JPH0576361A - Tissue plasminogen activator mutein - Google Patents

Tissue plasminogen activator mutein

Info

Publication number
JPH0576361A
JPH0576361A JP10568991A JP10568991A JPH0576361A JP H0576361 A JPH0576361 A JP H0576361A JP 10568991 A JP10568991 A JP 10568991A JP 10568991 A JP10568991 A JP 10568991A JP H0576361 A JPH0576361 A JP H0576361A
Authority
JP
Japan
Prior art keywords
tpa
leu
gly
ser
asp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10568991A
Other languages
Japanese (ja)
Inventor
Koichi Kato
光一 加藤
Koichi Igarashi
貢一 五十嵐
Yukio Shimomura
行生 下村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takeda Pharmaceutical Co Ltd
Original Assignee
Takeda Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takeda Chemical Industries Ltd filed Critical Takeda Chemical Industries Ltd
Priority to JP10568991A priority Critical patent/JPH0576361A/en
Publication of JPH0576361A publication Critical patent/JPH0576361A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

PURPOSE:To obtain a new tpA mutein useful as a therapeutic agent for cardiac infarction, cerebral infarction, lung embolism and peripheral arteriovenous thrombosis. CONSTITUTION:The objective mutein being a tpA mutein from which a finger (F) domain, growth factor (E) domain and Kringle (K) 1 domain are lost and e.g. having an amino acid sequence of amino acid residue No.174 to 527 expressed by the formula and obtained from a cultured product of transformant transformed by a vector containing a recombinant DNA having a base sequence coding the above-mentioned mutein.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、組織プラスミノーゲン
アクチベーター(以下、tPAと略称することもある)
のムテインおよびそれを製造するための技術に関する。
The present invention relates to tissue plasminogen activator (hereinafter sometimes abbreviated as tPA).
Mutein and technology for manufacturing it.

【0002】[0002]

【従来の技術】フィブリンの網状構造からなる血栓は、
血管の部分的あるいは完全閉塞を引きおこし、心筋梗
塞、脳卒中、肺塞栓症および末梢静脈血栓症などの血管
の疾病の原因となる。プラスミンはこのような線維素を
溶解する酵素の1種であるが、通常血液中には不活性な
前駆体酵素であるプラスミノーゲンとして存在する。t
PAはプラスミノーゲンをプラスミンに変換する。生成
したプラスミンはフィブリンに作用し、可溶性ペプチド
に分解する。このようにtPAは血栓溶解剤として使用
することができると考えられる〔Camioloら、プロシー
ジングス オブ ソサイェティ オブ エクスペリメンタル
バイオロジカル メディスン(Proc. Soc. Exp. Biol.
Med.) 138 : 277-280 (1971)およびRanbyら、バイオヒ
ミカ バイオフィジカ ウント アクタ(Biochem. Biophy
s. Acta) 704 : 461-469 (1982)〕。しかし、ヒトの
血中にtPAを投与した場合tPAの半減期は非常に短
い〔Tiefehbrunnら、サーキュレーション(Circulatio
n) 71 : 110-116 (1985)〕。これは肝臓におけるtP
Aの急速な分解による〔Korningerら、スロンボーシス
アンド ヘモステーシス(Thromb. Haemostes.) 46 : 6
58-661(1981)〕と考えられる。
BACKGROUND OF THE INVENTION A thrombus consisting of a fibrin reticulum is
It causes partial or complete occlusion of blood vessels and causes vascular diseases such as myocardial infarction, stroke, pulmonary embolism and peripheral venous thrombosis. Plasmin is one of the enzymes that dissolves such fibrin, but it usually exists in blood as an inactive precursor enzyme, plasminogen. t
PA converts plasminogen to plasmin. The produced plasmin acts on fibrin and decomposes into soluble peptides. Thus, tPA could be used as a thrombolytic agent [Camiolo et al., Proc. Soc. Exp. Biol.
Med.) 138 : 277-280 (1971) and Ranby et al., BioHimica Biophysicact Actor (Biochem. Biophy.
s. Acta) 704 : 461-469 (1982)]. However, when tPA is administered to human blood, the half-life of tPA is very short [Tiefehbrunn et al., Circulation
n) 71 : 110-116 (1985)]. This is tP in the liver
By the rapid degradation of A [Korninger et al., Thrombosis
And Hemostasis (Thromb. Haemostes.) 46 : 6
58-661 (1981)].

【0003】さらに血中には多種の血漿プロテアーゼ阻
害剤、特にプラスミノーゲンアクチベーターインヒビタ
ータイプ1(PAI−1)、タイプ2(PAI−2)、
タイプ3(PAI−3)、プロテアーゼネキシンIなど
のプラスミノーゲン活性化因子阻害剤の存在が明らかに
されており〔Saksela and Rifkin,アニュアル レビュー
オブ セル バイオロジー(Ann. Rev. Cell Biol.) 4:
93-126(1988)およびLoskutoffら、プログレス イン ヘ
モスターシス アンド スロンボーシス(Progress in He
mostasis and Thrombosis)(Coller,B. S., ed., W. B.
Saunders Co.,Philadelphia) pp87-115(1989)〕、これ
らがtPAと複合体を形成し、tPAの働きを阻害して
いる。これらの理由により、血栓溶解を誘導するために
は多量のtPAを投与する必要があり、これがもとでし
ばしば全身性の出血傾向がもたらされ重篤な副作用を惹
起することが報告されている。
Further, in blood, various plasma protease inhibitors, particularly plasminogen activator inhibitor type 1 (PAI-1), type 2 (PAI-2),
The existence of plasminogen activator inhibitors such as type 3 (PAI-3) and protease nexin I has been revealed [Saksela and Rifkin, Annual Review of Cell Biology (Ann. Rev. Cell Biol.) 4 :
93-126 (1988) and Loskutoff et al., Progress in Hemostasis and Thrombosis.
mostasis and Thrombosis) (Coller, BS, ed., WB
Saunders Co., Philadelphia) pp87-115 (1989)], which form a complex with tPA and inhibit the action of tPA. For these reasons, it is necessary to administer a large amount of tPA in order to induce thrombolysis, and it has been reported that this often causes a generalized bleeding tendency and causes serious side effects. .

【0004】[0004]

【発明が解決しようとする問題点】tPAは527残基の
アミノ酸からなるタンパク質である。tPA分子には、
N末端からフィンガー(F)ドメイン(アミノ酸残基番
号1-43)、成長因子(epidermal growth factor)(E)
ドメイン(アミノ酸残基番号44-91)、クリングル
(K)1ドメイン(アミノ酸残基番号92-173)、K2ド
メイン(アミノ酸残基番号180-261)、およびプロテアー
ゼ(P)ドメイン(アミノ酸残基番号262-527)の各ドメ
インが存在する〔Pennicaら、ネイチャー(Nature)30
1: 214-220 (1983) ;Banyaiら、フェブス レターズ(FE
BS Lett.)163 : 37-41 (1983)〕。tPAに特徴的なフ
ィブリン親和性は、主にK2ドメインに由来すると考え
られている。
Problems to be Solved by the Invention tPA is a protein consisting of 527 amino acid residues. For the tPA molecule,
N-terminal to finger (F) domain (amino acid residues 1-43), epidermal growth factor (E)
Domain (amino acid residue number 44-91), kringle (K) 1 domain (amino acid residue number 92-173), K2 domain (amino acid residue number 180-261), and protease (P) domain (amino acid residue number 262-527) exists for each domain [Pennica et al., Nature 30
1 : 214-220 (1983); Banyai et al., Febbs Letters (FE
BS Lett.) 163 : 37-41 (1983)]. The fibrin affinity characteristic of tPA is thought to be mainly derived from the K2 domain.

