JPH0576517A - 磁気共鳴イメージング装置における投影処理方法 - Google Patents
磁気共鳴イメージング装置における投影処理方法Info
- Publication number
- JPH0576517A JPH0576517A JP3242130A JP24213091A JPH0576517A JP H0576517 A JPH0576517 A JP H0576517A JP 3242130 A JP3242130 A JP 3242130A JP 24213091 A JP24213091 A JP 24213091A JP H0576517 A JPH0576517 A JP H0576517A
- Authority
- JP
- Japan
- Prior art keywords
- dimensional
- data
- fourier transform
- procedure
- projection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
3次元データ、すなわち収集データ数が同じ3次元デー
タを用いて、空間的に密な3次元画像データから精度の
よい投影像を得ることができる投影処理方法を提供する
ことである。 【構成】本発明による投影処理方法は、磁気共鳴イメー
ジング装置で3次元フーリエ変換法に基づいて被検体の
3次元領域から3次元データを収集する第1の手順S2
と、第1の手順S1で得た3次元データに3次元フーリ
エ変換による再構成処理を施し3次元画像データを得る
第2の手順S3と、この3次元画像データの全部又は一
部に対してフーリエ変換法におけるシフト定理に基づく
処理を施す第3の手順と、前記第3の手順で得られたデ
ータに対して投影処理を施し2次元の投影像を得る第4
の手順S10とを具備することを特徴とする磁気共鳴イ
メージング装置における投影処理方法。
Description
etic resonance)現象を利用して被検体(生体)内の所
望の3次元領域の形態情報やスペクトロスコピー等の機
能情報を得、その情報を基に投影像を得る磁気共鳴イメ
ージング装置における投影処理方法に関する。
び磁気モーメントを持つ原子核が特定の周波数の電磁波
のみを共鳴的に吸収・放出する現象である。
は、共鳴吸収の後に誘起される前記原子核に特定の周波
数と同じ周波数の電磁波を信号処理して、原子核密度、
縦緩和時間、横緩和時間、流れ、化学シフト等の磁気共
鳴パラメータが反映された診断情報、例えば被検体のス
ライス像等を無侵襲で得るようにしている。
は、静磁場中に配置した被検体の全部位を励起して且つ
信号収集できるものであるが、装置構成上の制約やイメ
ージング像の臨床上の要請から、実際の装置としては特
定の部位に対して、励起とその信号収集とを行い得るよ
うにしている。
エンコード法である2次元フーリエ変換法(2DFT
法)や3次元フーリエ変換法(3DFT法)が多用され
ている。2次元フーリエ変換法によれば、被検体の特定
の2次元面(ある厚みを持つ;スライス厚)からのNM
R信号、つまり2次元データを収集することができ、3
次元フーリエ変換法によれば、被検体の特定の3次元領
域からのNMR信号、つまり3次元データ(ボリューム
データ)を収集することができる。
元離散的フーリエ変換(2D−DFT)処理することに
より2次元画像データが得られ、また、3次元データに
対して3次元離散的フーリエ変換(3D−DFT)処理
することにより3次元画像データが得られる。ここで、
互いに隣接する複数の2次元画像データを複数枚並べる
如く構成(記憶)することにより3次元画像データと同
様のデータ(このデータも「3次元画像データ」と見な
す)を得ることができる。
理、例えば最大値投影法、単純加算投影法等の投影法を
用いて、投影処理することにより2次元の投影像を得る
ことができる。なお、3次元画像データとして血管強調
の撮影条件により得られたものを用いれば、血管の強調
された投影像(MRアンギオ投影像)を得ることができ
る。
手順を理解が容易なように2次元モデルで示した図であ
る。この場合、対象物である血管(斜線部)を含む原像
から得たNMR信号に対して2次元離散的フーリエ変換
による再構成処理を施し、再構成イメージ(2次元画像
データ)が得られる。ここでは、この再構成イメージに
対して線形補間処理を施し空間的に密な画像データを
得、より精度の向上したディスプレイイメージ(表示画
像)を得ている。
も、このディスプレイイメージには、極細な血管の形状
はモザイク状に表示されたり、断列して表示されたり等
の欠点があり、その診断精度は非常に低いものである。
断列の影響は投影処理にて得られる投影イメージの場合
