JPH0576489B2 - - Google Patents

Info

Publication number
JPH0576489B2
JPH0576489B2 JP59265407A JP26540784A JPH0576489B2 JP H0576489 B2 JPH0576489 B2 JP H0576489B2 JP 59265407 A JP59265407 A JP 59265407A JP 26540784 A JP26540784 A JP 26540784A JP H0576489 B2 JPH0576489 B2 JP H0576489B2
Authority
JP
Japan
Prior art keywords
isocyanate
long
acid
masked
chain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59265407A
Other languages
Japanese (ja)
Other versions
JPS61145218A (en
Inventor
Koji Kurihara
Hironori Yonemoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOTOKU TORYO KK
Original Assignee
TOTOKU TORYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOTOKU TORYO KK filed Critical TOTOKU TORYO KK
Priority to JP59265407A priority Critical patent/JPS61145218A/en
Publication of JPS61145218A publication Critical patent/JPS61145218A/en
Publication of JPH0576489B2 publication Critical patent/JPH0576489B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polyurethanes Or Polyureas (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明はポリアミドイミド系重合体の製造方法
に関するもので、特に従来の耐熱性重合体にはみ
られない可撓性、屈曲性に優れた特性をもち、し
かも耐熱性、電気絶縁性、耐薬品性、耐加水分解
性の諸特性にすぐれ、かつ、皮膜形成性等の塗装
作業性にもすぐれた耐熱性重合体の製造方法に関
するものである。 〔従来の技術〕 近年耐熱性重合体として、ポリイミド、ポリア
ミドイミド、ポリヒダントイン、ポリアミドイミ
ドエステル、ポリエステルイミド、等が研究開発
され市販されている。しかしながら、これら耐熱
性重合体を工業的に実用化する場合、例えば耐熱
性を要求される電線被覆、フイルム、積層板、接
着剤等に使用する場合単に耐熱性のみでなく、可
撓性、屈曲性、密着性が、電気絶縁性、耐薬品
性、耐冷媒性等の多くの要求特性があり、しかも
これを各特性間の適正バランスが要求され、かつ
皮膜形成性にすぐれた重合体が望まれている。ポ
リイミドは耐熱性にすぐれているが、機械的強度
が劣り、ポリヒダントインは、被膜形成性にすぐ
れているが、耐冷媒性に劣り、ポリアミドエステ
ルは耐熱重合体としては耐熱性が不足しており、
ポリエステルイミドは、価格的に有利であるが耐
冷媒性、耐熱性に不足している。ポリアミドイミ
ドは、は、、耐熱重合体の中では、耐熱性、機械
的特性、、耐薬品性、耐冷媒性にすぐれバランス
のとれた特性を有している。しかしながら従来の
ポリアミドイミドは可撓性、屈曲性、密着性に欠
点があり、又耐熱性重合体の共通の欠点である被
膜形成性が悪く、電線塗装においては、発泡現
象、ブツ、ザラ等の外観肌荒れがおこりやすく1
回の塗布量を少くし、塗布回数を多くして低速で
焼付ける方法をとつている。従つて従来の他の材
料と比較して作業能率が悪くエナメル線の製造コ
ストが高くなつている。 〔発明が解決しようとする問題点〕 本発明の目的は、従来技術の有する問題点を解
消し、各種要求特性を備え、しかも、適正バラン
スを満たす耐熱性重合体を得ることにあり、従来
の耐熱性重合体にはみられない、可撓性、屈曲性
に優れた特性をもち、しかも耐熱性、電気絶縁
性、耐薬品性、耐加水分解の諸特性に優れ、か
つ、皮膜形成性等の塗装作業性にも優れた耐熱性
重合体の製造方法を提供することにある。 本発明の他の目的は、金属特にワイヤーへの塗
布、フイルム又はラミネートの製造に対して有用
な重合体であつて、配合組成の変化により任意の
要求特性に対して対応が可能で、成形樹脂、積層
板、接着剤等の広範囲の用途にも利用でき実用上
非常に有用な重合体の製造方法を提供することに
ある。 本発明のさらに他の目的は、本明細書の全体の
記述からも明らかになるであろう。 〔問題点を解決するための手段〕 本発明者らは、これら耐熱性重合体について鋭
意検討した結果、ダイマー酸から誘導された長鎖
多価イソシアネートと該イソシアネートを除く有
機イソシアネートとを、イソシアネートとして用
い、これらイソシアネートをトリカルボン酸若し
くはその誘導体単独又はトリカルボン酸若しくは
その誘導体及びダイマー酸とを反応させることに
より、従来のポリアミドイミドの利点をそこなわ
ずに、かつ、先に述べた欠点を改善した実用的に
価値の高い耐熱性重合体を得ることができること
を見い出し、これに基づき、本発明に到達した。 本発明は、マスキングされていることもある一
般式O=C=N−R−N=C=O(式中、Rは炭
素数36の当該長鎖多価イソシアネートの骨格をな
す脂肪族炭化水素基)で表わされ、ダイマー酸か
ら誘導された長鎖多価イソシアネートと、当該イ
ソシアネートを除く他の、マスキングされている
こともある有機イソシアネートと、トリカルボン
酸若しくはその誘導体とを反応させることを特徴
とするポリアミドイミド系重合体の製造方法、並
びに、マスキングされていることもある一般式 O=C=N−R−N=C=O(式中、Rは炭素
数36の当該長鎖多価イソシアネートの骨格をなす
脂肪族炭化水素基)で表わされ、ダイマー酸から
誘導された長鎖多価イソシアネートと、当該イソ
シアネートを除く他の、マスキングされているこ
ともある有機イソシアネートと、トリカルボン酸
若しくはその誘導体と、一般式HOOC−R′−
COOH(式中、R′は炭素数18〜34の当該長鎖二塩
基酸の骨格をなす脂肪族炭化水素基)で表わされ
る長鎖二塩基酸を主成分とした高級二塩基酸とを
反応させることを特徴とするポリアミドイミド系
重合体の製造方法に存する。 本発明で使用される長鎖多価イソシアネート
は、一般式O=C=N−R−N=C=O(式中、
Rは炭素数36の当該長鎖多価イソシアネートの骨
格をなす脂肪族炭化水素基)で表わされ、ダイマ
ー酸から誘導されたイソシアネートであり、具体
例としては、炭素数18の脂肪酸の二量体より成る
ダイマー酸から誘導されたジイソシアネートで、
ヘンケル日本社よりddiジイソシアネートとして
市販されているものがある。この長鎖多価イソシ
アネートは、後述する有機イソシアネートと同様
にしてマスク(マスキング)したものであつても
よい。これらは1種又は2種以上が使用される。 本発明で用いられる有機イソシアネートは上記
イソシアネートを除く他のイソシアネートで、例
えばトルイレンジイソシアネート、m−フエニレ
ンジイソシアネート、p−フエニレンジイソシア
