JPH057703A - Solvent extraction method transferring only water phase - Google Patents

Solvent extraction method transferring only water phase

Info

Publication number
JPH057703A
JPH057703A JP3161921A JP16192191A JPH057703A JP H057703 A JPH057703 A JP H057703A JP 3161921 A JP3161921 A JP 3161921A JP 16192191 A JP16192191 A JP 16192191A JP H057703 A JPH057703 A JP H057703A
Authority
JP
Japan
Prior art keywords
extraction
metal
organic phase
concentration
solvent extraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3161921A
Other languages
Japanese (ja)
Inventor
Keita Yamada
慶太 山田
Hidetoshi Baba
英敏 馬場
Hideo Koshimura
英雄 越村
Toshio Okawara
敏夫 大川原
Shigeru Yonekura
茂 米倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asaka Riken Industrial Co Ltd
Original Assignee
Asaka Riken Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asaka Riken Industrial Co Ltd filed Critical Asaka Riken Industrial Co Ltd
Priority to JP3161921A priority Critical patent/JPH057703A/en
Publication of JPH057703A publication Critical patent/JPH057703A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Extraction Or Liquid Replacement (AREA)

Abstract

PURPOSE:To provide a method for solvent extraction in macro concentration and an extraction operation method based on a metal exchange reaction. CONSTITUTION:In a solvent extraction method in which an objective metal is separated from among two or more kinds of metals contained in a water phase, an organic phase is not transferred but only a water phase is transferred. In this way, the objective metal concentration is increased. Moreover, multistage extraction vessels each of which comprises the organic phase added with an extractant and the water phase containing two or more kinds of metals are installed. The solvent extraction in each stage is conducted in the manner that the organic phase is not transferred but only the water phase is transferred from one stage to the next in sequence so that the objective metal can efficiently be separated from among coexistent metals.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野利用】本発明は、溶媒抽出に用いる
新規な抽出方法およびこれを用いた抽出分離操作方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel extraction method used for solvent extraction and an extraction / separation operation method using the same.

【0002】[0002]

【発明の背景】従来、溶媒抽出による金属の分離回収は
ミキサーセトラーに代表されるように、抽出剤が添加さ
れた有機相と被抽出物が添加された水相とを向流で移動
させる方法が一般的である。また処理量の少ない溶液か
ら目的とする金属を回収する場合には、バッチ式多段抽
出が適当な方法と考えられる。
BACKGROUND OF THE INVENTION Conventionally, separation and recovery of metals by solvent extraction are represented by a mixer-settler, which is a method in which an organic phase added with an extractant and an aqueous phase added with a substance to be extracted are moved in countercurrent. Is common. When recovering a target metal from a solution having a small treatment amount, batch multistage extraction is considered to be an appropriate method.

【0003】ところで、二種以上の金属が混合された水
相から、溶媒抽出による目的金属の分離は、以下の機構
によるものと一般的に知られている。水相に添加した二
種類の金属をA、B、抽出剤の化学種をHGで示し、キ
レート抽出系を例として、以下に抽出機構を考察する。
抽出剤と金属A、Bとの抽出反応は
By the way, it is generally known that separation of a target metal from a water phase in which two or more kinds of metals are mixed by solvent extraction is based on the following mechanism. The two types of metals added to the aqueous phase are indicated by A and B, the chemical species of the extractant are indicated by HG, and the extraction mechanism will be discussed below by taking the chelate extraction system as an example.
The extraction reaction between the extractant and metals A and B is

【0004】[0004]

【数1】 A2++2〔HG〕o=〔AG2 〕o+2H+ ## EQU1 ## A 2+ +2 [HG] o = [AG 2 ] o + 2H +

【0005】[0005]

【数2】 B2++2〔HG〕o=〔BG2 〕o+2H+ で表される。ここでサフイックス“0”は有機相の化学
種を、無印は水相の化学種を表す。抽出平衡に伴う平衡
定数Kex、及び有機相と水相の二相間の分配比DをDと
すると、
[Expression 2] B 2+ +2 [HG] o = [BG 2 ] o + 2H + Here, suffix "0" represents a chemical species of an organic phase, and no mark represents a chemical species of an aqueous phase. When the equilibrium constant K ex associated with the extraction equilibrium and the partition ratio D between the organic phase and the aqueous phase are D,

【0006】[0006]

【数3】 [Equation 3]

