JPH0576615B2 - - Google Patents

Info

Publication number
JPH0576615B2
JPH0576615B2 JP14469684A JP14469684A JPH0576615B2 JP H0576615 B2 JPH0576615 B2 JP H0576615B2 JP 14469684 A JP14469684 A JP 14469684A JP 14469684 A JP14469684 A JP 14469684A JP H0576615 B2 JPH0576615 B2 JP H0576615B2
Authority
JP
Japan
Prior art keywords
light
optical waveguide
planar optical
polarized light
acoustic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14469684A
Other languages
Japanese (ja)
Other versions
JPS6123119A (en
Inventor
Yutaka Nishimoto
Masataka Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP14469684A priority Critical patent/JPS6123119A/en
Publication of JPS6123119A publication Critical patent/JPS6123119A/en
Publication of JPH0576615B2 publication Critical patent/JPH0576615B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Description

【発明の詳細な説明】 〔技術分野〕 本発明は平面光回路に関し、特に不要光ビーム
を導く光導波路を持つ平面光回路に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a planar optical circuit, and particularly to a planar optical circuit having an optical waveguide for guiding an unnecessary light beam.

〔従来技術〕[Prior art]

一般に平面光導波路は、光・音響(AO)スペ
クトラムアナライザ、AOコリレータ等のハイブ
リツド化、モノリシツク化のために用いられる。
弾性表面波による光の回折を利用したAOコリレ
ータは2信号の相関を瞬時にうるものであり、次
のように構成されている。すなわち平面光回路
は、誘電体表面に形成された平面光導波路の端面
より入射した拡がり角を有する光を平面レンズに
よりコリメート光に変換し、弾性表面波により偏
向されたコリメート光が相関信号として検出され
る。このとき、弾性表面波により回折されないコ
リメート光(今後、0次光と呼ぶ)も平面光導波
路を伝搬している。
Generally, planar optical waveguides are used for hybridization and monolithization of optical/acoustic (AO) spectrum analyzers, AO correlators, etc.
The AO correlator, which uses light diffraction by surface acoustic waves, can instantly correlate two signals and is configured as follows. In other words, a planar optical circuit converts light with a divergence angle incident from the end face of a planar optical waveguide formed on a dielectric surface into collimated light using a plane lens, and detects the collimated light deflected by a surface acoustic wave as a correlated signal. be done. At this time, collimated light (hereinafter referred to as zero-order light) that is not diffracted by the surface acoustic wave is also propagating through the planar optical waveguide.

従つて、相関信号のみを検出するには、偏向光
と0次光を分離する必要がある。
Therefore, in order to detect only the correlation signal, it is necessary to separate the polarized light and the zero-order light.

偏向光と0次光は、光の波長、弾性表面波の励
振周波数、及び、伝搬速度と平面光薄膜導波路の
屈折率で決まるプラグ角をなして伝搬するため、
光の伝搬距離をかなり長くすれば、すなわち、平
面光導波路を長くすれば、平面導波路内で0次光
と1次光を分離でき、平面導波路の端面において
相関信号のみを検出できる。
Since the polarized light and the zero-order light propagate at a plug angle determined by the wavelength of the light, the excitation frequency of the surface acoustic wave, the propagation speed, and the refractive index of the planar optical thin film waveguide,
If the propagation distance of light is made considerably long, that is, if the planar optical waveguide is made long, it is possible to separate the zero-order light and the first-order light within the planar waveguide, and detect only the correlated signal at the end face of the planar waveguide.

しかし、このときは、AOコリレータに用いる
基板の大型化につながり、基板入手の困難さ及び
高価格化が生じる。
However, in this case, the substrate used for the AO correlator becomes larger, making it difficult to obtain the substrate and increasing the price.

このような大型化、及び、高価格化を防ぐ方法
としては第1図に示すように、平面レンズを3個
用い、かつ空間フイルタを用いる方法が提案され
ている。
As a method for preventing such an increase in size and price, a method has been proposed that uses three plane lenses and a spatial filter, as shown in FIG.