【0005】本発明者らはF、E、K1の全ドメインを
欠失させることにより、活性およびフィブリン親和性を
損なうことなくtPA分子を低分子量化でき、これによ
って肝臓でのクリアランスを遅らせ血中半減期を延長で
きると予想した。この低分子量化したtPAムテイン
に、さらにアミノ酸の欠失や置換を付与することによ
り、プロテアーゼ阻害剤による不活性化を抑えられるで
あろうと考えた。さらに、組換えDNA技術によって微
生物学的につくられるtPAは、システイン残基を含有
しており、それらは分子間または分子内の望ましくない
結合を形成し、生物学的に不活性な蛋白質を生じ比活性
を低下させる原因となっている。そこで本発明者らは、
微生物学的につくられた生物活性のないもしくは非常に
低い組換え型tPAを、一たん変性し次いで適当な条件
下で賦活化することにより活性のあるtPAに変えうる
であろうと考えた。
By deleting the entire domains of F, E and K1, the present inventors have made it possible to reduce the molecular weight of the tPA molecule without impairing the activity and affinity of fibrin, thereby delaying the clearance in the liver and reducing it in the blood. We expected that the half-life could be extended. It was thought that by further adding amino acid deletions or substitutions to this low molecular weight tPA mutein, inactivation by the protease inhibitor could be suppressed. In addition, tPA, which is microbiologically produced by recombinant DNA technology, contains cysteine residues, which form undesired intermolecular or intramolecular bonds, resulting in biologically inactive proteins. It is a cause of lowering the specific activity. Therefore, the present inventors
It was thought that microbiologically produced inactive or very low recombinant tPA could be converted to active tPA by denaturation and activation under appropriate conditions.

【0006】[0006]

【問題点を解決するための手段】本発明者らは、組換え
DNA技術および特定部位指向性変異(Site directedm
utagenesis)により、修飾されたtPAムテインを構築
し、それらの血中での安定性、活性、血漿阻害剤による
阻害および生物活性などについて鋭意研究した結果、原
体であるtPAよりも優れたムテインを見い出した。さ
らに微生物学的につくられた生物活性のない、あるいは
非常に低い活性しかないtPAの賦活化法につき鋭意研
究した結果、賦活化の最適条件を見い出した。これらの
知見に基づいてさらに研究した結果、本発明を完成する
に至った。
[Means for Solving the Problems] The present inventors have proposed recombinant DNA technology and site-directed mutation (Site directed
modified tPA mutein by utagenesis), and as a result of diligent studies on their stability in blood, activity, inhibition by plasma inhibitors and biological activity, a mutein superior to the original tPA was found. I found it. Further, as a result of earnest research on a method for activating microbiologically produced tPA having no biological activity or very low activity, the optimum condition for activation was found. As a result of further research based on these findings, the present invention has been completed.

【0007】すなわち、本発明は、(1)F、E、K1
の全ドメインを欠失し、K2、Pの両ドメインからなる
tPAムテイン(アミノ酸残基番号174-527、ただし174
〜179の一部または全部のアミノ酸残基を欠失してもよ
い)、および該tPAムテインの更なるムテイン、
(2)上記(1)のムテインをコードする塩基配列を有
する組換えDNA、(3)上記(1)のムテインをコー
ドする塩基配列を有する組換えDNAを含むベクターで
形質転換された形質転換体、および(4)上記(1)の
ムテインをコードする塩基配列を有する組換えDNAを
含むベクターで形質転換された形質転換体を培地に培養
し、培養物中に該ムテインを生成蓄積せしめ、これを採
取し、(5)場合により賦活化処理により、活性化する
ことを特徴とする該ムテインの製造法である。本発明の
ムテインにおける変異させる前のtPAとしては、温血
哺乳動物のtPAのいずれのものでもよい。
That is, the present invention is (1) F, E, K1
Of the tPA mutein (amino acid residues 174-527;
~ 179 amino acids may be deleted), and a further mutein of said tPA mutein,
(2) A transformant transformed with a vector containing the recombinant DNA having the nucleotide sequence encoding the mutein of (1) above, and (3) the recombinant DNA having the nucleotide sequence encoding the mutein of (1) above. And (4) the transformant transformed with the vector containing the recombinant DNA having the nucleotide sequence encoding the mutein of (1) above is cultivated in a medium, and the mutein is produced and accumulated in the culture. Is collected, and (5) is optionally activated by an activation treatment to produce the mutein. The tPA before mutation in the mutein of the present invention may be any tPA of warm-blooded mammals.

【0008】上記のように本発明ではFEK1欠失tP
Aムテインの更なるムテインをも包含するものであり、
このムテインとしては、本来、元のペプチドあるいは蛋
白質のアミノ酸配列が変異したものであり、したがって
該変異としては、構成アミノ酸の欠損、他のアミノ酸へ
の置換が挙げられる。該構成アミノ酸の欠損としては、
FEK1欠失tPAムテイン構成アミノ酸の少なくとも
1個が欠損しているものが挙げられる。該他のアミノ酸
への置換としては、FEKl欠失tPAムテイン構成ア
ミノ酸の少なくとも1個が別のアミノ酸で置換されてい
るものが挙げられる。少なくとも1個の構成アミノ酸が
欠損しているFEK1欠失tPAムテインにおける欠損
している構成アミノ酸の数としては、FEK1欠失tP
Aムテインの有する特徴を失わない限り何個でもよい。
該欠損している構成アミノ酸の例としては、tPAのア
ミノ酸残基番号296から302のアミノ酸残基などが挙げら
れる。
As described above, in the present invention, FEK1-deleted tP
A mutein further includes mutein,
This mutein is originally a mutation in the amino acid sequence of the original peptide or protein, and therefore the mutation includes deletion of constituent amino acids and substitution with other amino acids. As the deletion of the constituent amino acids,
An example is one in which at least one of the FEK1-deleted tPA mutein-constituting amino acids is deleted. Examples of the substitution with the other amino acid include those in which at least one of the FEK1-deleted tPA mutein-constituting amino acids is substituted with another amino acid. The number of defective constituent amino acids in the FEK1-deleted tPA mutein in which at least one constituent amino acid is deleted is as follows.
Any number may be used as long as the characteristics of the A mutein are not lost.
Examples of the defective constituent amino acids include amino acid residues of amino acid residue numbers 296 to 302 of tPA.

【0009】少なくとも1個の構成アミノ酸が別のアミ
ノ酸で置換されているFEK1欠失tPAムテインにお
ける置換されるアミノ酸の数としては、FEK1欠失t
PAムテインの特徴を失わない限り何個でもよい。置換
されるアミノ酸部位としては、アミノ酸残基番号296か
ら304の間のアミノ酸残基の一部または全部を別のアミ
ノ酸残基に置換してなるものや、アミノ酸残基番号296
から302の領域の一部または全部を欠失させ、かつアミ
ノ酸残基番号296から304の領域の一部のアミノ酸残基を
別のアミノ酸残基に置換してなるものがその例として挙
げられる。置換される前の構成アミノ酸の例としては、
システイン、システイン以外のもの(例、アスパラギン
酸、アルギニン)が挙げられる。置換される前の構成ア
ミノ酸がシステインである場合には、置換されたアミノ
酸としては、たとえば中性アミノ酸が好ましい。該中性
アミノ酸の具体例としては、たとえば、グリシン、バリ
ン、アラニン、ロイシン、イソロイシン、チロシン、フ
ェニルアラニン、ヒスチジン、トリプトファン、セリ
ン、スレオニン、メチオニンなどが挙げられる。特に、
セリン、スレオニンが好ましい。
The number of amino acids to be substituted in the FEK1-deleted tPA mutein in which at least one constituent amino acid is replaced with another amino acid is the FEK1-deleted t
Any number may be used as long as the characteristics of the PA mutein are not lost. As the amino acid site to be substituted, one obtained by substituting a part or all of the amino acid residues between amino acid residue numbers 296 to 304 with another amino acid residue, or amino acid residue number 296
As an example thereof, a part or all of the region from No. 302 to 302 is deleted, and a part of the amino acid residue in the region from amino acid residue number 296 to 304 is replaced with another amino acid residue. Examples of the constituent amino acids before substitution are:
Examples include cysteine and substances other than cysteine (eg, aspartic acid, arginine). When the constituent amino acid before substitution is cysteine, the substituted amino acid is preferably, for example, a neutral amino acid. Specific examples of the neutral amino acid include glycine, valine, alanine, leucine, isoleucine, tyrosine, phenylalanine, histidine, tryptophan, serine, threonine and methionine. In particular,
Serine and threonine are preferred.