【0007】[0007]

【数4】 で表される。二種類の添加金属A、Bの分離係数Sは、
それぞれの金属の分配比Dの比で定義されるから、数3
および数4から、
[Equation 4] It is represented by. The separation coefficient S of the two types of added metals A and B is
Since it is defined by the ratio of the distribution ratio D of each metal,
And from the number 4,

【0008】[0008]

【数5】 S=DA /DB =Kex(A) /K
ex(B) と表される。よって分離係数Sは、数5に示すように、
各金属A、Bの抽出平衡定数Kex(A ) 、Kex(B) (錯体
の安定項が含まれる。)の比であらわされる。
[Equation 5] S = D A / D B = K ex (A) / K
It is expressed as ex (B) . Therefore, the separation coefficient S is, as shown in Equation 5,
It is represented by the ratio of the extraction equilibrium constants K ex (A ) and K ex (B) (including the stability term of the complex ) of each metal A and B.

【0009】[0009]

【発明が解決しようとする課題】しかし、かかる数5
は、ミクロ濃度の添加金属に対し、過剰な抽出剤を含む
有機相で抽出する場合に適用できるものであり、工業的
規模で行うマクロ濃度の金属抽出においては、上記数5
は適応されない。すなわち、かかる状態においては、有
機相中の金属イオンと有機相に抽出された金属錯体との
間の金属交換反応を考慮する必要がある。
However, this number 5
Can be applied when extracting with an organic phase containing an excess of an extractant with respect to a metal having a micro concentration, and when extracting a metal having a macro concentration on an industrial scale, the above formula 5 is used.
Is not applied. That is, in such a state, it is necessary to consider the metal exchange reaction between the metal ion in the organic phase and the metal complex extracted in the organic phase.

【0010】そこで、この金属交換を確認するため発明
者は、抽出試薬N,N−ビス(2−エチルヘキシル)グ
リシン(以下「D2EHG」と略する。)0.5モルお
よび0.2モルの有機相にパラジウムをそれぞれ23.
85g/lおよび8.33g/lを抽出した有機相
を、、これに同容積の塩酸1モルと白金8.08g/l
を含む水溶液を水相として抽出操作を繰り返した。操作
回数と有機相のパラジウム及び白金量を測定し、その結
果は図1に示した。かかる図1の結果から、操作回数が
増える毎に、有機相中のパラジウムは、水相の白金によ
り逆抽出されて水相に移動し、水相の白金は有機相に移
動する金属交換が確認される。
Therefore, in order to confirm this metal exchange, the inventor of the present invention used 0.5 mol and 0.2 mol of an organic extraction reagent N, N-bis (2-ethylhexyl) glycine (hereinafter abbreviated as "D2EHG"). Palladium in each phase 23.
85 g / l and 8.33 g / l of the extracted organic phase were added to 1 mol of hydrochloric acid of the same volume and platinum of 8.08 g / l.
The extraction operation was repeated by using an aqueous solution containing a. The number of operations and the amounts of palladium and platinum in the organic phase were measured, and the results are shown in FIG. From the results of FIG. 1, as the number of operations increases, palladium in the organic phase is back-extracted by platinum in the aqueous phase and moves to the aqueous phase, and platinum in the aqueous phase moves to the organic phase. Metal exchange confirmed To be done.

【0011】ここで、2種類の添加金属濃度を〔A〕in
、〔B〕in 、抽出後の有機相の濃度を〔A
2 O 、〔BG2 O とし、抽出後の水相の金属濃度
を〔A〕、〔B〕とすると、有機相と水相の金属Aの濃
度の関係は、
Here, two kinds of additive metal concentrations are [A] in
, [B] in , the concentration of the organic phase after extraction is [A
Assuming that G 2 ] O and [BG 2 ] O are the metal concentrations of the aqueous phase after extraction are [A] and [B], the relationship between the concentrations of the metal A in the organic phase and the aqueous phase is

【0012】[0012]

【数6】 〔A〕in=〔AG2 O +〔A〕 で示されるから、添加金属濃度〔A〕inと有機相に抽出
された金属濃度〔AG2 O との関係は、数3と数6よ
り、次の数7のように示される。
[Equation 6] [A] in = [AG 2 ] O + [A] Since the addition metal concentration [A] in and the metal concentration [AG 2 ] O extracted in the organic phase are From 3 and Equation 6, the following Equation 7 is obtained.