にも存在する。なお図示した投影像はディスプレイイメ
ージに対し横方向から最大値投影法を用いて投影して得
たものである。この欠点は、該血管の幅と、再構成の際
のピクセルサイズとの関係に起因する。すなわち、該血
管の幅が、ピクセルサイズに比較し小さい場合、あるい
は同等程度である場合にこの欠点が顕著になる。
合にも同様である。すなわち、血管の大きさがボクセル
サイズに対し比較的微小である場合、あるいは同等程度
である場合に、再構成像上で該血管がモザイク状に表現
されたり、断列して表現されたりし、さらにその再構成
像を用いて作成した投影像等の画像上においても該血管
の形状がモザイク状に表示されたり、断列して表示され
たり等欠点が顕著になる。図11は、血管強調処理を施
した3次元画像データに対してスライス面に垂直な方向
から投影して得た血管投影像の一例であり、図12は、
スライス面に平行な方向から投影して得た血管投影像の
一例である。これらの投影像から上述した欠点の様子が
よく伺える。さらに、図12に示したスライス面に平行
な方向から投影して得た血管投影像には、各スライス間
に線形補間を施し、中間データを作成しているために、
そのスライス方向に縞状のアーチファクトが発生してい
る。
れば高精度の画像を得ることができるが、その場合は、
当然ボクセルサイズの微小化に伴って収集するデータ総
数が増加し、それに伴って、データ収集に要する時間、
及びデータ処理時間が増加することとなり、SN比が低
下するため、実用上不可能である。
は、ボクセルサイズが従来と同じ3次元画像データを用
いて、その3次元画像データに対しフーリエ変換におけ
るシフト定理に基づく処理を施し、空間的に密な3次元
画像データに再構成し、その空間的に密な3次元画像デ
ータから精度のよい投影像を得ることができる投影処理
方法を提供することである。
気共鳴イメージング装置における投影処理方法は、磁気
共鳴イメージング装置で3次元フーリエ変換法に基づい
て被検体の3次元領域から3次元データを収集する第1
の手順と、前記第1の手順で得た3次元データに3次元
フーリエ変換法に基づいた再構成処理を施し3次元画像
データを得る第2の手順と、この3次元画像データの全
部または一部に対してフーリエ変換法におけるシフト定
理に基づく処理を施す第3の手順と、前記第3の手順で
得られたデータに対して投影処理を施し2次元の投影像
を得る第4の手順とを具備することを特徴とする。
グ装置における投影処理方法は、磁気共鳴イメージング
装置で2次元フーリエ変換法に基づいて被検体の3次元
領域内の互いに隣接するスライス面からの複数の2次元
データを収集する第1の手順と、前記第1の手順で得た
2次元データに2次元フーリエ変換法に基づいた再構成
処理を施し複数の2次元画像データを得る第2の手順
と、この複数の2次元画像データ個々に対してフーリエ
変換法におけるシフト定理に基づく処理を施す第3の手
順と、前記第3の手順で得られたデータに対して投影処
理を施し2次元の投影像を得る第4の手順とを具備する
ことを特徴とする。
置における投影処理方法によれば、磁気共鳴イメージン
グ装置で3次元フーリエ変換法に基づいて被検体の3次
元領域から3次元データを収集し、前記第1の手順で得
た3次元データに3次元フーリエ変換法に基づいた再構
成処理を施し3次元画像データを得、この3次元画像デ
ータに対してフーリエ変換法におけるシフト定理に基づ
く処理を施し、前記第3の手順で得られたデータに対し
て投影処理を施し2次元の投影像を得ることができ、そ
の結果、ボクセルサイズが従来と同じ3次元画像デー
タ、すなわち収集データ数が同じ3次元データを用い
て、その3次元データに対しフーリエ変換におけるシフ
ト定理に基づく処理を施し、空間的に密な3次元画像デ
ータに再構成し、その空間的に密な3次元画像データか
ら精度のよい投影像を得ることができる。
グ装置における投影処理方法によれば、磁気共鳴イメー
ジング装置で2次元フーリエ変換法に基づいて被検体の
3次元領域内の互いに隣接するスライス面からの複数の
2次元データを収集し、前記第1の手順で得た2次元デ
ータに2次元フーリエ変換法に基づいた再構成処理を施
し複数の2次元画像データを得、この複数の2次元画像
データ個々に対してフーリエ変換法におけるシフト定理
に基づく処理を施し、前記第3の手順で得られたデータ
に対して投影処理を施し2次元の投影像を得ることがで
き、その結果、ピクセルサイズが従来と同じ複数の2次
元画像データ、すなわち収集データ数が同じ複数の2次
元データを用いて、それら2次元データに対しフーリエ
変換におけるシフト定理に基づく処理を施し、空間的に
密な複数の2次元画像データに再構成し、その空間的に
密な複数の2次元画像データから精度のよい投影像を得