すなわち、この平面光回路は誘電体表面に設け
た平面光導波路11の端面より光源12から放射
された拡がり角を有する光を平面光導波路11に
導波し、拡がり角を有しながら伝搬する光19を
平面コリメートレンズ13によりコリメート光
(今後入射光と呼ぶ)20に変換する。この入射
光20は入力信号S1(t)により強度変調され、弾性
表面波発生用電極17より発生する弾性表面波2
2が、入力信号S2(t)により振巾変調されていると
き、弾性表面波22により回折される。この回折
された偏向光21は、S1(t)とS2(t)の積の信号とな
る。このとき、偏向光21の強度は、入射光20
と弾性表面波22との回折効率で決まるため、回
折されない非偏向光23が残る。この偏向光21
と非偏向光23とを分離するため、平面レンズ1
4を用いる。すなわち、コリメート光である偏向
光21と非偏向23は、平面レンズ14を入射す
ることにより、それぞれ集光され空間的に平面光
導波路上で分離される。その位置においては導波
型空間フイルタ16により非偏向光23のみを遮
断し、偏向光21を再び平面コリメートレンズ1
5に入射させる。コリメート光に変換された偏向
光は受光素子18に入射させることにより相関信
号のみが簡単に検出される。従つて、この平面光
回路11では3個の平面レンズ13,14,15
を用いることにより、AOコリレータの小型化、
低価格化が簡単に実現できる。
That is, this planar optical circuit guides light having a divergence angle emitted from a light source 12 from the end face of a planar optical waveguide 11 provided on the surface of a dielectric material to the planar optical waveguide 11, and the light propagates while having a divergence angle. 19 is converted into collimated light (hereinafter referred to as incident light) 20 by a flat collimating lens 13. This incident light 20 is intensity-modulated by the input signal S 1 (t), and the surface acoustic wave 2 generated by the surface acoustic wave generation electrode 17 is
2 is diffracted by the surface acoustic wave 22 when it is amplitude modulated by the input signal S 2 (t). This diffracted polarized light 21 becomes a signal of the product of S 1 (t) and S 2 (t). At this time, the intensity of the polarized light 21 is equal to the intensity of the incident light 20
Since it is determined by the diffraction efficiency of the surface acoustic wave 22 and the surface acoustic wave 22, the unpolarized light 23 that is not diffracted remains. This polarized light 21
A plane lens 1 is used to separate the unpolarized light 23 from the
4 is used. That is, the polarized light 21 and the unpolarized light 23, which are collimated lights, enter the plane lens 14, are respectively focused, and are spatially separated on the plane optical waveguide. At that position, the waveguide spatial filter 16 blocks only the unpolarized light 23, and the polarized light 21 is returned to the plane collimating lens 1.
5. By making the polarized light converted into collimated light enter the light receiving element 18, only the correlation signal is easily detected. Therefore, this planar optical circuit 11 includes three planar lenses 13, 14, 15.
By using
Lower prices can be easily achieved.

なお光源12は半導体レーザからなり、平面光
導波路11は例えば、ニオブ酸リチウム
(LiNbO3)基板の表面全面にチタン(Ti)を拡
散し設けた光導波路等からなり、また、平面レン
ズ13,14,15は、フレネルレンズ,ジオデ
シツクレンズ等からなる。しかしながら、導波型
空間フイルタについては、いまだに具体的な素
子、及び、その実現方法は提案されていない。
The light source 12 is made of a semiconductor laser, the planar optical waveguide 11 is made of, for example, an optical waveguide in which titanium (Ti) is diffused over the entire surface of a lithium niobate (LiNbO 3 ) substrate, and the planar optical waveguide 11 is made of a lithium niobate (LiNbO 3 ) substrate with titanium (Ti) diffused over the entire surface. , 15 are Fresnel lenses, geodesic lenses, etc. However, as for the waveguide type spatial filter, no specific element or method for realizing the same has been proposed yet.

したがつて、従来の平面光回路はこの導波型空
間フイルタ16による欠点を有し、いまだ十分な
ものとは云えなかつた。
Therefore, the conventional planar optical circuit has drawbacks due to the waveguide type spatial filter 16, and has not been said to be sufficient.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、従来の平面光回路における欠
点を除去し、従来の導波型空間フイルタに代わる
役割を果たす平面光回路を提供するものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a planar optical circuit that eliminates the drawbacks of conventional planar optical circuits and serves as a substitute for conventional waveguide spatial filters.