【0013】[0013]

【数7】 ここで、[Equation 7] here,

【0014】[0014]

【数8】 とした。同様に金属Bについても、次の数9のように示
される。
[Equation 8] And Similarly, with respect to the metal B, the following Expression 9 is given.

【0015】[0015]

【数9】 ここで、[Equation 9] here,

【0016】[0016]

【数10】 とした。[Equation 10] And

【0017】抽出剤が大過剰に存在する場合には、金属
A、Bが共に抽出される。次に、金属Aの抽出錯体の安
定度が、金属Bのそれより大きい場合、金属交換反応
は、
When the extractant is present in a large excess, both metals A and B are extracted. Then, if the stability of the extracted complex of metal A is greater than that of metal B, the transmetallation reaction is

【0018】[0018]

【数11】 〔BG2 0 +〔A〕=〔AG2 0
+〔B〕 で示され、交換定数Kは、
[BG 2 ] 0 + [A] = [AG 2 ] 0
+ [B], and the exchange constant K is

【0019】[0019]

【数12】 で表される。このように、交換定数Kは分離定数Sに
等しくなる。
[Equation 12] It is represented by. In this way, the exchange constant K becomes equal to the separation constant S.

【0020】以上から、有機相の含有金属濃度〔M〕O
は、
From the above, the metal concentration in the organic phase [M] O
Is

【0021】[0021]

【数13】 〔M〕O =〔AG2 0 +〔BG2 0 で示されから、目的とする金属Aの濃度〔AG2 0
高めるためには、
[M] O = [AG 2 ] 0 + [BG 2 ] 0 Since the target concentration of the metal A [AG 2 ] 0 is increased,

【0022】[0022]

【数14】 の数14に、上記、数7、数9及び数12を代入して変
形すると、以下の数15が導かれる。
[Equation 14] By substituting the above equations 7, 9, and 12 into the equation (14), the following equation (15) is derived.

【0023】[0023]

【数15】 ここで、α=〔B〕in/〔A〕in とする。[Equation 15] Here, α = [B] in / [A] in .

【0024】すなわち、数15から明らかな様に、αが
小さい程、即ち金属Aと金属Bの混合添加水溶液中の金
属Aの添加濃度〔A〕inが高い程、また交換定数kの
大きい程、有機相の金属Aの濃度〔AG2 0 が高くな
る。即ち、目的の金属Aを効率良く分離ためには、目的
金属Aの添加濃度〔A〕inと交換定数K即ち分離係数
Sに影響するものと考えられる。
That is, as is clear from the equation (15), the smaller α is, that is, the higher the addition concentration [A] in of metal A in the mixed addition aqueous solution of metal A and metal B is, and the larger the exchange constant k is. , The concentration of metal A in the organic phase [AG 2 ] 0 becomes high. That is, it is considered that in order to efficiently separate the target metal A, the addition concentration [A] in of the target metal A and the exchange constant K, that is, the separation coefficient S are affected.

【0025】なお、上記数15は、キレート型に限ら
ず、溶媒和型、イオン対型の抽出系についても同様に適
用できる一般式として考えることができる。以上から、
発明者は、数6に示したように添加金属濃度〔A〕
inは、有機相の金属濃度〔AG2 0 と水相の金属濃度
〔A〕との合算によることから、遊離の抽出剤の少ない
状態(有機相の金属濃度〔AG2 0 を高めることがで
きない状態。)であっても水相の金属濃度〔A〕を高め
ることにより、金属交換反応による目的金属Aの抽出分
離に着目し、有機相を移動させずに水相のみをさせるこ
とにより、マクロ濃度における溶媒抽出方法の原理を見
出した。しかも、抽出槽を多段に配置して操作を行うこ
とにより混合水溶液から目的金属を優位に回収するとの
できる新規な操作方法をも提供するものである。
The above formula 15 can be considered as a general formula which can be similarly applied to not only the chelate type but also a solvation type and an ion pair type extraction system. From the above,
The inventor has found that the additive metal concentration [A]
Since in is the sum of the metal concentration [AG 2 ] 0 of the organic phase and the metal concentration [A] of the aqueous phase, the state in which the amount of free extractant is small (increasing the metal concentration [AG 2 ] 0 of the organic phase) Even if it is not possible), by focusing on the extraction and separation of the target metal A by the metal exchange reaction by increasing the metal concentration [A] of the aqueous phase, by allowing only the aqueous phase without moving the organic phase , The principle of solvent extraction method at macro concentration was found. In addition, the present invention also provides a novel operation method capable of predominantly recovering the target metal from the mixed aqueous solution by arranging the extraction tanks in multiple stages and performing the operation.