ることができる。
明する。
に先立って、MRI装置における磁気共鳴信号(NMR
信号:エコー信号やFID信号)の収集について簡単に
説明する。図1は、一般的なMRI装置の概略的な構成
を示す図である。
Pを内部に収容することができるようになっているマグ
ネットアッセンブリとして、常電導又は超電導方式によ
る静磁場コイル1と、磁気共鳴信号の誘起部位の位置情
報付与のための傾斜磁場発生コイル2と、回転高周波磁
場(RFパルス)を送信すると共に誘起された磁気共鳴
信号(NMR信号:エコー信号やFID信号)を検出す
るための送受信系である例えば送信コイルおよび受信コ
イルからなるプローブ3とを有している。
系を含むものであって、主として静磁場電源の通電制御
を行う静磁場制御系4、RFパルスの送信制御を行う送
信器5、誘起MR信号の受信制御を行う受信器6、X,
Y,Z軸の傾斜磁場発生コイル2のそれぞれの励磁制御
を行うX軸,Y軸,Z軸傾斜磁場電源7,8,9、励起
およびデータ収集のためのパルスシーケンスを実地する
ことができるシーケンサ10、これらを制御すると共に
検出信号の信号処理および本発明に係る投影処理方法を
含む画像処理を行うコンピュータシステム11、表示装
置12により構成されている。
ンスについて簡単に説明する。図2は、3次元フーリエ
変換法(以下「3DFT法」と称する)におけるデータ
収集パルスシーケンスを示す図である。このパルスシー
ケンスには、90度から180度パルス系列のSE法
(パルス・スピン・エコー法)やこのSE法の180度
パルスを傾斜磁場の反転にて置換えるようにしたFE法
(グラディエント・フィールド・エコー法)を適用した
2次元フーリエ変換法に基づいた2次元データ収集法
や、このSE法とFE法とを3次元的に発展させた3次
元フーリエ変換法に基づいた3次元データ収集法があ
る。
説明する。まず、送信器5を駆動して、プローブ3の送
信コイルから事前に設定した3次元の励起領域を決定す
るRFパルスを加えると共に傾斜磁場電源7,8,9を
駆動して傾斜磁場発生コイル2からX,Y,Z軸それぞ
れに関する傾斜磁場GX ,GY ,GZ をスライス用傾斜
磁場Gs ,リード用傾斜磁場Gr ,位相エンコード用傾
斜磁場Ge としてそれらの強度を変えながら加え、前記
励起領域からのNMR信号をプローブ3の受信コイルに
より収集する。ここでは、スライス用傾斜磁場Gs の強
度をNS 回,位相エンコード用傾斜磁場Ge の強度をN
E 回変えて、リード用傾斜磁場Grを印加しながらNR
点サンプリングすることにより、最終的に前記励起領域
の中のNR ×NE ×NS マトリクスのデータを得る。例
えば、NR を256点とし、NEを256点とし、NS
を32点とすると、256×256×32個のNMR信
号が得られることになる。以上のように、前記3次元励
起領域から発生したNR ×NE ×NS 個のNMR信号
(以下「3次元収集データ」と称する)が得られる。
変換におけるシフト定理に基づく本実施例に係る投影処
理方法を含む画像処理について説明するが、その説明に
先立って、このフーリエ変換におけるシフト定理の概念
について、図6を用いて簡単に説明する。
が容易なように2次元モデルを用いて説明する図であ
る。なお、データ収集時の1ピクセルのサイズはm×n
とし、血管Bとしてその幅がピクセルサイズと同等程度
なものを図示してある。関心部位の画像マトリクスをM
×Nであるものとする。なお、この図6は図10(従
来)に対比させた図であり、本説明において図10と比
較しながら説明する。図10では原像から得た2次元収
集データに対し、通常の離散的フーリエ変換による再構
成処理を施し、再構成イメージ(2次元画像データ)を
得るが、本方法ではシフト定理に基づく処理を施し、そ
の処理を施したデータを用いて再構成処理し再構成イメ
ージ(3次元画像データ)を得る。概念的には、図10
に示した再構成イメージの各ピクセル間の中間点におけ
る中間データを得、その中間データ(シフトデータ)と
もともとの再構成イメージとを用いて仮想的にM×Nの
正数倍、ここでは各方向に2倍(2・M×2・N)の再
構成データを得ようとするものである。ただし、このシ
フト定理を用いて再構成処理後の再構成データのピクセ
ルサイズは、シフト定理を用いないで得る再構成データ
のピクセルサイズ(m×n)と同等である。なお、断面
変換処理におけるシフトデータの有効性については、既
に以下の文献に詳記されている。特願平1−20149
7、特開平2−191079、「IEEE Computor Graphi
cs & Applications 1990」“A Genaral Algorithm for