【0010】置換される前の構成アミノ酸がシステイン
以外のものである場合には、置換された別のアミノ酸と
しては、たとえば、アミノ酸の親水性、疎水性あるいは
電荷の点で、置換される前のアミノ酸とは異なる性質を
もつものを選ぶ。具体的には置換される前のアミノ酸が
アスパラギン酸の場合には、置換されたあとのアミノ酸
としてアスパラギン、スレオニン、バリン、フェニルア
ラニン、アルギニンなどが挙げられるが、特にアスパラ
ギン、アルギニンが好ましい。置換される前のアミノ酸
がアルギニンの場合には置換されたあとのアミノ酸とし
てグルタミン、グルタミン酸、スレオニン、ロイシン、
フェニルアラニン、アスパラギン、アスパラギン酸が挙
げられるが、特にグルタミン酸あるいはヒスチジンが好
ましい。置換される前のアミノ酸がグルタミン酸の場合
には、置換された後のアミノ酸としてチロシンが好まし
い。本発明のムテインは、上記した欠損、置換が組み合
わさったものでもよい。
When the constituent amino acid before substitution is other than cysteine, another amino acid substituted is, for example, the hydrophilicity, hydrophobicity or charge of the amino acid before substitution. Choose ones that have different properties than amino acids. Specifically, when the amino acid before substitution is aspartic acid, examples of the amino acid after substitution include asparagine, threonine, valine, phenylalanine, and arginine, but asparagine and arginine are particularly preferable. When the amino acid before substitution is arginine, the amino acids after substitution are glutamine, glutamic acid, threonine, leucine,
Examples thereof include phenylalanine, asparagine and aspartic acid, with glutamic acid or histidine being particularly preferred. When the amino acid before substitution is glutamic acid, tyrosine is preferred as the amino acid after substitution. The mutein of the present invention may be a combination of the above-mentioned deletions and substitutions.

【0011】本発明のムテインを製造するためには、従
来の組換えDNA技術に加え、特定部位指向性変異誘発
技術(Site-directed mutagenesis)が採用される。該
技術は周知であり、アール・エフ・レイサー(Lather,
R. F.)及びジェイ・ピー・レコック(Lecoq, J. P.)、
ジェネティック・エンジニアリング(Genetic Engineer
ing)、アカデミックプレス社(1983年)第31-50頁、に
示されている。オリゴヌクレオチドに指示された変異誘
発はエム・スミス(Smith, M.)及びエス・ギラム(Gillam,
S.)、ジェネティック・エンジニアリング:原理と方
法、プレナムプレス社(1981年)3巻 1-32頁に示されて
いる。
In order to produce the mutein of the present invention, site-directed mutagenesis technology is employed in addition to conventional recombinant DNA technology. The technique is well known and is described by L.F.
RF) and Jay P. Lecoq (Lecoq, JP),
Genetic Engineering (Genetic Engineer
ing), Academic Press, Inc. (1983), pp. 31-50. Oligonucleotide-directed mutagenesis was performed by Smith, M. and Gillam,
S.), Genetic Engineering: Principles and Methods, Plenum Press (1981) Vol. 3, pp. 1-32.

【0012】本発明のムテインをコードする構造遺伝子
を製造するためには、たとえば、(a)tPAの構造遺
伝子の1本鎖からなる1本鎖DNAを突然変異オリゴヌ
クレオチドプライマーと雑種形成させる、(b)DNA
ポリメラーゼによりプライマーを伸長させ、突然変異性
ヘテロ二量体(heteroduplex)を形成させる、及び
(c)この突然変異性ヘテロ二量体を複製する。オリゴ
ヌクレオチドプライマーの大きさは、突然変異を導入す
べき遺伝子領域へのプライマーの安定な雑種形成に必要
な条件により、また現在利用可能なオリゴヌクレオチド
合成法の限界によって決まる。オリゴヌクレオチドで指
示される突然変異誘発に使用するオリゴヌクレオチドを
設計するに当たって、考慮すべき因子(例えば全体の大
きさ、突然変異サイトを迂回する部分の大きさ)は、エ
ム・スミス及びエス・ギラム(前掲)によって記述され
ている。概して、オリゴヌクレオチドの全長は、突然変
異サイトでの安定でユニークな雑種形成を最適化するよ
うな長さであり、突然変異サイトから5’及び3’末端
までの伸長部分(extensions)は、DNAポリメラーゼ
のエキソヌクレアーゼ活性による突然変異の修復をさけ
るのに十分な大きさとする。本発明に従って突然変異誘
発に使用されるオリゴヌクレオチドは、通常、約12個な
いし約24個の塩基、好ましくは約14個ないし約20個の塩
基、更に好ましくは約14個ないし約18個の塩基を含有す
る。これらは通常、変更されるコドンの少なくとも約3
個の塩基3’側を含有する。
In order to produce the structural gene encoding the mutein of the present invention, for example, (a) single-stranded DNA consisting of a single strand of the structural gene of tPA is hybridized with a mutant oligonucleotide primer ( b) DNA
A polymerase extends the primer to form a mutant heteroduplex, and (c) replicates this mutant heterodimer. The size of the oligonucleotide primer depends on the conditions required for stable hybrid formation of the primer to the gene region to be mutated, and on the limitations of currently available oligonucleotide synthesis methods. Factors to consider in designing oligonucleotides for use in oligonucleotide-directed mutagenesis (eg, overall size, size of the portion bypassing the mutation site) are M. Smith and S. Guilam. (Ibid.). In general, the total length of the oligonucleotide is such that it optimizes stable and unique hybridization at the mutation site, and the extensions from the mutation site to the 5'and 3'ends are DNA It is large enough to prevent the repair of mutations due to the exonuclease activity of the polymerase. The oligonucleotides used for mutagenesis in accordance with the present invention will typically have from about 12 to about 24 bases, preferably about 14 to about 20 bases, more preferably about 14 to about 18 bases. Contains. These are usually at least about 3 of the changed codons.
It contains the 3'side of each base.

【0013】たとえば、FEK1欠失tPAムテイン構
成アミノ酸が欠損しているムテインを得る目的の場合に
おける変異tPA遺伝子を作る方法としては、三つの場
合が考えられる。一つはFEK1欠失tPAのムテイン
のアミノ末端を欠損させる場合、二つめはFEK1欠失
tPAムテインの中央部分を欠損させる場合、三つには
FEK1欠失tPAムテインのカルボキシル末端を欠損
させる場合である。アミノ末端を欠損させる場合には欠
損させようとするアミノ酸配列のカルボキシル末端をコ
ードする遺伝子のコドンをMetをコードするATGに
特定部位指向性変異法を用いて変更し、さらにそのコド
ンの5’末端側に適当な制限酵素の認識部位を生成せし
め、プロモーターとの連結(ligation)を容易にさせ
る。
[0013] For example, there are three possible methods for constructing a mutant tPA gene for the purpose of obtaining a mutein lacking FEK1-deleted tPA mutein-constituting amino acids. One is to delete the amino terminus of the FEK1-deleted tPA mutein, the second is to delete the central part of the FEK1-deleted tPA mutein, and third is to delete the carboxyl terminus of the FEK1-deleted tPA mutein. is there. In the case of deleting the amino terminus, the codon of the gene encoding the carboxyl terminus of the amino acid sequence to be deleted is changed to ATG encoding Met by using the site-directed mutagenesis method, and the 5'end of the codon is further changed. An appropriate restriction enzyme recognition site is generated on the side to facilitate ligation with the promoter.

【0014】アミノ酸配列をその中央部分で欠損させる
場合には欠損させたい配列をコードする遺伝子の5’お
よび3’末端側にユニークな制限酵素の認識部位を特定
部位指向性変異法を用いて生成し、この部位を酵素によ
って消化して抜きとり、再連結によって遺伝子をもとに
つなげば目的のアミノ酸を欠損したtPAをコードする
遺伝子ができ上る。このとき制限酵素消化により読み取
り枠がずれないようにすることは云うまでもない。カル
ボキシル末端側のアミノ酸配列を欠損させる場合には、
欠損させたい配列のアミノ末端側のアミノ酸をコードす
る遺伝子のコドンを特定部位指向性変異によってストッ
プコドンに変更すればよい。
When the amino acid sequence is deleted at its central portion, unique restriction enzyme recognition sites are generated at the 5'and 3'ends of the gene encoding the sequence to be deleted by using the site-directed mutagenesis method. Then, this site is digested with an enzyme, extracted, and religated to ligate based on the gene, whereby a gene encoding tPA lacking the target amino acid is completed. At this time, it goes without saying that the reading frame should not be displaced due to digestion with a restriction enzyme. When deleting the amino acid sequence on the carboxyl terminal side,
The codon of the gene encoding the amino terminal amino acid of the sequence to be deleted may be changed to a stop codon by site-directed mutation.