【0026】ここに本出願の目的は、上記原理に沿っ
た、溶媒抽出方法、及びこれを用いた抽出分離操作方法
を開示するものである。
The object of the present application is to disclose a solvent extraction method and an extraction / separation operation method using the same, which are based on the above principle.

【0027】[0027]

【課題を解決するための手段】上記目的を実現するた
め、次の方法を採る。すなわち、水相に含まれる複数の
金属から目的金属を溶媒抽出により分離する方法におい
て、有機相を移動させずに水相のみを移動させることに
より、目的の添加金属濃度を高めることを特徴とする。
In order to achieve the above object, the following method is adopted. That is, in the method of separating the target metal from the plurality of metals contained in the aqueous phase by solvent extraction, by moving only the aqueous phase without moving the organic phase, the target added metal concentration is increased. .

【0028】さらに、抽出剤を添加した有機相と、複数
の金属が添加された水相とからなる抽出槽を多段に配置
し、各段での抽出毎に、有機相は移動させずに水相のみ
を順次、次段へ移動させて溶媒抽出を行うにすれば、共
存する金属から目的の金属を効率よく分離することがで
きる。
Further, an extraction tank comprising an organic phase to which an extractant is added and an aqueous phase to which a plurality of metals are added is arranged in multiple stages, and the water is kept without moving the organic phase for each extraction in each stage. If only the phase is sequentially moved to the next stage for solvent extraction, the target metal can be efficiently separated from the coexisting metal.

【0029】[0029]

【実施例1】次に、本発明にかかる溶媒抽出方法の効果
を実証するため、白金・パラジウム混合溶液の分離操作
に適用した。以下にこれについて説明する。白金とパラ
ジウムを塩酸に溶解させた水溶液を水相とし、0.5M
のD2EHG( N,Nービス(2ーエチルヘキシル)グリ
シン)をトルエンで希釈したものを有機相としている。
水相の塩酸濃度は抽出効率の点から1モル濃度(1M)
の塩酸を用いている。
Example 1 Next, in order to demonstrate the effect of the solvent extraction method according to the present invention, it was applied to a separation operation of a platinum / palladium mixed solution. This will be described below. An aqueous solution prepared by dissolving platinum and palladium in hydrochloric acid is used as an aqueous phase, and 0.5M
D2EHG (N, N-bis (2-ethylhexyl) glycine) of 1. was diluted with toluene and used as the organic phase.
The hydrochloric acid concentration of the aqueous phase is 1 molar (1M) in terms of extraction efficiency.
Hydrochloric acid is used.

【0030】目的金属白金の回収するための抽出槽の配
列は図2に示したように、抽出槽1を5個円形に配列
し、NO.1の抽出槽に塩酸を含む白金とパラジウムの混合
溶液を注入して抽出を繰り返した。抽出毎に有機相は移
動させずに、水相の水溶液のみをNO.2の抽出槽へ移動さ
せる。一定の回数抽出を繰り返すと有機相の遊離の抽出
剤濃度の減少に伴い抽出能は減少する。水相に残る金属
イオンは次の抽出槽で抽出される。
The arrangement of the extraction tanks for recovering the target metal platinum is, as shown in FIG. 2, five extraction tanks 1 are arranged in a circle, and the NO.1 extraction tank contains hydrochloric acid containing platinum and palladium. The solution was injected and the extraction was repeated. The organic phase is not moved for each extraction, but only the aqueous solution of the aqueous phase is moved to the NO.2 extraction tank. When the extraction is repeated a certain number of times, the extractability decreases as the concentration of free extractant in the organic phase decreases. The metal ions remaining in the aqueous phase are extracted in the next extraction tank.