〔発明の構成〕[Structure of the invention]

本発明によれば、誘電体表面に形成された平面
光導波路と、該平面光導波路を伝搬する光を回折
せしめる弾性表面波発生用電極と、前記、平面光
導波路を伝搬する光ビームのうち、偏向光と非偏
光を分離する平面レンズと、前記非偏向光である
不要光ビームを所定の場所に導くための三次元光
導波路とを含むことを特徴とする平面光回路が得
られる。
According to the present invention, a planar optical waveguide formed on a dielectric surface, a surface acoustic wave generating electrode that diffracts light propagating through the planar optical waveguide, and a light beam propagating through the planar optical waveguide, A planar optical circuit is obtained that includes a planar lens that separates polarized light and non-polarized light, and a three-dimensional optical waveguide that guides the unnecessary light beam that is the non-polarized light to a predetermined location.

〔実施例〕〔Example〕

次に本発明の実施例について図面を参照して詳
細に説明する。
Next, embodiments of the present invention will be described in detail with reference to the drawings.

第2図は本発明の一実施例を示す。第2図にお
いて、本発明の一実施例は時間積分型光・音響
(AO)コリメータで、誘電体表面に形成された
平面光導波路42と、該平面光導波路42の端面
に設けられた光源31と、光源31から放射され
た光を集光する平面コリメートレンズ32と、平
面コリメートレンズ32により変換されたコリメ
ート光を回折する弾性表面波41を発生する弾性
表面波発生電極40と、回折された偏向光38と
回折されない非偏向光39を分離する平面レンズ
33と、非偏向光39を非偏向光吸収端面領域に
導く三次元(矩形)光導波路43と、偏向光を焦
光せしめる平面コリメートレンズ34と、該平面
コリメートレンズ34により焦光した偏向光47
を受光する受光素子35とを含む。
FIG. 2 shows an embodiment of the invention. In FIG. 2, one embodiment of the present invention is a time-integrating optical/acoustic (AO) collimator, which includes a planar optical waveguide 42 formed on a dielectric surface and a light source 31 provided on the end face of the planar optical waveguide 42. , a plane collimating lens 32 that collects the light emitted from the light source 31, a surface acoustic wave generating electrode 40 that generates a surface acoustic wave 41 that diffracts the collimated light converted by the plane collimating lens 32, and a surface acoustic wave generating electrode 40 that generates a surface acoustic wave 41 that diffracts the collimated light converted by the plane collimating lens 32. A plane lens 33 that separates polarized light 38 and non-polarized light 39 that is not diffracted, a three-dimensional (rectangular) optical waveguide 43 that guides the non-polarized light 39 to the non-polarized light absorption end face region, and a plane collimating lens that focuses the polarized light. 34, and polarized light 47 focused by the plane collimating lens 34.
and a light receiving element 35 that receives the light.

本実施例において、光源31より放射された拡
がり角を有する光36は、平面コリメートレンズ
32によりコリメート光(今後、入射光と呼ぶ)
37に変換される。この入射光37は、弾性表面
波発生電極40より発生する弾性表面波41によ
り回折され、偏向光38を生じるとともに、回折
されない非偏向光39も残る。偏向光38と非偏
向光39は平面光導波路42内で空間的に分離す
るため、凸レンズ作用を有する平面レンズ33に
より、それぞれ集光される。
In this embodiment, light 36 having a divergence angle emitted from a light source 31 is collimated by a plane collimating lens 32 (hereinafter referred to as incident light).
37. This incident light 37 is diffracted by the surface acoustic wave 41 generated by the surface acoustic wave generating electrode 40 to generate polarized light 38 and also leaves unpolarized light 39 that is not diffracted. Since the polarized light 38 and the unpolarized light 39 are spatially separated within the planar optical waveguide 42, they are each focused by the planar lens 33 having a convex lens function.

このとき、AOコリレータにとつては不要光で
ある非偏向光39を導く不要光用三次元光導波路
43は非偏向光の焦点位置に設けられ非偏向光4
6を入射させている。
At this time, the unnecessary light three-dimensional optical waveguide 43 that guides the unpolarized light 39, which is unnecessary light for the AO correlator, is provided at the focal position of the unpolarized light.
6 is input.