【0015】特定部位指向性変異によりtPAムテイン
蛋白質を産出させる時に、DNA配列に複数個の変異を
行ってもよいこと、すなわち、アミノ酸に対応している
DNAのコドンは縮退していることを認識しておかなけ
ればならない。たとえば、構成アミノ酸がシステイン以
外のアミノ酸であってこれを他のアミノ酸に置換したム
テインを得る目的の場合における変異tPA遺伝子を作
る方法としてはオりゴヌクレオチドプライマーによるコ
ドンの変更を行う。ただしオリゴヌクレオチドプライマ
ーのデザインはどのアミノ酸を変更するかで異なること
は云うまでもない。
When producing the tPA mutein protein by site-directed mutation, it is recognized that a plurality of mutations may be made in the DNA sequence, that is, that the codon of the DNA corresponding to the amino acid is degenerate. I have to keep it. For example, as a method for constructing a mutant tPA gene in the case where a constituent amino acid is an amino acid other than cysteine and the mutein is obtained by substituting the amino acid with another amino acid, a codon is changed by an oligonucleotide primer. However, it goes without saying that the design of the oligonucleotide primer differs depending on which amino acid is changed.

【0016】プライマーは、tPA遺伝子の1本鎖がク
ローン化されたM13〔Yanisch-Perror, C., Vieira, J.
Messing, ジーン(Gene), 33 103-119 (1985),Messing
J.メソッズ・イン・エンジーモロジー(Methods in Enz
ymology), 101 20-78(1983)〕,fd〔R. Herrman at al.
モレキュラー・アンド・ジェネラル・ジェネティック(Mol.
Gen. Genet.),177 231 (1980)〕,又はφ×174〔M. Smi
th and S. Gillam,ジェネティック・エンジニアリング
(Genetic Engineering), Plenum Press, Vol. 3, ppl-3
2 (1981)〕のような1本鎖ファージへ雑種形成される。
ファージが遺伝子のセンス鎖、アンチセンス鎖のいずれ
でも運搬できることは認められる。ファージがアンチセ
ンス鎖を運搬する時には、別のアミノ酸を暗号づけたト
リプレットを決定するこのコドンとの不一致以外にもプ
ライマーは突然変異させるコドンを含有するセンス鎖の
領域とコドンの縮退のために同一でない場合があっても
よい。同様にファージがセンス鎖を運搬する時には、欠
損させるコドンと対合をつくるトリプレット中の適当な
不一致以外は、突然変異させるコドンを含有するセンス
鎖の領域に対して相補的でない場合があってもよい。雑
種形成に使用される条件はエム・スミス及びエス・ギラ
ム(前掲)によって記述されている。温度は通常、約0℃
ないし70℃、もっと一般的には約10℃ないし50℃の範囲
にある。雑種形成後、プライマーは大腸菌DNAポリメ
ラーゼI、T4DNAポリメラーゼ、逆転写酵素又は他
の適当なDNAポリメラーゼとの反応によってファージ
DNA上で伸長される。生ずるdsDNAは、T4DN
AリガーゼのようなDNAリガーゼでの処理によって閉
鎖環dsDNAへ変換される。1本鎖領域を含有するD
NA分子はS1エンドヌクレアーゼ処理によって破壊で
きる。生ずる突然変異成形ヘテロ二量体は、被感染能力
をもつ宿主生物又は細胞を形質転換するのに使用され
る。宿主によるヘテロ二量体の複製では、双方の鎖から
子孫ができる。複製に続いて、突然変異株の鎖の子孫か
ら突然変異遺伝子を単離し、適当なベクターへ挿入し、
このベクターを適当な宿主生物又は細胞の形質転換に使
用する。
The primer was M13 [Yanisch-Perror, C., Vieira, J., in which the single strand of the tPA gene was cloned.
Messing, Gene, 33 103-119 (1985), Messing
J. Methods in Enz
ymology), 101 20-78 (1983)], fd (R. Herrman at al.
Molecular and General Genetics (Mol.
Gen. Genet.), 177 231 (1980)], or φ × 174 (M. Smi
th and S. Gillam, Genetic Engineering
(Genetic Engineering), Plenum Press, Vol. 3 , ppl-3
2 (1981)] and hybridized to a single-stranded phage.
It is recognized that the phage can carry either the sense or antisense strand of the gene. When the phage carries the antisense strand, in addition to the mismatch with this codon, which determines the triplet encoding another amino acid, the primer is identical to the region of the sense strand that contains the codon to mutate due to codon degeneracy. It may not be. Similarly, when a phage carries the sense strand, it may not be complementary to the region of the sense strand that contains the codon to be mutated, except for the appropriate mismatch in the triplet that pairs with the codon to be deleted. Good. The conditions used for hybrid formation are described by M. Smith and S. Guilam (supra). The temperature is usually about 0 ℃
To 70 ° C, more usually in the range of about 10 ° C to 50 ° C. After hybridization, the primer is extended on the phage DNA by reaction with E. coli DNA polymerase I, T4 DNA polymerase, reverse transcriptase or other suitable DNA polymerase. The resulting dsDNA is T4DN
It is converted to closed circle dsDNA by treatment with a DNA ligase such as A ligase. D containing a single-stranded region
NA molecules can be destroyed by treatment with S1 endonuclease. The resulting mutagenized heterodimer is used to transform a host organism or cell that is capable of infection. Heterodimer replication by the host produces progeny from both chains. Following replication, the mutant gene is isolated from the mutant progeny of the strand and inserted into a suitable vector,
This vector is used to transform a suitable host organism or cell.

【0017】次に、突然変異化された遺伝子を運搬する
ファージDNAを単離し、プラスミドへ組み込む。DN
Aを組み込むプラスミドとしては、たとえば大腸菌由来
のpBR322〔ジーン(gene), 2,95(1977)〕, pBR32
5〔ジーン,4, 121 (1978)〕,pUC12〔ジーン,19, 2
59 (1982)〕,pUC13〔ジーン,19, 259 (1982)〕、
枯草菌由来のpUB110〔バイオケミカル・アンド・バ
イオフィジカル・リサーチ・コミュニケーション(Bioch
emical and Biophysical Research Communication), 11
2,678 (1983)〕などが挙げられるが、その他のものであ
っても、宿主内で複製保持されるものであれば、いずれ
をも用いることができる。プラスミドに組み込む方法と
しては、たとえば、T. Maniatisら、モレキュラー・ク
ローニング(Molecular Cloning)コールド・スプリン
グ・ハーバー・ラボラトリー(Cold Spring Harbor Lab
oratory), 第239頁(1982)に記載の方法などが挙げら
れる。
Next, phage DNA carrying the mutated gene is isolated and integrated into a plasmid. DN
As a plasmid incorporating A, for example, pBR322 derived from Escherichia coli [gene, 2 , 95 (1977)], pBR32
5 [Gene, 4, 121 (1978)], pUC12 [Gene, 19 , 2
59 (1982)], pUC13 [Gene, 19 , 259 (1982)],
PUB110 derived from Bacillus subtilis [Biochemical and Biophysical Research Communication (Bioch
emical and Biophysical Research Communication), 11
2 , 678 (1983)] and the like, but any other one can be used as long as it is replication-retained in the host. As a method for incorporating into a plasmid, for example, T. Maniatis et al., Molecular Cloning, Cold Spring Harbor Lab.
Oratory), page 239 (1982).

【0018】クローン化された遺伝子は、発現に適した
ビークル(ベクター)中のプロモーターの下流に連結し
て発現型ベクターを得ることができる。ベクターとして
は、上記の大腸菌由来のプラスミド(例,pBR322,
pBR325,pUC12,pUC13),枯草菌由来プラスミ
ド(例、pUB110,pTP5,pC194),酵母由来プ
ラスミド(例、pSH19,pSH15),あるいはλファ
ージなどのバイテクリオファージおよびレトロウイル
ス、ワクシニアウイルスなどの動物ウイルスなどがあげ
られる。該遺伝子はその5’末端に翻訳開始コドンとし
てのATGを有し、また3’末端には翻訳終止コドンと
してのTAA、TGAまたはTAGを有していてもよ
い。さらに該遺伝子を発現させるにはその上流にプロモ
ーターを接続する。本発明で用いられるプロモーターと
しては、遺伝子の発現に用いる宿主に対応して適切なプ
ロモーターであればいかなるものでもよい。
The cloned gene can be ligated downstream of a promoter in a vehicle (vector) suitable for expression to obtain an expression type vector. As the vector, a plasmid derived from the above E. coli (eg, pBR322,
pBR325, pUC12, pUC13), a Bacillus subtilis-derived plasmid (eg, pUB110, pTP5, pC194), a yeast-derived plasmid (eg, pSH19, pSH15), or bioviruses such as λ phage, and retroviruses, animal viruses such as vaccinia virus, etc. Etc. The gene may have ATG as a translation initiation codon at its 5'end and TAA, TGA or TAG as a translation stop codon at its 3'end. Furthermore, in order to express the gene, a promoter is connected upstream thereof. The promoter used in the present invention may be any promoter as long as it is suitable for the host used for gene expression.