【0031】このように順次抽出を繰り返して、NO.5の
抽出槽の水槽にパラジウムが僅かに残るようになったと
きNO.1の抽出槽への注入を止め、NO.2の抽出槽へ混合水
溶液の注入を切り替える。抽出槽NO.1の有機相は希塩酸
と希過塩酸の混合水溶液で逆抽出し、有機相を水洗いし
た後、NO.5の抽出槽から流出した水相を受けるように配
列して操作を行った。
When the palladium is slightly left in the water tank of the NO.5 extraction tank by repeating the extraction as described above, the injection of NO.1 into the extraction tank is stopped and the extraction tank of NO.2 is moved to the extraction tank. Switch injection of mixed aqueous solution. The organic phase of the extraction tank NO.1 was back-extracted with a mixed aqueous solution of dilute hydrochloric acid and dilute perchloric acid, the organic phase was washed with water, and then arranged so as to receive the aqueous phase flowing out of the extraction tank of NO.5. It was

【0032】図3は、上記実施例において、白金とパラ
ジウムの混合比が異なる場合における、有機相に抽出さ
れた白金とパラジウムの濃度比と、抽出段数との関係を
示したものである。また、抽出に使用した白金とパラジ
ウムの混合溶液の組成及び白金比率と、5段抽出後の第
一抽出相の有機相の白金の比率〔Pt/(Pt +P
d)〕%は、表1に示した。
FIG. 3 shows the relationship between the concentration ratio of platinum and palladium extracted in the organic phase and the number of extraction stages when the mixing ratio of platinum and palladium is different in the above-mentioned embodiment. In addition, the composition and platinum ratio of the mixed solution of platinum and palladium used for extraction, and the ratio of platinum in the organic phase of the first extraction phase after five-stage extraction [Pt / (Pt + P
d)]% is shown in Table 1.

【0033】[0033]

【表1】 上記表1から明らかなように、添加水溶液の白金とパラ
ジウムの濃度比よりも抽出した有機相の白金濃度の比率
は高く、添加水溶液の白金濃度の高いものほど有機相の
白金濃度は高くなることを示している。
[Table 1] As is clear from Table 1 above, the ratio of the platinum concentration in the extracted organic phase is higher than the concentration ratio of platinum and palladium in the added aqueous solution, and the higher the platinum concentration in the added aqueous solution, the higher the platinum concentration in the organic phase. Is shown.

【0034】なお、この上記実施結果から、先に考察立
式した数15が実証される。さらに、表1のNO. Bを代
表例として、各段の有機相に抽出された白金とパラジウ
ム量と遊離抽出剤濃度を算出し、下記の表2に示した。
From the results of the above-mentioned implementation, the above-mentioned mathematical formula 15 is verified. Further, using NO. B in Table 1 as a representative example, the amounts of platinum and palladium extracted in the organic phase of each stage and the concentration of the free extractant were calculated and shown in Table 2 below.

【0035】[0035]

【表2】 上記表2から、有機相の白金量は段数の増加に従って
減少し、逆に有機相のパラジウム量は増加することが裏
付けられる。また、各段の遊離抽出剤濃度は0.00から0.
02M程度で、金属の抽出に抽出剤は有効に利用されてい
る。
[Table 2] From Table 2 above, it is confirmed that the amount of platinum in the organic phase decreases as the number of stages increases, and conversely, the amount of palladium in the organic phase increases. The free extractant concentration at each stage is 0.00 to 0.
At about 02M, the extractant is effectively used for extracting metals.

【0036】このように、パラジウムに対する白金濃度
が低くてもこのような抽出操作方法を行うことにより、
パラジウムよりも白金を優先的に濃縮し、選択性を高め
た回収を行うことが可能となる。安定度の高い金属が優
先的に抽出され、安定度の低い金属は金属交換反応によ
って逆抽出されることになる。
Thus, even if the platinum concentration relative to palladium is low, by performing such an extraction operation method,
Platinum is preferentially concentrated over palladium, and recovery with enhanced selectivity can be performed. The metal with high stability is preferentially extracted, and the metal with low stability is back-extracted by the metal exchange reaction.

【0037】[0037]

【実施例2】上述の金属交換反応を促進利用する本発明
の溶媒抽出方法は、上述の白金とパラジウムの混合水溶
液ばかりでなく、抽出剤との安定度の差に基づく金属交
換反応を利用できるものであれば、広く他の金属混合水
溶液の溶媒抽出においても、本発明にかかる溶媒抽出方
法を適用することができるものである。
Example 2 The solvent extraction method of the present invention which accelerates and utilizes the above-mentioned metal exchange reaction can utilize not only the above-mentioned mixed aqueous solution of platinum and palladium but also the metal exchange reaction based on the difference in stability with the extractant. The solvent extraction method according to the present invention can be widely applied to the solvent extraction of other mixed metal aqueous solutions.

