent atoms from one branching point to the next branching point is 3 or less. (c) A fluorine-based hydrocarbon group selected from trifluoromethyl, pentafluoroethyl, hairtafluoro-n-propyl, or a group in which part or all of the hydrogen atoms in the hydrocarbon group in (a) are replaced with fluorine. . (d) A siloxane hydrocarbon group that does not contain a hydroxy group and has the same number of constituent atoms and branching as in (b).
JP61104900A 1986-05-09 1986-05-09 High-molecular lb film electric element Granted JPS62262457A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP61104900A JPS62262457A (en) 1986-05-09 1986-05-09 High-molecular lb film electric element
EP87106525A EP0244835B1 (en) 1986-05-09 1987-05-06 Langmuir-blodgett ultrathin membrane of polyfumurate
DE8787106525T DE3781315T2 (en) 1986-05-09 1987-05-06 ULTRADUENNE MEMBRANE OF THE LANGMUIR BLODGETT TYPE MADE OF POLYFUMURATE.
US07/047,887 US4907038A (en) 1986-05-09 1987-05-08 Langmuir Blodgett ultrathin membrane of polyfumarate
CA000536706A CA1285732C (en) 1986-05-09 1987-05-08 Langmuir-blodgett ultrathin membrane of polyfumarate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61104900A JPS62262457A (en) 1986-05-09 1986-05-09 High-molecular lb film electric element

Publications (2)

Publication Number Publication Date
JPS62262457A JPS62262457A (en) 1987-11-14
JPH0577302B2 true JPH0577302B2 (en) 1993-10-26

Family

ID=14393017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61104900A Granted JPS62262457A (en) 1986-05-09 1986-05-09 High-molecular lb film electric element

Country Status (1)

Country Link
JP (1) JPS62262457A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9619419D0 (en) * 1996-09-18 1996-10-30 Univ Bradford Polymeric material

Also Published As

Publication number Publication date
JPS62262457A (en) 1987-11-14

Similar Documents

Publication Publication Date Title
Tomozawa et al. Metal-polymer Schottky barriers on cast films of soluble poly (3-alkylthiophenes)
Miles et al. The formation of metal oxide films using gaseous and solid electrolytes
TWI425689B (en) Electrically conductive feature fabrication process
Eroğlu et al. A comparative study on the electrical properties and conduction mechanisms of Au/n-Si Schottky diodes with/without an organic interlayer
EP0272937B1 (en) Switching device
US20130003258A1 (en) Superhydrophilic and water-capturing surfaces
JP2004115805A (en) Organic gate insulating film and organic thin film transistor using the same
EP0330395B1 (en) Switching element
WO1983003165A1 (en) Polymeric films
JP5576611B2 (en) Method for producing novel organic semiconductor thin film comprising laminating sheet-like crystals of condensed polycyclic aromatic compound on substrate, and liquid dispersion
US4907038A (en) Langmuir Blodgett ultrathin membrane of polyfumarate
JPH0577302B2 (en)
Lee et al. Side chains contributions to characteristics of resistive memory based on water-soluble polyfluorenes: Effects of structure and length of side pendant group
JPH0563233B2 (en)
TW201826554A (en) Solid junction type photoelectric conversion element, perovskite film, and photoelectric conversion module
Özbek et al. Electrical properties of alternating acid and amino substituted calixarene Langmuir-Blodgett thin films
Gubanski et al. Conduction processes in anodic tantalum oxide thin films with gold counterelectrodes
JP6706817B2 (en) Electric field control electrode and electric double layer device
Barış et al. The frequency dependent electrical properties of MIS structures with Mn-doped complexed interfacial layer
JPH03156926A (en) Electric element
Zhang et al. Organic field-effect transistor floating-gate memory using polysilicon as charge trapping layer
Consigny III et al. Surface properties of cadmium selenide
Homes Giant polarization in nanodielectrics
Riul Jr et al. The electrical characteristics of a heterojunction diode formed from an aniline oligomer LB-deposited onto poly (3-methylthiophene) Basis of a presentation given at Materials Chemistry Discussion No. 2, 13–15 September 1999, University of Nottingham, UK.
CN113937225A (en) Anisotropic self-driven organic/inorganic photoelectric detector and preparation method thereof