【0019】また、形質転換する際の宿主がエシェリキ
ア属菌である場合は、T7プロモーター、trpプロモ
ーター、lacプロモーター、recAプロモーター、
λPLプロモーター、lppプロモーターなどが、宿主
がバチルス属菌である場合は、SPO1プロモーター、
SPO2プロモーター、penPプロモーターなど、宿
主が酵母である場合は、PHO5プロモーター、PGK
プロモーター、GAPプロモーター、ADHプロモータ
ーなどが好ましい。とりわけ宿主がエシェリキア属菌で
プロモーターがT7プロモーター、trpプロモーター
またはλpLプロモーターであることが好ましい。宿主
が動物細胞である場合には、SV40由来のプロモータ
ー、レトロウイルスのプロモーターなどが挙げられ、と
りわけSV40由来のプロモーターが好ましい。 このよ
うにして構築されたムテインをコードする塩基配列を有
する組換えDNAを含むベクターを用いて、形質転換体
を製造する。宿主としては、たとえばエシェリキア属
菌、バチルス属菌、酵母、動物細胞などが挙げられる。
When the host for transformation is a genus Escherichia, T7 promoter, trp promoter, lac promoter, recA promoter,
λPL promoter, lpp promoter, etc., when the host is Bacillus, SPO1 promoter,
When the host is yeast, such as SPO2 promoter and penP promoter, PHO5 promoter, PGK
A promoter, GAP promoter, ADH promoter and the like are preferable. It is particularly preferable that the host is Escherichia and the promoter is T7 promoter, trp promoter or λpL promoter. When the host is an animal cell, SV40-derived promoter, retrovirus promoter and the like can be mentioned, and SV40-derived promoter is particularly preferable. A transformant is produced using the vector containing the recombinant DNA having the nucleotide sequence encoding the mutein thus constructed. Examples of the host include Escherichia, Bacillus, yeast, animal cells and the like.

【0020】上記エシェリキア属菌の例としては、エシ
ェリキア・コリ(Escherichia coli)K12DH1〔プ
ロシージングス オブ ザ ナショナル アカデミー オブ
サイエンス(Proc. Natl. Acad. Sci. USA), 60, 160
(1968)〕,JM103〔ヌクレイック・アシッズ・リサーチ
(Nucleic Acids Research) 9, 309 (1981)〕,JA221
〔ジャーナル・オブ・モレキュラー・バイオロジー (Jo
urnal of Molecular Biology)〕120, 517 (1978)〕,H
B101〔ジャーナル・オブ・モレキュラー・バイオロジ
ー,41, 459 (1969)〕,C600〔ジェネティックス(Genet
ics),39, 440 (1954)〕,MM294〔プロシージングス
オブ ザ ナショナル アカデミー オブ サイエンス(Pro
c. Natl. Acad. Sci. USA) 73, 4174(1976)〕などが挙
げられる。上記バチルス属菌としては、たとえばバチル
ス・サチルス(Bacillus subtilis),MI114(ジーン,
24, 255 (1983)〕,207-21〔ジャーナル・オブ・バイオ
ケミストリー(Journal of Biochemistry)95, 87 (198
4)〕などが挙げられる。上記酵母としては、たとえばサ
ッカロマイセスセレビシアエ(Saccharomycescerevisia
e)AH22R~,NA87-11A,DKD−5Dなどが挙げ
られる。動物細胞としては、接着細胞、たとえばサル細
胞COS−7,Vero,チャイニーズハムスター細胞CH
O,マウスL細胞、ヒトFL細胞など、およびリンパ球
系細胞株、たとえばマウスSP2/0細胞などが挙げら
れる。
Examples of the above Escherichia bacterium include Escherichia coli K12DH1 [Procedures of the National Academy of
Science (Proc. Natl. Acad. Sci. USA), 60 , 160
(1968)], JM103 [Nucleic Acids Research
(Nucleic Acids Research) 9 , 309 (1981)], JA221
[Journal of Molecular Biology (Jo
urnal of Molecular Biology)] 120 , 517 (1978)], H
B101 [Journal of Molecular Biology, 41 , 459 (1969)], C600 [Genetics (Genet
ics), 39 , 440 (1954)], MM294 [Procedures]
Of the National Academy of Science (Pro
c. Natl. Acad. Sci. USA) 73 , 4174 (1976)] and the like. Examples of the bacterium of the genus Bacillus include Bacillus subtilis, MI114 (Gene,
24 , 255 (1983)], 207-21 [Journal of Biochemistry 95 , 87 (198
4)] and the like. Examples of the yeast include Saccharomyces cerevisiae.
e) AH22R ~, NA87-11A, DKD-5D and the like. Animal cells include adherent cells such as monkey cells COS-7, Vero, Chinese hamster cells CH
O, mouse L cells, human FL cells and the like, and lymphoid cell lines such as mouse SP2 / 0 cells.

【0021】上記エシェリキア属菌を形質転換するに
は、たとえばプロシージングス オブザ ナショナル ア
カデミー オブ サイエンス(Proc. Natl. Acad. Sci. U
SA), 69, 2110 (1972); ジーン,17, 107(1982) など
に記載の方法に従って行なわれる。バチルス属菌を形質
転換するには、たとえばモレキュラー・アンド・ジェネ
ラル・ジェネティックス(Molecular & General Genetic
s), 168, 111 (1979) などに記載の方法に従って行なわ
れる。酵母を形質転換するには、たとえばプロシージン
グス オブ ザ ナショナル アカデミー オブ サイエンス
(Proc. Natl.Acad. Sci. USA), 75 ;1929 (1978)に
記載の方法に従って行なわれる。動物細胞を形質転換す
るには、たとえばヴィロロジー(Virology) 52, 456 (1
973) に記載の方法に従って行なわれる。
To transform the above Escherichia bacterium, for example, Proc. Natl. Acad. Sci. U.
SA), 69 , 2110 (1972); Gene, 17 , 107 (1982). To transform Bacillus, for example, Molecular & General Genetics
s), 168 , 111 (1979) and the like. Transformation of yeast is carried out, for example, according to the method described in Proc. Natl. Acad. Sci. USA, 75 ; 1929 (1978). For transforming animal cells, for example, Virology 52 , 456 (1
973).

【0022】このようにして、ムテインをコードする塩
基配列を有する組換えDNAを含むベクターで形質転換
された形質転換体が得られる。該形質転換体を培地に培
養することにより、ムテインを産出させる。宿主がエシ
ェリキア属菌、バチルス属菌である形質転換体を培養す
る際、培養に使用される培地としては液体培地が適当で
あり、その中には該形質転換体の生育に必要な炭素源、
窒素源、無機物その他が含有せしめられる。炭素源とし
ては、たとえばグルコース、デキストリン、可溶性澱
粉、ショ糖など、窒素源としては、たとえばアンモニウ
ム塩類、硝酸塩類、コーンスチープ・リカー、ペプト
ン、カゼイン、肉エキス、大豆粕、バレイショ抽出液な
どの無機または有機物質、無機物としてはたとえば塩化
カルシウム、リン酸二水素ナトリウム、塩化マグネシウ
ムなどがあげられる。また、酵母、ビタミン類、生長促
進因子などを添加してもよい。培地のpHは約6〜8が
望ましい。
Thus, a transformant transformed with the vector containing the recombinant DNA having the nucleotide sequence encoding the mutein can be obtained. The mutein is produced by culturing the transformant in a medium. When the host is culturing a transformant that is a bacterium of the genus Escherichia, a bacterium of the genus Bacillus, a liquid medium is suitable as the medium used for the culture, and among them, a carbon source necessary for the growth of the transformant,
A nitrogen source, an inorganic substance, etc. are contained. Examples of the carbon source include glucose, dextrin, soluble starch, and sucrose, and examples of the nitrogen source include ammonium salts, nitrates, corn steep liquor, peptone, casein, meat extract, soybean meal, and potato extract. Further, examples of the organic substance and the inorganic substance include calcium chloride, sodium dihydrogen phosphate, magnesium chloride and the like. In addition, yeast, vitamins, growth promoting factors and the like may be added. The pH of the medium is preferably about 6-8.