ネート、4,4′−ジイソシアネートジフエニルメ
タン、4,4′−ジイソシアネートジフエニルエー
テル、キシリレンジイソシアネートが挙げられ、
またこれらのイソシアネートのイソシアネート基
をフエノール、クレゾール、キシレノール等でマ
スクしたイソシアネート誘導体も使用することが
できる。これらは1種又は2種以上が使用され
る。 本発明で使用されるトリカルボン酸若しくはそ
の誘導体としては一般式
[Industrial Application Field] The present invention relates to a method for producing a polyamide-imide polymer, which has excellent flexibility and flexibility not found in conventional heat-resistant polymers, and is also heat-resistant. The present invention relates to a method for producing a heat-resistant polymer that has excellent properties such as electrical insulation, chemical resistance, and hydrolysis resistance, and also has excellent coating workability such as film-forming properties. [Prior Art] In recent years, heat-resistant polymers such as polyimide, polyamideimide, polyhydantoin, polyamideimide ester, and polyesterimide have been researched and developed and are commercially available. However, when these heat-resistant polymers are put to practical use industrially, for example, when they are used for wire coatings, films, laminates, adhesives, etc. that require heat resistance, they do not only have heat resistance, but also flexibility and bendability. There are many required properties such as electrical insulation, chemical resistance, refrigerant resistance, adhesion, electrical insulation, chemical resistance, refrigerant resistance, etc., and an appropriate balance among these properties is required, and a polymer with excellent film forming properties is desired. It is rare. Polyimide has excellent heat resistance but poor mechanical strength, polyhydantoin has excellent film forming properties but poor refrigerant resistance, and polyamide ester lacks heat resistance as a heat-resistant polymer. ,
Although polyesterimide is advantageous in terms of price, it lacks refrigerant resistance and heat resistance. Among heat-resistant polymers, polyamide-imide has excellent and well-balanced properties in heat resistance, mechanical properties, chemical resistance, and refrigerant resistance. However, conventional polyamide-imide has shortcomings in flexibility, flexibility, and adhesion, and it also has poor film forming properties, which are common shortcomings of heat-resistant polymers. Appearance: Easy to cause rough skin 1
The method used is to reduce the amount of paint per coat, increase the number of coats, and bake at low speed. Therefore, compared to other conventional materials, the working efficiency is poor and the manufacturing cost of enamelled wire is high. [Problems to be Solved by the Invention] The purpose of the present invention is to solve the problems of the prior art and to obtain a heat-resistant polymer that has various required properties and satisfies an appropriate balance. It has excellent flexibility and bendability that are not found in heat-resistant polymers, and also has excellent properties such as heat resistance, electrical insulation, chemical resistance, and hydrolysis resistance, as well as film-forming properties. An object of the present invention is to provide a method for producing a heat-resistant polymer that also has excellent coating workability. Another object of the present invention is to provide a polymer useful for coating metals, particularly wires, and producing films or laminates, which can be adapted to any