Oblique Image Reconstruction”D.kramerその他著,頁
62〜頁65。
明に戻る。図3は3次元データの収集から投影像作成ま
での手順を示した流れ図であり、図4は図3のステップ
S6およびS7に示した関心領域と直方体領域とを示す
図であり、図5は図3のステップS8に示した“0”充
填領域について示す図であり、図7は複数の投影方向を
示す図であり、図8は図7に示した一投影方向から得た
投影像の一例を示す図であり、図9は図7に示した他の
投影方向から得た投影像の一例を示す図である。
テップS2において上述したようなMRI装置のデータ
収集によって所望のNMR信号収集領域からNR ×NE
×NS 個のNMR信号、すなわちNR ×NE ×NS マト
リクスの3次元収集データが得られる。本実施例の場合
には、血管像を強調するような撮影条件を用いてデータ
収集するものとする。
S2で得られた3次元データに対し、NR ×NE ×NS
に関する3次元離散的フーリエ変換(3D−DFT)に
基づく再構成処理を施し、ステップS4でNR ×NE ×
NS マトリクスの3次元画像データが得られる。
に、3次元の関心領域D(斜線部)を指定する。なお、
この関心領域Dの指定は、ステップS4で得られた3次
元画像データに基づいて作成した他の画像、例えば2次
元スライス像等他の画像上で指定するものであってもも
ちろんよい。
定した関心領域Dを少なくとも含む図7に示したように
直方体領域D´を設定する。ここで、この直方体領域D
´を規定する3次元マトリクスをNr ×Ne ×Ns とす
る。なお、関心領域Dを含む直方体領域D´を設定する
のは、本ステップS6につづく処理(ステップS7)に
おいて3次元離散的逆フーリエ変換処理の実行を可能に
するためである。なお、予め関心領域Dを直方体形状で
指定した場合には、本ステップS6を除外することもで
きる。ここで、関心領域Dの大きさに対する直方体領域
D´の設定の最適化について説明する。
´を用いて得る密なデータの端部付近には、NMR信号
収集領域内であって直方体領域D´に含まれないデータ
の影響を受けてボケ、リンギング等のアーチファクト
(誤差)が発生し、そのアーチファクトは、NMR信号
観測時の“観測信号の有限打切り”に起因して生じる。
そして、アーチファクトの発生レベルは、点拡がり関数
の畳み込み値Cに応じたものであることから、この畳み
込み値Cに基づいて関心領域Dの大きさに対する直方体
領域D´を設定する。畳み込み値Cに関する関数につい
て次に示す。 C(l,m,n ) ={sin(lπ)}/ lπ×{sin(mπ)}/ mπ×{sin(nπ)}/ nπ …(1) ただし、(l,m,n )は、直方体領域D´内の端部付近の
ある一点(試算点)に関する座標であるとする。
(関心領域Dと直方体領域D´との境界部)から試算点
までの距離(ボクセル数)を変化させながら、畳み込み
値(誤差レベル)Cの変化を見てみると次のようにな
る。
場合、畳み込み値(誤差レベル)Cは、最大で31.8
%であり、前記距離が10点(ボクセル)の場合、畳み
込み値(誤差レベル)Cは、最大3.2%であり、前記
距離が30点(ボクセル)の場合、畳み込み値(誤差レ
ベル)Cは、最大1.1%である。ここで、{sin(lπ)}
/ lπの絶対値は常に1/ lπ以下であるので、畳み込
み値(誤差レベル)Cの上限を1/ lπとすると、関心
領域Dの端部から前記距離が10点(ボクセル)以下の
点を少なくとも含めるように直方体領域D´の範囲を設
定すれば、畳み込み値(誤差レベル)Cを3%程度に抑
えることができる。なお、畳み込み値(誤差レベル)C
が3%程度であれば、診断上重大な影響を受けることは
ない。
し離散的逆フーリエ変換処理を施す。このステップS7
で得られたNr ×Ne ×Ns マトリクスサイズの直方体
領域データをDT とする。
S8では、ステップS7で得られたNr ×Ne ×Ns マ
トリクスサイズの直方体領域D´の所望の周辺領域に零
(0)データを充填して、L・Nr×M・Ne ×N・N
s マトリクス(フーリエ変換領域D'')のフーリエ変換
領域データDTTを作成する。図5は、直方体領域データ
DT と、フーリエ変換領域データDTTとの関係について
示した図であり、フーリエ変換領域D''内且つ直方体領
域D´外の領域が零(0)データを充填する領域であ
る。ここでは、フーリエ変換領域データDTTを直方体領
域データDT のX,Y,Z軸に各2倍の範囲とする。こ
の結果、最終的に得られる投影像の精度は2倍レベルに
向上する。この直方体領域データDT に対するフーリエ
変換領域データDTTの割合を変えることによって、投影
像の精度を様々に向上させることができる。
S8で作成したフーリエ変換領域データDTTの2・Ir