したがつて、非偏向光46は、偏向光38用の
平面レリメートレンズ34に入射されずにかつ、
偏向光の受光素子35に入射しないように非偏向
光吸収端面領域45に導びかれる。非偏向光吸収
端面領域45に図示するように光吸収体を設けて
おけば、非偏向光46はここで吸収される。又、
何もなければ光はここから外部へ送出される。こ
の結果、不要光である非偏向光を簡単に除去でき
る。
Therefore, the unpolarized light 46 is not incident on the plane relimator lens 34 for the polarized light 38, and
The polarized light is guided to the non-polarized light absorption end face region 45 so as not to enter the light receiving element 35 of the polarized light. If a light absorber is provided in the non-polarized light absorption end face region 45 as shown in the figure, the non-polarized light 46 will be absorbed there. or,
If there is nothing else, light will be sent out from here. As a result, unnecessary non-polarized light can be easily removed.

従つて偏向光47は平面コリメートレンズ34
に入射し、コリメート光に変換され、受光素子3
5で検出される。
Therefore, the polarized light 47 is transmitted through the plane collimating lens 34.
is incident on the light receiving element 3 and is converted into collimated light.
Detected at 5.

なお、不要光用矩三次元導波路43の深さは、
平面光導波路42と同じにし、その幅は、平面レ
ンズ33で集光された焦点での非偏向光46のビ
ームスポツトサイズとほぼ同じにする。この結
果、非偏向光46は、ほぼ100%不要光用三次元
光導波路43に入射され、反射、及び、散乱によ
る偏向光38への影響はない。また、不要光用三
次元光導波路43のまわりは、平面光導波路42
と不要光用三次元光導波路43が有する屈折率よ
り低い屈折率を有する低屈折率領域44からな
る。
In addition, the depth of the rectangular three-dimensional waveguide 43 for unnecessary light is
It is made the same as the planar optical waveguide 42, and its width is made approximately the same as the beam spot size of the unpolarized light 46 at the focal point condensed by the planar lens 33. As a result, almost 100% of the unpolarized light 46 enters the three-dimensional optical waveguide 43 for unnecessary light, and there is no influence on the polarized light 38 due to reflection or scattering. Furthermore, around the three-dimensional optical waveguide 43 for unnecessary light, there is a planar optical waveguide 42.
and a low refractive index region 44 having a refractive index lower than that of the three-dimensional optical waveguide 43 for unnecessary light.

たとえば、誘電体をニオブ酸リチウム
(LiNbO3)とすれば、平面光導波路42の領域
と不要光用三次元光導波路43の領域のみにチタ
ン(Ti)を拡散すればよい。
For example, if lithium niobate (LiNbO 3 ) is used as the dielectric, titanium (Ti) may be diffused only in the area of the planar optical waveguide 42 and the area of the three-dimensional optical waveguide 43 for unnecessary light.

本発明の一実施例では、平面光回路をAOコリ
レータにおいて不要光ビームである非偏向光と偏
向光を分離するために用いているが、平面光回路
の働きは、この実施例に限定されるものではな
く、不要光ビーム専用に三次元(矩形)光導波路
を形成しているものならどのようなものでもよ
い。
In one embodiment of the present invention, a planar optical circuit is used in an AO correlator to separate unpolarized light and polarized light, which are unnecessary light beams, but the function of the planar optical circuit is limited to this embodiment. Any type of optical waveguide may be used as long as it forms a three-dimensional (rectangular) optical waveguide exclusively for unnecessary light beams.