required properties by changing the composition, and which can be used as a molding resin. It is an object of the present invention to provide a method for producing a polymer that can be used in a wide range of applications such as laminates, adhesives, etc. and is extremely useful in practice. Further objects of the present invention will become apparent from the entire description of the present specification. [Means for Solving the Problems] As a result of intensive studies on these heat-resistant polymers, the present inventors have found that long-chain polyvalent isocyanates derived from dimer acids and organic isocyanates other than the isocyanates are used as isocyanates. By reacting these isocyanates with tricarboxylic acid or its derivative alone or with tricarboxylic acid or its derivative and dimer acid, the above-mentioned disadvantages can be improved without impairing the advantages of conventional polyamide-imide. We have discovered that it is possible to obtain a heat-resistant polymer of high commercial value, and based on this we have arrived at the present invention. The present invention is based on the general formula O=C=NR-N=C=O (where R is an aliphatic hydrocarbon having a carbon number of 36 and forming the skeleton of the long-chain polyvalent isocyanate), which may be masked. It is characterized by reacting a long-chain polyvalent isocyanate represented by the group ) and derived from a dimer acid, an organic isocyanate other than the isocyanate, which may be masked, and a tricarboxylic acid or a derivative thereof. and the general formula O=C=N-R-N=C=O (wherein R is the long chain polyvalent polymer having 36 carbon atoms) A long-chain polyvalent isocyanate derived from a dimer acid, an organic isocyanate other than the isocyanate, which may be masked, and a tricarboxylic acid or Its derivatives and the general formula HOOC−R′−
Reacts with a higher dibasic acid whose main component is a long chain dibasic acid represented by COOH (in the formula, R′ is an aliphatic hydrocarbon group having 18 to 34 carbon atoms and forming the backbone of the long chain dibasic acid) The present invention relates to a method for producing a polyamide-imide polymer. The long chain polyvalent isocyanate used in the present invention has the general formula O=C=NR-N=C=O (wherein,
R is an aliphatic hydrocarbon group that forms the skeleton of the long-chain polyvalent isocyanate having 36 carbon atoms, and is an isocyanate derived from a dimer acid. A diisocyanate derived from dimer acid consisting of
There is one commercially available as DDI diisocyanate from Henkel Japan. This long-chain polyvalent isocyanate may be masked in the same manner as the organic isocyanate described below. One or more of these may be used. The organic isocyanate used in the present invention is other than the above-mentioned isocyanates, such as toluylene diisocyanate, m-phenylene diisocyanate, p-phenylene diisocyanate, 4,4'-diisocyanate diphenylmethane, 4,4'-diisocyanate. Examples include diphenyl ether and xylylene diisocyanate.
Isocyanate derivatives obtained by masking the isocyanate groups of these isocyanates with phenol, cresol, xylenol, etc. can also be used. One or more of these may be used. The tricarboxylic acid or its derivative used in the present invention has the general formula