×2・Ie ×2・Is 点のデータに関して離散的フーリ
エ変換(DFT)処理を施し、投影処理の対象である3
次元画像データを得る。ステップS6、ステップS7、
ステップS8、ステップS9における一連の処理は、フ
ーリエ変換におけるシフト定理を用いた処理と等価な処
理であり、この一連の処理によって得られた3次元画像
データを、直方体領域データDT の中間点をフーリエ変
換におけるシフト定理を用いて計算して得たデータと等
価なものである。
データDT やフーリエ変換領域データDTTのマトリクス
サイズを、2のべき乗サイズに設定すれば、高速フーリ
エ変換を用いることができ、ステップS7およびステッ
プS9における処理を高速化できる。
離散的フーリエ変換(DFT)処理を施し得た投影処理
の対象である3次元画像データの内ステップS5で指定
した関心領域に対応するデータに対して、投影処理を施
し、データ収集時のボクセルサイズに応じない高精度の
投影像を得、ステップS11において本処理を終了す
る。なお、この投影処理は、上述したように最大値投影
法、単純加算投影法、その他の投影法の中のいずれかの
投影法を適宜選択すればよい。
た投影像(図8,図9)と、従来の方法により得た投影
像(図11,図12)とを比較する。図8〜図12はい
ずれも同一のデータ収集条件、すなわち0.8mm ×0.8mm
×1.6mm のボクセルサイズ、256 ×256 ×32のマトリク
スサイズでデータ収集して得た3次元画像データを用い
て得た投影像である。図8と図11はともに3次元画像
データの上方(スライス面に垂直な方向)から投影して
得た像、すなわち図7における投影像P1 であり、図9
と図12はともに3次元画像データの横方向(スライス
面に平行な方向)から投影して得た像、すなわち図7に
おける投影像P2 である。本実施例方法による投影像
(図8,図9)は、従来の方法による投影像(図11,
図12)に比較し、血管の連続性を十分表現し得ている
ことが伺え、さらに横方向から投影した像、すなわち図
9と図12とを比較すると、従来の方法で発生していた
スライス方向への縞状のアーチファクトが激減している
ことが伺える。
セルサイズに応じた比較的低精度の投影像しか得られな
かったが、本実施例方法によれば、データ収集時のボク
セルサイズに応じない比較的高精度の投影像を得ること
ができる。
の低減の程度は、人為的な作業部分に影響され変動する
ものではなく、フーリエ変換におけるシフト定理の特性
によって常に一定の効果が保証されるものであり、さら
にそのシフト定理に準じた処理の過程において新たなア
ーチファクトが発生することはない。ただ、処理データ
数が増加するために処理時間が増加してしまうが、これ
は関心領域を十分絞り込んで最小限に指定することによ
って十分対応することができる。
実施例では、シフト定理の利用において、先の実施例で
はシフト定理に基づく処理と等価な処理、具体的には図
3に示したステップS8の処理を行っていたが、本実施
例ではこのステップS8においてシフト定理を直接使用
する処理を行う。以下にこの処理に用いる数式について
を示す。この数式は、直方体領域D´のNr ×Ne×N
s マトリクスデータ(3次元画像データ)DT を、例え
ばX軸方向にα、Y軸方向にβ、Z軸方向にγだけシフ
トして得られるNr ×Ne ×Ns マトリクスのシフトデ
ータFDTを得ることを内容とする。なお、「(l,m,
n,)」は直方体領域データDT の中のある座標点を示し
ており、「i」は虚数単位とする。 FDT (l,m,n,)
タDT の全てのデータについて行ったものをFDT とす
る。X軸方向にα、Y軸方向にβ、Z軸方向にγだけシ
フトしたNr ×Ne ×Ns マトリクスのシフトデータI
FDT は、シフトデータFDT に対してステップS9に
おける離散的フーリエ変換(DFT)処理することによ
り得られる。第1の実施例の画像データを得るにはX,
Y,Z軸方向への各シフト量を変えながら、8種類のシ
フトデータIFDT を得る。この8種類のシフトデータ
IFDT の取り方は以下の通りである。
IFDT と、すなわちD´そのものと、D´をX軸方向
にボクセル辺長の1/2だけシフトした第1のIFDT
(1) と、D´をY軸方向にボクセル辺長の1/2だけシ
フトした第2のIFDT (2) と、Z軸方向にボクセル辺
長の1/2だけシフトした第3のIFDT (3) と、D´
をX,Y軸方向にそれぞれボクセル辺長の1/2だけシ
フトした第4のIFDT (4) と、D´をX,Z軸方向に
それぞれボクセル辺長の1/2だけシフトした第5のI
FDT (5) と、D´をY,Z軸方向にそれぞれボクセル
辺長の1/2だけシフトした第6のIFDT (6) と、D