〔発明の効果〕〔Effect of the invention〕

本発明は、以上説明したように非偏向光を容易
に導びくことができ、かつ小形化を可能にする効
果がある。
As explained above, the present invention has the effect of easily guiding unpolarized light and making it possible to downsize.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の平面光回路を示す図、第2図
は、本発明の一実施例を示す平面図である。 11,42……平面光導波路、43……不要光
用矩形光導波路、12,31……光源、13,1
5,32,34……平面コリメートレンズ、1
4,33……平面レンズ、19,36……拡がり
角を有する光、20,37……偏向光、23,3
9,46……非偏向光、16……導波型空間フイ
ルタ、18,35……受光素子、17,40……
弾性表面波発生用電極、22,41……弾性表面
波、43……不要光用三次元(矩形)光導波路、
44……低屈折率領域、45……非偏向光吸収端
面領域。
FIG. 1 is a diagram showing a conventional planar optical circuit, and FIG. 2 is a plan view showing an embodiment of the present invention. 11, 42... Planar optical waveguide, 43... Rectangular optical waveguide for unnecessary light, 12, 31... Light source, 13, 1
5, 32, 34...Plane collimating lens, 1
4,33...Plane lens, 19,36...Light with a divergence angle, 20,37...Polarized light, 23,3
9,46...unpolarized light, 16...waveguide spatial filter, 18,35...light receiving element, 17,40...
Surface acoustic wave generation electrode, 22, 41... surface acoustic wave, 43... three-dimensional (rectangular) optical waveguide for unnecessary light,
44...Low refractive index region, 45...Non-polarized light absorption end face region.

Claims (1)

【特許請求の範囲】[Claims] 1 誘電体表面に形成された平面光導波路と、該
平面光導波路を伝搬する光を回折せしめる弾性表
面波発生用電極と、前記平面光導波路を伝搬する
光ビームのうち、偏向光と非偏向光を分離する平
面レンズと、前記非偏向光である不要光ビームを
所定の場所に導くための三次元光導波路とを含む
ことを特徴とする平面光回路。
1 A planar optical waveguide formed on a dielectric surface, a surface acoustic wave generation electrode that diffracts light propagating through the planar optical waveguide, and polarized light and non-polarized light among the light beams propagating through the planar optical waveguide. and a three-dimensional optical waveguide for guiding the unnecessary light beam, which is the non-polarized light, to a predetermined location.
JP14469684A 1984-07-12 1984-07-12 Plane optical circuit Granted JPS6123119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14469684A JPS6123119A (en) 1984-07-12 1984-07-12 Plane optical circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14469684A JPS6123119A (en) 1984-07-12 1984-07-12 Plane optical circuit

Publications (2)

Publication Number Publication Date
JPS6123119A JPS6123119A (en) 1986-01-31
JPH0576615B2 true JPH0576615B2 (en) 1993-10-25

Family

ID=15368141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14469684A Granted JPS6123119A (en) 1984-07-12 1984-07-12 Plane optical circuit

Country Status (1)

Country Link
JP (1) JPS6123119A (en)

Also Published As

Publication number Publication date
JPS6123119A (en) 1986-01-31

Similar Documents

Publication Publication Date Title
US4468084A (en) Integrated optical time integrating correlator
US4885734A (en) Diffraction grating using birefringence and optical head in which a linearly polarized beam is directed to a diffraction grating
EP0582059A2 (en) Magneto-optical head assembly
US4390247A (en) Continuously variable delay line
JPS582825A (en) Acoustic-optical type channeling processor
US4558925A (en) Multi-function acousto-optic signal processor
US6075600A (en) Signal formation apparatus for use in interference measurement
JPH0576615B2 (en)
JPH02259702A (en) Polarization diffraction element
US4575191A (en) Compact beam splitter for acousto-optic correlator
JP3151827B2 (en) Acousto-optic filter
JP2599276B2 (en) Optical integrated circuit
US5361159A (en) Angular acousto-optical deflection device and spectrum analyzer using such a device
JPS61215534A (en) Waveguide type optoacoustic correlator
JPS61215533A (en) Waveguide type optoacoustic spectrum analyzer
JPS6258217A (en) Waveguide type photo-acoustic spectrum analyzer
JPS61113038A (en) Waveguide type opto-acoustic collimator
JPS62218876A (en) Waveguide type light-sound spectrum analyzer
JPS61193133A (en) Optical integration type correlator
RU2017236C1 (en) Multichannel optical data-recording device
JP2553365B2 (en) Multi-layer polarization beam splitter
JPS58106526A (en) Optical branching circuit
JP2713303B2 (en) Hologram scanner
SU987641A1 (en) Acoustooptic radio signal correlator
JPS60213922A (en) Optical frequency modulator