【0023】エシェリキア属菌を培養する際の培地とし
ては、例えばグルコース、カザミノ酸を含むM9培地
〔Miller, ジャーナル・オブ・エクスペリメンツ・イン
・モレキュラー・ジェネティックス(Journal ofExperim
ents in Molecular Genetics), 431-433, Cold Spring
Harbor Laboratory, New York (1972)〕が好ましい。こ
こに必要によりプロモーターを効率よく働かせるため
に、たとえば3β−インドリル アクリル酸あるいはイ
ソプロピルβ−D−チオガラクトピラノサイド(IPT
G)のような薬剤を加えることができる。
As a medium for culturing Escherichia bacteria, for example, M9 medium containing glucose and casamino acid [Miller, Journal of Experiments in Molecular Genetics (Journal of Experim
ents in Molecular Genetics), 431-433, Cold Spring
Harbor Laboratory, New York (1972)] is preferable. In order to work the promoter efficiently if necessary, for example, 3β-indolyl acrylic acid or isopropyl β-D-thiogalactopyranoside (IPT
Drugs such as G) can be added.

【0024】宿主がエシェリキア属菌の場合、培養は通
常約15〜43℃で約3〜24時間行い、必要により、通気や
撹拌を加えることもできる。宿主がバチルス属菌の場
合、培養は通常約15〜40℃で約6〜24時間行ない、必要
により通気や撹拌を加えることもできる。宿主が酵母で
ある形質転換体を培養する際、培地としては、たとえば
バークホールダー(Burkholder)最小培地〔Bostian,
K. L. ら、プロシージングス オブザ ナショナル アカ
デミー オブ サイエンス(Proc. Natl. Acad. Sci. US
A,)77, 4505 (1980)〕が挙げられる。培地のpHは約
5〜8に調整するのが好ましい。培養は通常約20℃〜35
℃で約24〜72時間行い、必要に応じて通気や撹拌を加え
る。宿主が動物細胞である形質転換体を培養する際、培
地としては、たとえば約5〜20%の胎児牛血清を含むM
EM培地〔サイエンス(Science) 122, 501 (1952)〕,
DMEM培地〔ヴィロロジー(Virology),8, 396 (195
9)〕,RPMI1640培地〔ジャーナル・オブ・ザ・アメ
リカン・メディカル・アソシエーション(The Journal
of the American Medical Association)199, 519(196
7)〕,199培地〔プロシーディング・オブ・ザ・ソサイエ
ティ・フォー・バイオロジカル・メディスン(Proceedin
g of the Society for the Biologcal Medicine)73, 1
(1950)〕などが挙げられる。pHは約6〜8であるのが
好ましい。培養は通常約30〜40℃、培養時間は約15〜60
時間行い、必要に応じて通気や撹拌を加える。
When the host is a bacterium of the genus Escherichia, the culture is usually carried out at about 15 to 43 ° C. for about 3 to 24 hours, and if necessary, aeration and stirring can be added. When the host is a bacterium of the genus Bacillus, the culture is usually carried out at about 15 to 40 ° C. for about 6 to 24 hours, and aeration and agitation can be added if necessary. When culturing a transformant whose host is yeast, for example, a Burkholder minimum medium [Bostian,
KL et al., Proc. Natl. Acad. Sci. US
A,) 77 , 4505 (1980)]. The pH of the medium is preferably adjusted to about 5-8. Culturing is usually about 20 ℃ ~ 35
Approximately 24-72 hours at ℃, add aeration and stirring as needed. When culturing a transformant whose host is an animal cell, the medium may be, for example, M containing about 5 to 20% fetal bovine serum.
EM medium [Science 122 , 501 (1952)],
DMEM medium [Virology, 8 , 396 (195
9)], RPMI1640 medium [The Journal of the American Medical Association (The Journal
of the American Medical Association) 199 , 519 (196
7)], 199 medium [Proceeding of the Society for Biological Medicine (Proceedin
g of the Society for the Biologcal Medicine) 73 , 1
(1950)] and the like. The pH is preferably about 6-8. Culturing is usually about 30-40 ℃, culturing time is about 15-60
Perform for a period of time and add aeration and agitation as needed.

【0025】上記培養物からムテインを分離精製するに
は、例えば下記の方法により行うことができる。ムテイ
ンを培養菌体あるいは細胞から抽出するに際しては、培
養後、公知の方法で菌体あるいは細胞を集め、これを塩
酸グアニジンなどの蛋白質変性剤を含む緩衝液に懸濁し
て菌体外に目的の蛋白を溶出させる方法、フレンチプレ
ス、超音波、リゾチームおよび(または)凍結融解によ
って菌体あるいは細胞を破壊したのち、遠心分離により
ムテインを含む上澄液を得ることができる。ムテインが
不溶性の封入体として菌体内に蓄積する場合には、フレ
ンチプレス処理、超音波処理、リゾチーム処理あるいは
これらの併用によって菌体を破壊して遠心分離にかけ、
封入体を沈殿として集めた後に、タンパク変性剤で可溶
化することによりムテインを含む上澄液を得ることがで
きる。上記上澄液からムテインを精製するには、自体公
知の分離・精製法を適切に組み合わせて行なうことがで
きる。これらの公知の分離、精製法としては、塩析や溶
媒沈殿法などの溶解度の差を利用する方法、透折法、限
外ろ過法、ゲルろ過法、およびSDS−ポリアクリルア
ミドゲル電気泳動法などの主として分子量の差を利用す
る方法、イオン交換クロマトグラフィーなどの荷電の差
を利用する方法、アフィニティークロマトグラフィーな
どの特異的親和性を利用する方法、逆相高速液体クロマ
トグラフィーなどの疎水性の差を利用する方法、等電点
電気泳動法などの等電点の差を利用する方法などが挙げ
られる。
Separation and purification of mutein from the above culture can be carried out, for example, by the following method. When the mutein is extracted from the cultured bacterial cells or cells, the bacterial cells or cells are collected by a known method after culturing, and the cells are suspended in a buffer solution containing a protein denaturing agent such as guanidine hydrochloride, and then the extracellular matrix After destroying the cells or cells by a method of eluting the protein, French press, ultrasonic waves, lysozyme and / or freeze-thawing, a supernatant containing mutein can be obtained by centrifugation. When the mutein accumulates in the cells as insoluble inclusion bodies, French press treatment, ultrasonic treatment, lysozyme treatment or a combination of these is used to destroy the cells and subject to centrifugation,
After collecting the inclusion bodies as a precipitate, the inclusion body can be solubilized with a protein denaturing agent to obtain a supernatant containing mutein. In order to purify mutein from the above-mentioned supernatant, appropriate separation and purification methods known per se can be combined. Known separation and purification methods for these include methods utilizing the difference in solubility such as salting out and solvent precipitation methods, folding methods, ultrafiltration methods, gel filtration methods, and SDS-polyacrylamide gel electrophoresis methods. Mainly by using difference in molecular weight, by using difference in charge such as ion exchange chromatography, by using specific affinity such as affinity chromatography, difference in hydrophobicity by reverse phase high performance liquid chromatography, etc. And a method of utilizing a difference in isoelectric points such as an isoelectric focusing method.

【0026】蛋白質変性剤を含む緩衝液を用いて可溶化
した場合には、分離精製のいずれかの過程で変性剤を除
去する賦活化操作を組み入れる。とくに抽出可溶化した
ムテインに架橋されるべきジスルフィド結合が生じてお
らず遊離のSH基が存在する場合、あるいは誤ったジス
ルフィド結合が生じている場合には、正しいジスルフィ
ド結合を形成させるための操作を組み入れることにより
活性を有する目的のムテインが得られる。この操作とし
て、ジチオスレイトール等の還元剤による還元および透
析等による還元剤の除去、あるいは適切な濃度の還元型
グルタチオン/酸化型グルタチオンあるいはシステイン
/シスチン等からなるようなレドックス緩衝液中での適
切な温度、例えば約0〜50℃での保温がある。
In the case of solubilization using a buffer containing a protein denaturing agent, an activation operation for removing the denaturing agent is incorporated in any process of separation and purification. In particular, when the extract-solubilized mutein does not have a disulfide bond to be cross-linked and a free SH group is present, or an erroneous disulfide bond is generated, an operation for forming a correct disulfide bond is performed. Incorporation results in the desired mutein having activity. As this operation, reduction with a reducing agent such as dithiothreitol and removal of the reducing agent by dialysis, or appropriate in a redox buffer solution containing reduced glutathione / oxidized glutathione or cysteine / cystine at an appropriate concentration Incubation at various temperatures, for example, about 0 to 50 ° C.