´をX,Y,Z軸方向にそれぞれボクセル辺長の1/2
だけシフトした第7のIFDT (7) とである。これら別
個に得た8種類の3次元画像データIFDT の和集合デ
ータが、第1の実施例方法のステップS10における投
影処理の対象である3次元画像データとなる。本実施例
方法によっても第1の実施例方法と同様な効果を奏する
ことができる。
方法とを比較すると、DFT処理の計算量は第2の実施
例方法の方が優れているが、データの取扱いの容易さに
関しては第1の実施例方法が優れている。そこで、第1
の実施例方法と、第2の実施例方法のいずれを採用する
かは、計算機のアーキテクチャ、ソフトウエアの構成に
応じて選択すればよい。
はない。例えば、上記実施例では、3次元フーリエ変換
法に基づいた3次元データ収集法によって3次元領域か
ら得た3次元データを用いるものであるが、2次元フー
リエ変換法に基づいた2次元データ収集法によって3次
元領域から得た複数の2次元データ(スライスデータ)
を用いてもよい。この場合には、3次元のフーリエ変換
処理、あるいは逆フーリエ変換処理を2次元のフーリエ
変換処理、あるいは逆フーリエ変換処理に変更すること
により対応することができる。だたし、この場合は、フ
ーリエ変換のシフト定理は、スライスデータの面内2次
元の範囲でのみにしか適用できないことから、X軸、Y
軸方向には精度が向上するがZ軸方向に関する精度は向
上しない。なお、関心領域等の設定はすべて2次元上で
行うことになることから、各スライス像上の位置関係を
相関させることによって、各スライス像の同一位置で関
心領域等の設定できるようにすることが望ましい。
によれば、ボクセルサイズが従来と同じ3次元データ、
すなわち収集データ数が同じ3次元データを用いて、そ
の3次元データに対しフーリエ変換におけるシフト定理
に基づく処理を施し、空間的に密な3次元画像データに
再構成し、その空間的に密な3次元画像データから精度
のよい投影像を得ることができる。
明によれば、ピクセルサイズが従来と同じ複数の2次元
データ、すなわち収集データ数が同じ複数の2次元デー
タを用いて、それら2次元データに対しフーリエ変換に
おけるシフト定理に基づく処理を施し、空間的に密な複
数の2次元画像データに再構成し、その空間的に密な複
数の2次元画像データから精度のよい投影像を得ること
ができる。
すブロック図。
スシーケンスを示す図。
影像作成までの手順を示した流れ図。
域と直方体領域との関係を示す図。
ついて示す図。
像データを基にしたMRアンギオ像の作成手順を理解が
容易なように2次元モデルを用いて説明する図。
を示す図。
例を示す図。
易なように2次元モデルで示した図。
頭部のMRアンギオ投影像の一例を示す図。
頭部のMRアンギオ投影像の一例を示す図。
イル、3…プローブ、4…静磁場制御系、5…送信器、
6…受信器、7…X軸傾斜磁場電源、8…Y軸傾斜磁場
電源、9…Z軸傾斜磁場電源、10…シーケンサ、11
…コンピュータシステム、12…表示装置、13…プロ
セッサ。
Claims (4)
- 【請求項1】 磁気共鳴イメージング装置で3次元フー
リエ変換法に基づいて被検体の3次元領域から3次元デ
ータを収集する第1の手順と、 前記第1の手順で得た3次元データに3次元フーリエ変
換法に基づいた再構成処理を施し3次元画像データを得
る第2の手順と、 この3次元画像データの全部または一部に対してフーリ
エ変換法におけるシフト定理に基づく処理を施す第3の
手順と、 前記第3の手順で得られたデータに対して投影処理を施
し2次元の投影像を得る第4の手順とを具備することを
特徴とする磁気共鳴イメージング装置における投影処理
方法。 - 【請求項2】 前記第3の手順は、前記第2の手順で得
た前記3次元画像データの中の関心領域を含む直方体領
域のデータに3次元逆フーリエ変換して得られるデータ
の周辺の所定の領域に零データを充填する手順と、この
3次元データに対してフーリエ変換処理を施す手順とを
有することを特徴とする請求項1に記載の磁気共鳴イメ
ージング装置における投影処理方法。 - 【請求項3】 磁気共鳴イメージング装置で2次元フー
リエ変換法に基づいて被検体の3次元領域内の互いに隣
接するスライス面からの複数の2次元データを収集する
第1の手順と、 前記第1の手順で得た2次元データに2次元フーリエ変
換法に基づいた再構成処理を施し複数の2次元画像デー
タを得る第2の手順と、 この複数の2次元画像データ個々に対してフーリエ変換
法におけるシフト定理に基づく処理を施す第3の手順
と、 前記第3の手順で得られたデータに対して投影処理を施
し2次元の投影像を得る第4の手順とを具備することを
特徴とする磁気共鳴イメージング装置における投影処理