【式】 で表わされるものが例示される。 〔ここでR1=H、または、アルキル基が例示さ
れ、
[Formula] is exemplified. [Here, R 1 =H or an alkyl group is exemplified,

【式】または[expression] or

【式】が例示される。〕 一般的には耐熱性、経済性の見地からトリメリ
ツト酸無水物が好ましいが、トリカルボン酸の一
部を、ピロメリツト酸無水物、3,3′4,4′ベン
ゾフエノンテトラカルボン酸無水物、ブタンテト
ラカルボン酸等のテトラカルボン酸、又はその誘
導体で置換することも可能である。これらは1種
又は2種以上が使用される。 本発明で使用される高級二塩基酸には種々のも
のが使用可能であるが、特に好ましいものは精製
植物性不飽和脂肪酸の重合によつて得られたダイ
マー酸である。このダイマー酸は大部分が脂肪酸
の二量体より成るものでC18の脂肪酸を原料とし
ている関係から得られたものはC36のダイマー酸
を主成分として少量のトリマー酸及びモノマー酸
を含有しているものである。この種のダイマー酸
は、例えばバーサダイム288、バーサダイム216、
バーサダイム228(以上いずれもヘンケル日本株式
会社商品名)等として市販されているから、本発
明ではかかる市販品を有効に使用することができ
る。高級二塩基酸の他の好ましい例としては次の
如きものが挙げられる。 (イ)HOOC(CH26CH=CH(CH26COOH 4〜9% HOOC(CH26CH=CH(CH2)CH=CH
(CH26COOH 35〜52%
[Formula] is exemplified. ] Trimellitic anhydride is generally preferred from the standpoint of heat resistance and economical efficiency, but a portion of the tricarboxylic acid may be replaced by pyromellitic anhydride, 3,3'4,4'benzophenonetetracarboxylic anhydride, Substitution with a tetracarboxylic acid such as butanetetracarboxylic acid or a derivative thereof is also possible. One or more of these may be used. Although various higher dibasic acids can be used in the present invention, a particularly preferred one is a dimer acid obtained by polymerizing purified vegetable unsaturated fatty acids. This dimer acid is mostly composed of dimers of fatty acids, and those obtained from C18 fatty acids are mainly composed of C36 dimer acids and contain small amounts of trimer acids and monomer acids. It is something that This type of dimer acid is, for example, Versadime 288, Versadime 216,
Since it is commercially available as Versadime 228 (all of the above are trade names of Henkel Japan Co., Ltd.), such commercial products can be effectively used in the present invention. Other preferred examples of higher dibasic acids include the following. (a) HOOC (CH 2 ) 6 CH=CH (CH 2 ) 6 COOH 4-9% HOOC (CH 2 ) 6 CH=CH (CH 2 ) CH=CH
( CH2 ) 6COOH 35-52%

【化】 2〜4%[ka] 2-4%

【化】 30〜40% (ロ)HOOC(CH214COOH 4〜10% HOOC(CH218COOH 85〜90% (ハ)[C] 30-40% (B) HOOC (CH 2 ) 14 COOH 4-10% HOOC (CH 2 ) 18 COOH 85-90% (C)