【0027】このようにして得られるムテインは血中で
の半減期が長く、さらに血漿プロテアーゼ阻害物質によ
り不活性化されない。低分子量化されているために血栓
への浸透性が良く、溶解活性がより高い。したがってin
vivoでの使用において、投与量を減少できるため全身
性の出血傾向などの副作用を抑えることができる。ま
た、本ムテインを大腸菌形質転換体に産生させた場合に
は、しばしば不溶性の封入体として蓄積されるので容易
に精製取得できる。さらに、ジスルフィド結合の数が原
体であるtPAよりも少ないので不溶性封入体中の不活
性型ムテインの賦活化が容易であるという利点をもつ。
The mutein thus obtained has a long half-life in blood and is not inactivated by plasma protease inhibitors. Due to its low molecular weight, it has good permeability to thrombus and higher lytic activity. Therefore in
When used in vivo, side effects such as generalized bleeding tendency can be suppressed because the dose can be reduced. When the mutein of the present invention is produced in an E. coli transformant, it often accumulates as an insoluble inclusion body, so that it can be easily purified and obtained. Furthermore, since the number of disulfide bonds is smaller than that of tPA, which is the original substance, it has an advantage that activation of the inactive mutein in the insoluble inclusion body is easy.

【0028】このようなムテインは心筋梗塞、脳梗塞、
肺塞栓症および末梢動静脈血栓症などの治療薬として用
いることができる。本発明のムテインを医薬として用い
るには、そのまま粉末として、または他の薬理学的に許
容されうる担体、賦形剤または希釈剤とともに医薬組成
物(例、注射剤、錠剤、カプセル剤、液剤、軟膏)とし
て、温血動物(例、ヒト、マウス、ラット、ハムスタ
ー、ウサギ、犬、ネコ)に対して非経口的または経口的
に安全に投与することができる。注射剤の製剤化はたと
えば生理食塩水またはブドウ糖やその他の補助薬を含む
水溶液を用い、常法に従って行なわれる。錠剤、カプセ
ル剤等の医薬組成物も常法に従って調製しうる。本発明
のムテインを上記した医薬として用いる場合には、たと
えば上記した温血動物に、投与ルート、症状などを考慮
して、1日量約0.1ないし20mg/kg中から適当量を選ん
で投与される。
Such a mutein is used for myocardial infarction, cerebral infarction,
It can be used as a therapeutic agent for pulmonary embolism and peripheral arteriovenous thrombosis. In order to use the mutein of the present invention as a medicine, as it is as a powder, or together with other pharmacologically acceptable carrier, excipient or diluent, a pharmaceutical composition (eg, injection, tablet, capsule, liquid, As an ointment, it can be safely administered parenterally or orally to a warm-blooded animal (eg, human, mouse, rat, hamster, rabbit, dog, cat). The injection is formulated according to a conventional method using, for example, physiological saline or an aqueous solution containing glucose and other auxiliary agents. Pharmaceutical compositions such as tablets and capsules can also be prepared according to a conventional method. When the mutein of the present invention is used as the above-mentioned medicine, for example, it is administered to the above-mentioned warm-blooded animal in an appropriate amount selected from the daily dose of about 0.1 to 20 mg / kg in consideration of the administration route, symptoms and the like. It

【0029】[0029]

【作用】tPAのF、E、K1ドメインを欠失させるこ
とにより、活性およびフィブリン親和性を損なうことな
くtPA分子を低分子量化して肝臓でのクリアランスを
遅らせ血中半減期を延長させてtPAの大量投与による
副作用を抑え、この低分子量化したtPAムテインに、
さらにアミノ酸の欠失や置換を付与することにより、プ
ロテアーゼ阻害剤による不活性化を抑える。さらに、組
換えDNA技術によって微生物学的につくられた生物活
性のないもしくは非常に低い組換え型tPAを、一たん
変性し次いで適当な条件下で賦活化することにより活性
のあるtPAに変えるものである。
[Effect] By deleting the FPA, E, and K1 domains of tPA, the tPA molecule can be reduced in molecular weight without impairing its activity and fibrin affinity, delaying its clearance in the liver and prolonging its half-life in blood, thereby increasing the half-life of tPA. This low molecular weight tPA mutein suppresses the side effects of large doses,
Furthermore, by adding deletions or substitutions of amino acids, inactivation by protease inhibitors is suppressed. Furthermore, a recombinant tPA which has been produced microbiologically by recombinant DNA technology and has no or very low biological activity is converted into an active tPA by once denaturing and then activating under appropriate conditions. Is.

【0030】本発明明細書および図面において、塩基や
アミノ酸などを略号で表示する場合、IUPAC-IUB Commis
ion on Biochemical Nomenclatureによる略号あるいは
当該分野における慣用略号に基づくものであり、その例
を下記する。また、アミノ酸に関し光学異性体がありう
る場合は、特に明示しなければL−体を示すものとす
る。 DNA :デオキシリボ核酸 cDNA :相補的デオキシリボ核酸 A :アデニン T :チミン G :グアニン C :シトシン RNA :リボ核酸 dATP :デオキシアデノシン三リン酸 dTTP :デオキシチミジン三リン酸 dGTP :デオキシグアノシン三リン酸 dCTP :デオキシシチジン三リン酸 ATP :アデノシン三リン酸 Tdr :チミジン EDTA :エチレンジアミン四酢酸 SDS :ドデシル硫酸ナトリウム Gly(G):グリシン Ala(A):アラニン Val(V):バリン Leu(L):ロイシン Ile(I):イソロイシン Ser(S):セリン Thr(T):スレオニン Cys(C):システイン Met(M):メチオニン Glu(E):グルタミン酸 Asp(D):アスパラギン酸 Lys(K):リジン Arg(R):アルギニン His(H):ヒスチジン Phe(F):フェニールアラニン Tyr(Y):チロシン Trp(W):トリプトファン Pro(P):プロリン Asn(N):アスパラギン Gln(Q):グルタミン。
In the present specification and drawings, when abbreviations of bases and amino acids are used, IUPAC-IUB Commis
It is based on the abbreviations based on ion on Biochemical Nomenclature or abbreviations commonly used in this field, and examples are given below. When amino acids may have optical isomers, they are L-forms unless otherwise specified. DNA: deoxyribonucleic acid cDNA: complementary deoxyribonucleic acid A: adenine T: thymine G: guanine C: cytosine RNA: ribonucleic acid dATP: deoxyadenosine triphosphate dTTP: deoxythymidine triphosphate dGTP: deoxyguanosine triphosphate dCTP: deoxyribonucleic acid Cytidine triphosphate ATP: Adenosine triphosphate Tdr: Thymidine EDTA: Ethylenediaminetetraacetic acid SDS: Sodium dodecyl sulfate Gly (G): Glycine Ala (A): Alanine Val (V): Valine Leu (L): Leucine Ile (I) ): Isoleucine Ser (S): serine Thr (T): threonine Cys (C): cysteine Met (M): methionine Glu (E): glutamic acid Asp (D): aspartic acid Lys (K): lysine Arg (R): Arginine His (H): histidine Phe (F): phenylalanine Tyr (Y): tyrosine Trp (W): tryptophan Pro (P): proline Asn (N): asparagine Gln (Q): glutamine.