方法。 - 【請求項4】 前記第3の手順は、前記第2の手順で得
た前記2次元画像データの中の関心領域を含む長方形領
域のデータに2次元逆フーリエ変換して得られるデータ
の周辺の所定の領域に零データを充填する手順と、この
2次元データに対してフーリエ変換処理を施す手順とを
有することを特徴とする請求項3に記載の磁気共鳴イメ
ージング装置における投影処理方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24213091A JP3350071B2 (ja) | 1991-09-21 | 1991-09-21 | 磁気共鳴イメージング装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24213091A JP3350071B2 (ja) | 1991-09-21 | 1991-09-21 | 磁気共鳴イメージング装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0576517A true JPH0576517A (ja) | 1993-03-30 |
JP3350071B2 JP3350071B2 (ja) | 2002-11-25 |
Family
ID=17084755
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24213091A Expired - Lifetime JP3350071B2 (ja) | 1991-09-21 | 1991-09-21 | 磁気共鳴イメージング装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3350071B2 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08138077A (ja) * | 1994-11-07 | 1996-05-31 | Hitachi Medical Corp | 投影像の作成方法およびそのための装置 |
JP2021184264A (ja) * | 2017-01-16 | 2021-12-02 | 株式会社ニコン | 画像処理装置、顕微鏡システム、画像処理方法、及びプログラム |
-
1991
- 1991-09-21 JP JP24213091A patent/JP3350071B2/ja not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08138077A (ja) * | 1994-11-07 | 1996-05-31 | Hitachi Medical Corp | 投影像の作成方法およびそのための装置 |
JP2021184264A (ja) * | 2017-01-16 | 2021-12-02 | 株式会社ニコン | 画像処理装置、顕微鏡システム、画像処理方法、及びプログラム |
US11442262B2 (en) | 2017-01-16 | 2022-09-13 | Nikon Corporation | Image processing device, microscope system, image processing method, and program |
Also Published As
Publication number | Publication date |
---|---|
JP3350071B2 (ja) | 2002-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sumanaweera et al. | MR susceptibility misregistration correction | |
JP4444413B2 (ja) | 4重フィールドエコーシーケンスを用いて水と脂肪を定量的にmr撮影する装置 | |
US5351006A (en) | Method and apparatus for correcting spatial distortion in magnetic resonance images due to magnetic field inhomogeneity including inhomogeneity due to susceptibility variations | |
US7372269B2 (en) | Magnetic resonance imaging method and apparatus | |