【0038】例えば、サマリウムとプラセオジウムの混
合溶液においても金属交換反応がみられる。サマリウム
0.05Mおよび塩酸0.25Mからなる水溶液を0.1 Mのプラ
セオジウムを含む有機相で逆抽出し、操作回数と有機相
のプラセオジウムおよびサマリウムの濃度変化を図4に
示した。また、塩酸0.25Mのみで逆抽出した結果も合わ
せて示した。その結果、単に塩酸のみで逆抽出するより
も、サマリウムを含む同濃度の塩酸溶液で逆抽出効果が
高い結果が得られた。これは、金属交換反応によって、
サマリウムが抽出され有機相の遊離の抽出剤濃度を低下
させたためである。よって、本発明の操作方法の有効性
が実証された。
For example, a metal exchange reaction is also observed in a mixed solution of samarium and praseodymium. samarium
An aqueous solution containing 0.05 M and 0.25 M hydrochloric acid was back-extracted with an organic phase containing 0.1 M praseodymium, and the number of operations and changes in the concentrations of praseodymium and samarium in the organic phase are shown in FIG. The results of back extraction with only 0.25 M hydrochloric acid are also shown. As a result, the result that the back-extracting effect was higher with the hydrochloric acid solution containing samarium at the same concentration was obtained as compared with the case of back-extracting with only hydrochloric acid. This is due to the metal exchange reaction
This is because samarium was extracted to reduce the concentration of free extractant in the organic phase. Therefore, the effectiveness of the operating method of the present invention was verified.

【0039】[0039]

【効果】上述のように本発明の溶媒抽出方法は、有機相
を移動せず、水相のみを移動することにより、希釈した
水溶液からの抽出が可能であり、抽出に影響する水素イ
オン濃度、クロライドイオン濃度など水相で錯形成を促
す因子を低くおさえることにより、抽出効率及び有機相
の抽出剤を有効に利用する特徴を有するものである。
[Effect] As described above, the solvent extraction method of the present invention allows extraction from a diluted aqueous solution by moving only the aqueous phase without moving the organic phase, and the hydrogen ion concentration that affects the extraction, By suppressing factors such as chloride ion concentration that promote complex formation in the aqueous phase to a low level, the extraction efficiency and the extractant in the organic phase are effectively used.

【0040】それと共に、抽出剤濃度の高い範囲におい
ては定量的に金属の抽出を行い、抽出濃度の減少にした
がって金属交換反応を促し、抽出剤との安定度がより高
い金属を優位に抽出させ、選択性の高い分離回収を行う
ことができる。
At the same time, metal is quantitatively extracted in a high extractant concentration range, the metal exchange reaction is promoted as the extract concentration decreases, and the metal having a higher stability with the extractant is predominantly extracted. It is possible to perform separation and recovery with high selectivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】白金水溶液による洗浄回数と有機相のパラジウ
ム交換量を表わした図である。
FIG. 1 is a diagram showing the number of washings with a platinum aqueous solution and the amount of palladium exchanged in an organic phase.

【図2】抽出槽配置の概念図である。FIG. 2 is a conceptual diagram of an extraction tank arrangement.

【図3】有機相に抽出された白金とパラジウムの濃度比
と段数との関係を示したものである。
FIG. 3 shows the relationship between the concentration ratio of platinum and palladium extracted in the organic phase and the number of plates.

【図4】サマリウム及び塩酸水溶液による操作回数と有
機相中のプラセオジウム濃度との関係を示した図であ
る。
FIG. 4 is a diagram showing the relationship between the number of operations with samarium and hydrochloric acid aqueous solution and the praseodymium concentration in the organic phase.