【化】 10〜20%[ka] 10-20%

【化】 80〜90% (ニ) 主成分、[ka] 80-90% (d) Main component,

〔実施例〕〔Example〕

次に本発明を実施例および比較例に基づいてさ
らに詳述する。 実施例 1 温度計、撹拌器、冷却管、窒素導入管をつけた
2四ツ口フラスコにトリメツト酸無水物230g、
4,4′−ジイソシアネートジフエニルメタン296
g、ddiジイソシアネート(ヘンケル日本株式会
社商品名)14g、N−メチルピロリドン798gを
仕込み、80℃〜90℃に昇温しこの温度で4時間保
持した。次に120℃〜130℃まで昇温しこの温度で
4時間保持した。この間炭酸ガスの発生が著しか
つた。更に140℃〜150℃まで昇温し、この温度で
3時間かけて反応を完結した。反応生成物は赤褐
色透明の粘稠溶液の形で得られ、その赤外スペク
トルは、1650cm-1および1780cm-1にアミドイミド
基に特徴的な吸収が示された。反応生成物を、N
−メチルピロリドンとキシレンの混合溶媒で30%
に希釈し30ポイズ(30℃)の樹脂溶液を得た。こ
の樹脂溶液を炉長7mの堅形熱風盾環炉を用い、
表1に示した条件で線径的1.0mμφの銅線上に焼
付け塗布を行つた。 実施例 2 温度計、撹拌器、冷却管、窒素導入管をつけた
2四ツ口フラスコにトリメリツト酸無水物230
g、4,4′ジイソシアネートジフエニルメタン
287g、ddiジイシアネート(ヘンケル日本株式会
社商品名)35g、N−メチルピロリドン820gを
仕込み、実施例1と同様にして反応せしめ、得ら
れた反応生成物をN−メチルピロリドンとキシレ
ンの混合溶媒で30%に希釈し30ポイズの樹脂溶液
を得た。 得られた樹脂溶液を実施例1と同様にして電線
上に焼付け塗布を行つた。 実施例 3 温度計、撹拌器、冷却管、窒素導入管をつけた
2四ツ口フラスコにトリメリツト酸無水物228
g、高級酸二塩基酸(ヘンケル日本株式会社商品
名バーサダイム288)7g、4,4′−ジイソシア
ネートジフエニルメタン299g、ddiジイソシアネ
ート7g、N−メチルピロリドン797gを仕込み
実施例1と同様にして反応せしめ、得られた反応
生成物をN−メチルピロリドンとキシレンの混合
溶媒で30%に希釈30ポイズの樹脂溶液を得た。得
られた重合体溶液を0.04mm厚さの銅箔上に焼付炉
にて焼付けて得られた塗膜は、充分な可撓性を有
し、塗膜の赤外吸収スペクトルには1650cm-1およ
び1780cm-1に、アミドイミド基に特徴的な吸収が
認められた。 また得られた樹脂溶液を実施例1と同様にして
電線上に焼付け塗布を行つた。 比較例 温度計、撹拌器、冷却管、窒素導入管をつけた
2四ツ口フラスコにトリメリツト酸無水物288
g、4,4′−ジイソシアネートジフエニルメタン
380g、N−メチルピロリドン1002gを仕込み、
温度が80℃〜90℃に上昇すると炭酸ガスの発生が
認められる。更に温度を130℃〜140℃で1〜2時
間加熱すると粘度が上昇し約3時間加熱し反応を
完結した。得られた反応生成物をN−メチルピロ
リドンとキシレンの混合溶媒で30%に希釈し、実
施例1と同様にして電線上に焼付け塗布を行つ
た。 実施例1〜3および比較例で得られたエナメル
線の一般特性はJIS C3003−1976に準じて行い、
それらの試験結果は表−2に示すとおりであつ
た。
Next, the present invention will be further described in detail based on Examples and Comparative Examples. Example 1 230 g of trimethic anhydride was placed in a 2-four-necked flask equipped with a thermometer, stirrer, cooling tube, and nitrogen inlet tube.
4,4'-Diisocyanate diphenylmethane 296
14 g of DDI diisocyanate (trade name, Henkel Japan Co., Ltd.) and 798 g of N-methylpyrrolidone were charged, and the temperature was raised to 80° C. to 90° C. and maintained at this temperature for 4 hours. Next, the temperature was raised to 120°C to 130°C and maintained at this temperature for 4 hours. During this period, a significant amount of carbon dioxide gas was generated. The temperature was further raised to 140°C to 150°C, and the reaction was completed at this temperature over 3 hours. The reaction product was obtained in the form of a reddish-brown transparent viscous solution, and its infrared spectrum showed absorptions characteristic of amidimide groups at 1650 cm -1 and 1780 cm -1 . The reaction product, N
-30% in mixed solvent of methylpyrrolidone and xylene