EP0377267B1 (en) | 3D image reconstruction method and apparatus for placing 3D structure within common oblique or contoured slice-volume without loss of volume resolution | |
US7235971B2 (en) | Shimming of MRI scanner involving fat suppression and/or black blood preparation | |
JP3403751B2 (ja) | 磁気共鳴映像装置 | |
JPH0578341B2 (ja) | ||
EP2610632A1 (en) | MRI with Dixon-type water/fat separation and prior knowledge about inhomogeneity of the main magnetic field | |
JP2000513978A (ja) | アーチファクト減少像生成方法及びその装置 | |
CN1109899C (zh) | 三维图象的限带插值法和投影 | |
US20100016708A1 (en) | Mri rf encoding using multiple transmit coils | |
US5755666A (en) | Method and device for imaging a curved region by means of magnetic resonance | |
JP3884227B2 (ja) | 磁気共鳴撮影装置 | |
JP2805405B2 (ja) | 磁気共鳴イメージング装置 | |
US5502384A (en) | Image reconstruction method in nuclear magnetic resonance imaging apparatus | |
CN100526908C (zh) | 改善磁共振断层造影中通量测量的方法及磁共振装置 | |
JP3350071B2 (ja) | 磁気共鳴イメージング装置 | |
US5072182A (en) | Fourier shifting of voxel boundaries in MR chemical shift imaging spectroscopy | |
JP2005168868A (ja) | 磁気共鳴イメージング装置 | |
US4896111A (en) | Method and system for improving resolution of images in magnetic resonance imaging | |
JPH0947440A (ja) | 医用画像再構成方法 | |
JPH0767443B2 (ja) | 磁気共鳴イメージング方法 | |
CN114624639A (zh) | 磁共振成像装置及其控制方法 | |
Arunachalam | Advanced acquisition and reconstruction techniques for accelerated three-dimensional magnetic resonance angiography |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313114 Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070913 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080913 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080913 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090913 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090913 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100913 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100913 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110913 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120913 Year of fee payment: 10 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120913 Year of fee payment: 10 |