【図面の符号の説明】 1 抽出槽[Explanation of reference numerals in the drawings] 1 Extraction tank

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】水相に含まれる複数の金属から目的金属を
溶媒抽出により分離する方法において有機相を移動させ
ずに水相のみを移動させることを特徴とする溶媒抽出方
法。
1. A method of solvent extraction, wherein a target metal is separated from a plurality of metals contained in an aqueous phase by solvent extraction, and only an aqueous phase is moved without moving an organic phase.
【請求項2】抽出剤を添加した有機相と、複数の金属が
添加された水相とから成る複数の抽出槽を多段に配置
し、第1段抽出槽から水相を注入し、各段での抽出毎
に、有機相は移動させずに水相のみを順次、次段へ移動
させて溶媒抽出を行うことを特徴とする抽出分離操作方
法。
2. A plurality of extraction tanks each comprising an organic phase to which an extractant is added and an aqueous phase to which a plurality of metals have been added are arranged in multiple stages, and the aqueous phase is injected from the first-stage extraction tank to each stage. An extraction and separation operation method characterized in that each time extraction is carried out, the organic phase is not moved and only the aqueous phase is sequentially moved to the next stage for solvent extraction.
JP3161921A 1991-07-02 1991-07-02 Solvent extraction method transferring only water phase Pending JPH057703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3161921A JPH057703A (en) 1991-07-02 1991-07-02 Solvent extraction method transferring only water phase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3161921A JPH057703A (en) 1991-07-02 1991-07-02 Solvent extraction method transferring only water phase

Publications (1)

Publication Number Publication Date
JPH057703A true JPH057703A (en) 1993-01-19

Family

ID=15744566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3161921A Pending JPH057703A (en) 1991-07-02 1991-07-02 Solvent extraction method transferring only water phase

Country Status (1)

Country Link
JP (1) JPH057703A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012211389A (en) * 2011-03-18 2012-11-01 Jx Nippon Mining & Metals Corp Method for recovering gold from dilute gold solution

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012211389A (en) * 2011-03-18 2012-11-01 Jx Nippon Mining & Metals Corp Method for recovering gold from dilute gold solution
US8911533B2 (en) 2011-03-18 2014-12-16 Jx Nippon Mining & Metals Corporation Method of recovering gold from dilute gold solution

Similar Documents

Publication Publication Date Title
Depuydt et al. Solvent extraction of scandium (III) by an aqueous biphasic system with a nonfluorinated functionalized ionic liquid
Coll et al. Studies on the extraction of Co (II) and Ni (II) from aqueous chloride solutions using Primene JMT-Cyanex272 ionic liquid extractant
Gega et al. Separation of Co (II) and Ni (II) ions by supported and hybrid liquid membranes
JP6194867B2 (en) Extraction separation method
JPH10235102A (en) Mehtod for extracting metallic element with solvent
Yang et al. One step effective separation of platinum and palladium in an acidic chloride solution by using undiluted ionic liquids
Nishihama et al. Advanced liquid–liquid extraction systems for the separation of rare earth ions by combination of conversion of the metal species with chemical reaction
KR101720900B1 (en) Method for separation of platinum, palladium, rhodium and iridium from concentrated hydrochloric acid solution
JPH0280530A (en) Method for separating rare earth element
KR890003424A (en) Method for Co-Separation of Contaminants from Electrolyte Solution of Useful Metals
Aksamitowski et al. Selective copper extraction from sulfate media with N, N-dihexyl-N′-hydroxypyridine-carboximidamides as extractants
Cerpa et al. Separation of cobalt and nickel from acidic sulfate solutions using mixtures of di (2‐ethylhexyl) phosphoric acid (DP‐8R) and hydroxyoxime (ACORGA M5640)
US4867951A (en) Separation of actinides from lanthanides
Iberhan et al. Removal of arsenic (III) and arsenic (V) from sulfuric acid solution by liquid–liquid extraction
SU867283A3 (en) Method isotope chemical benefication of iranium
Nguyen et al. Separation of palladium and platinum metals by selective and simultaneous leaching and extraction with aqueous/non-aqueous solutions
Dogmane et al. Extraction of U (VI) by Cyanex-272
JPH057703A (en) Solvent extraction method transferring only water phase
Kedari et al. Recovery and partitioning of Ir (IV) and Ru (III) from chloride solutions by solvent extraction using Cyanex 923/kerosene
Belova et al. New binary extractants and prospects of their application
JP2007503526A (en) Method for separating trivalent americium from trivalent curium
KR101950111B1 (en) Separation method of gold, platinium and palladium from hydrochloric acid containing gold, platinium and palladium
KR101950108B1 (en) Separation method of gold from hydrochloric acid containing gold, platinium and palladium
KR101950110B1 (en) Separation method of paladium and platium
Wisniewski Palladium (II) extraction by pyridinecarboxylic acid esters