A resin solution of 30 poise (30°C) was obtained. This resin solution was heated using a 7m long vertical hot air shield furnace.
Baking coating was performed on a copper wire with a wire diameter of 1.0 mμφ under the conditions shown in Table 1. Example 2 Trimellitic anhydride 230% was added to a 2-4-necked flask equipped with a thermometer, stirrer, cooling tube, and nitrogen inlet tube.
g, 4,4' diisocyanate diphenylmethane
287 g, ddi diicyanate (trade name of Henkel Japan Ltd.), 35 g, and 820 g of N-methylpyrrolidone were charged and reacted in the same manner as in Example 1. The resulting reaction product was dissolved in a mixed solvent of N-methylpyrrolidone and xylene. Diluted to 30% to obtain a 30 poise resin solution. The obtained resin solution was baked and applied onto electric wires in the same manner as in Example 1. Example 3 Trimellitic anhydride 228 was added to a two-four neck flask equipped with a thermometer, stirrer, cooling tube, and nitrogen inlet tube.
g, 7 g of higher acid dibasic acid (Henkel Japan Co., Ltd. trade name Versadime 288), 299 g of 4,4'-diisocyanate diphenylmethane, 7 g of ddi diisocyanate, and 797 g of N-methylpyrrolidone were charged and reacted in the same manner as in Example 1. The resulting reaction product was diluted to 30% with a mixed solvent of N-methylpyrrolidone and xylene to obtain a 30 poise resin solution. The obtained polymer solution was baked on a 0.04 mm thick copper foil in a baking oven, and the resulting coating film had sufficient flexibility, and the infrared absorption spectrum of the coating film was 1650 cm -1 At 1780 cm -1 , an absorption characteristic of the amide-imide group was observed. Further, the obtained resin solution was applied by baking onto an electric wire in the same manner as in Example 1. Comparative example Trimellitic anhydride 288 was added to a 2-four-necked flask equipped with a thermometer, stirrer, cooling tube, and nitrogen inlet tube.
g, 4,4'-diisocyanate diphenylmethane
Prepared 380g and 1002g of N-methylpyrrolidone.
When the temperature rises to 80°C to 90°C, the generation of carbon dioxide gas is observed. When the temperature was further heated at 130° C. to 140° C. for 1 to 2 hours, the viscosity increased and the reaction was completed after heating for about 3 hours. The obtained reaction product was diluted to 30% with a mixed solvent of N-methylpyrrolidone and xylene, and baked onto an electric wire in the same manner as in Example 1. The general characteristics of the enamelled wires obtained in Examples 1 to 3 and Comparative Examples were determined according to JIS C3003-1976.
The test results were as shown in Table-2.

【表】【table】

【表】 上表の結果から明らかなように、塗装作業性に
おいて従来塗布回数9回で行つていたものが、本
発明のアミドイミド系重合体は、塗布回数6回で
も良好な外観を示し、作業能率が優れており、エ
ナメル線の製造コストが低減できる。又可撓性、
捻回ハクリ試験結果で明らかなように可撓性、密
着性、屈曲性、に優れており、しかも耐熱性、電
気特性、薬品性において、従来のアミドイミドの
特性と比較して何ら遜色がなかつた。 〔発明の効果〕 (1) 本発明によれば、従来の耐熱性重合体にはみ
られない、各種要求特性を備え、しかも適正バ
ランスを満足することのできるものを得ること
ができた。すなわち、従来の耐熱性重合体には
みられない、可撓性、屈曲性に優れた特性をも
ち、しかも、耐熱性、電気絶縁性、耐薬品性、
耐加水分解性の諸特性に優れ、かつ皮膜形成性
等の塗装作業性にも優れた耐熱性重合体を得る
ことができた。 (2) 本発明の製造方法によつて得られたポリアミ
ドイミド系重合体は、従来の全芳香族ポリアミ
ドに比して、特に、可撓性、屈曲性、被膜形成
性にすぐれた特性を有しており、金属特にワイ
ヤーへの塗布、フイルム又はラミネートの製造
に対して有用で、配合組成の変化により任意の
要求特性に対して適宜対応が可能で、成形樹
脂、積層板、接着剤等の広範囲の用途にも利用
でき、工業的に非常に有用なものを提供し得
た。
[Table] As is clear from the results in the table above, in terms of painting workability, the amide-imide polymer of the present invention shows good appearance even after 6 times of application, whereas the conventional method required 9 times of application. It has excellent work efficiency and can reduce the manufacturing cost of enamelled wire. Also flexible,
As is clear from the results of the twisting peel test, it has excellent flexibility, adhesion, and bendability, and has no inferiority in terms of heat resistance, electrical properties, and chemical properties compared to conventional amide-imide properties. . [Effects of the Invention] (1) According to the present invention, it was possible to obtain a product that has various required properties not found in conventional heat-resistant polymers and can also satisfy an appropriate balance. In other words, it has excellent flexibility and bendability that are not found in conventional heat-resistant polymers, as well as heat resistance, electrical insulation, chemical resistance,
It was possible to obtain a heat-resistant polymer that has excellent properties such as hydrolysis resistance and also excellent coating workability such as film-forming properties. (2) The polyamide-imide polymer obtained by the production method of the present invention has particularly excellent properties in flexibility, flexibility, and film-forming properties compared to conventional wholly aromatic polyamides. It is useful for coating metals, especially wires, and manufacturing films and laminates. By changing the composition, it is possible to suitably meet any required properties, and it can be used for molding resins, laminates, adhesives, etc. It can be used for a wide range of purposes, and has been extremely useful industrially.

Claims (1)

【特許請求の範囲】 1 マスキングされていることもある一般式 O=C=N−R−N=C=O(式中、Rは炭素
数36の当該長鎖多価イソシアネートの骨格をなす
脂肪族炭化水素基)で表わされ、ダイマー酸から
誘導された長鎖多価イソシアネートと、当該イソ
シアネートを除く他の、マスキングされているこ
ともある有機イソシアネートと、トリカルボン酸
若しくはその誘導体とを反応させることを特徴と
するポリアミドイミド系重合体の製造方法。 2 マスキングされていることもある一般式 O=C=N−R−N=C=O(式中、Rは炭素
数36の当該長鎖多価イソシアネートの骨格をなす
脂肪族炭化水素基)で表わされ、ダイマー酸から
誘導された長鎖多価イソシアネートと、当該イソ
シアネートを除く他の、マスキングされているこ
ともある有機イソシアネートと、トリカルボン酸
若しくはその誘導体と、一般式HOOC−R′−
COOH(式中、R′は炭素数18〜34の当該長鎖二塩
基酸の骨格をなす脂肪族炭化水素基)で表わされ
る長鎖二塩基酸を主成分とした高級二塩基酸とを
反応させることを特徴とするポリアミドイミド系
重合体の製造方法。
[Claims] 1 General formula that may be masked O=C=N-R-N=C=O (wherein R is a fatty acid forming the skeleton of the long-chain polyvalent isocyanate having 36 carbon atoms) A long-chain polyvalent isocyanate represented by a group hydrocarbon group) and derived from a dimer acid, and an organic isocyanate other than the isocyanate, which may be masked, are reacted with a tricarboxylic acid or a derivative thereof. A method for producing a polyamide-imide polymer, characterized by: 2 General formula that may be masked O=C=N-R-N=C=O (wherein R is an aliphatic hydrocarbon group forming the skeleton of the long-chain polyvalent isocyanate having 36 carbon atoms) A long-chain polyvalent isocyanate derived from a dimer acid, an organic isocyanate other than the isocyanate, which may be masked, a tricarboxylic acid or a derivative thereof, and a general formula HOOC-R'-
Reacts with a higher dibasic acid whose main component is a long chain dibasic acid represented by COOH (in the formula, R′ is an aliphatic hydrocarbon group having 18 to 34 carbon atoms and forming the backbone of the long chain dibasic acid) 1. A method for producing a polyamide-imide polymer, which comprises:
JP59265407A 1984-12-18 1984-12-18 Production of polyamide-imide polymer Granted JPS61145218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59265407A JPS61145218A (en) 1984-12-18 1984-12-18 Production of polyamide-imide polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59265407A JPS61145218A (en) 1984-12-18 1984-12-18 Production of polyamide-imide polymer

Publications (2)

Publication Number Publication Date
JPS61145218A JPS61145218A (en) 1986-07-02
JPH0576489B2 true JPH0576489B2 (en) 1993-10-22

Family

ID=17416733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59265407A Granted JPS61145218A (en) 1984-12-18 1984-12-18 Production of polyamide-imide polymer

Country Status (1)

Country Link
JP (1) JPS61145218A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4832198A (en) * 1971-08-31 1973-04-27
JPS4885697A (en) * 1972-02-07 1973-11-13
JPS4896698A (en) * 1972-03-01 1973-12-10
JPS5880325A (en) * 1981-11-09 1983-05-14 Showa Electric Wire & Cable Co Ltd Polyamide-imide resin composition and its production
JPS58183749A (en) * 1982-04-21 1983-10-27 Showa Electric Wire & Cable Co Ltd Polyamide-imide resin composition and preparation thereof
JPS59126422A (en) * 1983-01-10 1984-07-21 Hitachi Chem Co Ltd Polyamide-imide resin composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4832198A (en) * 1971-08-31 1973-04-27
JPS4885697A (en) * 1972-02-07 1973-11-13
JPS4896698A (en) * 1972-03-01 1973-12-10
JPS5880325A (en) * 1981-11-09 1983-05-14 Showa Electric Wire & Cable Co Ltd Polyamide-imide resin composition and its production
JPS58183749A (en) * 1982-04-21 1983-10-27 Showa Electric Wire & Cable Co Ltd Polyamide-imide resin composition and preparation thereof
JPS59126422A (en) * 1983-01-10 1984-07-21 Hitachi Chem Co Ltd Polyamide-imide resin composition

Also Published As

Publication number Publication date
JPS61145218A (en) 1986-07-02

Similar Documents

Publication Publication Date Title
US4720539A (en) Polyimide precursor compositions, their manufacture, the resultant polyimides and their use, particularly for manufacturing enamelling varnishes for electric wires
US4101488A (en) Water-soluble heat-resistant insulating varnish
JPS5836018B2 (en) Manufacturing method of heat-resistant resin
US3440197A (en) Coating solutions and methods for preparing and using the same
US3778411A (en) Polyamide acids and polyamideimides
JPH0126370B2 (en)
US3407176A (en) Polyamide-acids and polyimide from a mixture of dianhydrides
US4075179A (en) Polyesterimides and processes for preparing same
US4121266A (en) Polyamide-imide precondensates
JPH0576489B2 (en)
CN112679691B (en) Organic silicon modified polyamide imide for cooker coating and preparation method thereof
JPS60168716A (en) Production of polyamide-imide polymer
JPS5812900B2 (en) Water-soluble polyester-imide resin
US4423111A (en) Polyetherimide resin and electrical conductors insulated therewith
JPS5952898B2 (en) Method for producing polyimide precursor
JPS5927921A (en) Production of heat-resistant resin
US3468852A (en) Polyamide-acid amide-acid and polyimide-imide compositions
JPS607648B2 (en) Method for producing heat-resistant polymer
JPS6011931B2 (en) Manufacturing method of polyester resin
JPS5855168B2 (en) Polyamideimide resin composition and method for producing the same
JPS5943030A (en) Production of polyamide-imide resin composition
JPS6235431B2 (en)
JPS58174441A (en) Heat-resistant resin composition
JPS6344243B2 (en)
JP2011236384A (en) Heat-resistant resin composition, coating material, and enameled wire using the same