【0031】以下の実施例で得られた各形質転換体の財
団法人発酵研究所(IFO)および通商産業省工業技術
院微生物工業技術研究所(FRI)への寄託番号および寄
託日は以下に示すとおりである。 微生物名 IFO寄託番号 FRI寄託番号 Escherichia coli MM294(DE3)/pLysS,pTB1133 IFO 15031 FERM BP-2882 平成2年4月17日 平成2年5月1日 Escherichia coli MM294(DE3)/pLysS,pTB1134 IFO 15032 FERM BP-2883 平成2年4月17日 平成2年5月1日 Escherichia coli MM294(DE3)/pLysS,pTB1277 IFO 15116 FERM BP-3199 平成2年12月6日 平成2年12月13日 Escherichia coli MM294(DE3)/pLysS,pTB1159 IFO 15117 FERM BP-3200 平成2年12月6日 平成2年12月13日 Escherichia coli MM294(DE3)/pLysS,pTB1161 IFO 15118 FERM BP-3201 平成2年12月6日 平成2年12月13日 Escherichia coli MM294(DE3)/pLysS,pTG1360 IFO 15166 FERM BP-3365 平成3年4月10日 平成3年4月17日 Esherichia coli MM294(DE3)/pLysS,pTG1363 IFO 15167 FERM BP-3366 平成3年4月10日 平成3年4月17日 Esherichia coli MM294(DE3)/pLysS,pTG1346 IFO 15168 FERM BP-3367 平成3年4月10日 平成3年4月17日 Esherichia coli MM294(DE3)/pLysS,pTG1366 IFO 15169 FERM BP-3368 平成3年4月10日 平成3年4月17日 Esherichia coli MM294(DE3)/pLysS,pTG1369 IFO 15170 FERM BP-3369 平成3年4月10日 平成3年4月17日 Esherichia coli MM294(DE3)/pLysS,pTB1272 IFO 15172 書留郵便物引受番号 平成3年5月6日 ヨドガワb183 Esherichia coli MM294(DE3)/pLysS,pTB1326 IFO 15173 書留郵便物引受番号 平成3年5月6日 ヨドガワb183 Esherichia coli MM294(DE3)/pLysS,pTB1335 IFO 15174 書留郵便物引受番号 平成3年5月6日 ヨドガワb183 Esherichia coli MM294(DE3)/pLysS,pTB1354 IFO 15175 書留郵便物引受番号 平成3年5月6日 ヨドガワb183 Esherichia coli MM294(DE3)/pLysS,pTB1357 IFO 15176 書留郵便物引受番号 平成3年5月6日 ヨドガワb183。
The deposit numbers and deposit dates of the respective transformants obtained in the following Examples to the Institute for Fermentation Research (IFO) and the Institute of Microbial Technology (FRI) of the Ministry of International Trade and Industry are shown below. It is as follows. Microorganism name IFO deposit number FRI deposit number Escherichia coli MM294 (DE3) / pLysS, pTB1133 IFO 15031 FERM BP-2882 April 17, 1990 May 1, 1990 Escherichia coli MM294 (DE3) / pLysS, pTB1134 IFO 15032 FERM BP-2883 April 17, 1990 May 1, 1990 Escherichia coli MM294 (DE3) / pLysS, pTB1277 IFO 15116 FERM BP-3199 December 6, 1990 December 13, 1990 Escherichia coli MM294 (DE3) / pLysS, pTB1159 IFO 15117 FERM BP-3200 December 6, 1990 December 13, 1990 Escherichia coli MM294 (DE3) / pLysS, pTB1161 IFO 15118 FERM BP-3201 December 6, 1990 Date December 13, 1990 Escherichia coli MM294 (DE3) / pLysS, pTG1360 IFO 15166 FERM BP-3365 April 10, 1991 April 17, 1991 Esherichia coli MM294 (DE3) / pLysS, pTG1363 IFO 15167 FERM BP-3366 April 10, 1991 April 17, 1991 Esherichia coli MM294 (DE3) / pLysS, pTG1346 IFO 15168 FERM BP-3367 April 10, 1991 April 17, 1991 Esherichia coli MM294 (DE3) / pLysS, pTG1366 IFO 15169 FERM BP-3368 April 10, 1991 April 1, 1991 7th Esherichia coli MM294 (DE3) / pLysS, pTG1369 IFO 15170 FERM BP-3369 April 10, 1991 April 17, 1991 Esherichia coli MM294 (DE3) / pLysS, pTB1272 IFO 15172 Registered mail post number Heisei May 6, 3 Yodagawa b183 Esherichia coli MM294 (DE3) / pLysS, pTB1326 IFO 15173 Registered mail post number May 6, 1991 Yodagawa b183 Esherichia coli MM294 (DE3) / pLysS, pTB1335 IFO 15174 Registered mail post Number May 6, 1991 Yodagawa b183 Esherichia coli MM294 (DE3) / pLysS, pTB1354 IFO 15175 Registered mail post number May 6, 1991 Yodagawa b183 Esherichia coli MM294 (DE3) / pLysS, pTB1357 IFO 15176 IFO 15176 Underwriting number May 6, 1991 Yodagawa b183.

【0032】本明細書および図面において、ヒトtPA
の構成アミノ酸の番号は、図1における翻訳開始コドン
により生成するMetを第1番目とする。以下の参考例
および実施例により本発明をより具体的に説明するが、
本発明はこれらに限定されるものではない。
In the present specification and drawings, human tPA
Regarding the numbers of the constituent amino acids of Met, Met generated by the translation initiation codon in FIG. 1 is the first. The present invention will be described more specifically with reference to the following Reference Examples and Examples.
The present invention is not limited to these.

【0033】参考例1 ヒトtPAをコードする遺伝子
を含むプラスミドの構築 (1)cDNA含有プラスミドの単離:ヒト包皮由来初
代培養細胞mRNAより合成したcDNAをpCDベク
ター〔Okayamaら、モレキュラー・セル・バイオロジー
(Molecular Cel1 Biology), 3,280 (1983) 参照〕に組
み込んで作成した大腸菌x1776を宿主としたcDNAラ
イブラリーを大阪大学微生物病研究所の岡山博士より分
与を受けた。このcDNAライブラリーよりアルカリ法
(Birnboim. H. C. & Doly. J. ヌクレイック・アシッ
ズ・リサーチ(Nucleic Acids Research), 1, 1513 (197
9)〕でプラスミドDNAを抽出し、このDNAを大腸菌
DH1に感染させ、約2×106個のcloneよりなる大腸菌
DH1を宿主としたcDNAライブラリーを作成した。
Reference Example 1 Construction of Plasmid Containing Gene Encoding Human tPA (1) Isolation of Plasmid Containing cDNA: cDNA synthesized from mRNA of primary culture of human foreskin pCD vector [Okayama et al., Molecular Cell Bio (See Molecular Cel1 Biology, 3 , 280 (1983)], and a cDNA library using Escherichia coli x1776 as a host was prepared by Dr. Okayama of the Institute for Microbial Diseases, Osaka University. From this cDNA library, the alkaline method (Birnboim. HC & Doly. J. Nucleic Acids Research, 1 , 1513 (197
9)], the plasmid DNA was extracted, and this DNA was infected with Escherichia coli DH1 to prepare a cDNA library using E. coli DH1 as a host consisting of about 2 × 10 6 clones.

【0034】上記大腸菌DH1を用いたcDNAライブ
ラリーをニトロセルロースフィルター(ミリポア社、H
ATFフィルター)上に約5×104 clone/フィルターと
なるように10枚まき、このフィルターをマスターフィル
ターとしている各2枚ずつを1組としたレプリカフィル
ター計20枚を作成した。このレプリカフィルター上の大
腸菌を0.5N NaOH溶液で溶かし、露出変性したプラ
スミドDNAをフィルター上に固定した〔Grunstein,
M. & Hogness, D. S.,プロシージングス オブザ ナショ
ナル アカデミー オブ サイエンス( Proc. Natl. Aca
d. Sci. USA)72, 3961 (1975)〕。
A cDNA library using Escherichia coli DH1 described above was prepared by using a nitrocellulose filter (Millipore, H
On the ATF filter, 10 sheets were spread so as to be about 5 × 10 4 clones / filter, and two replica filters were prepared with each set of two as master filters to make a total of 20 replica filters. Escherichia coli on the replica filter was dissolved in 0.5N NaOH solution, and the exposed denatured plasmid DNA was immobilized on the filter [Grunstein,
M. & Hogness, DS, Proc. Natl. Aca
d. Sci. USA) 72 , 3961 (1975)].

【0035】一方、D. Pennicaらにより報告されている
〔ネイチャー(Nature) 301 : 214(1983)〕ヒトtPA
のアミノ酸配列をもとにしてアミノ酸No.248-260(Asn-A
rg-Arg-Leu-Thr-Trp-Glu-Tyr-Cys-Asp-Val-Pro-Ser)
(配列番号1), アミノ酸No.489-501(Arg-Met-Thr-Leu
-Val-Gly-Ile-Ile-Ser-Trp-Gly-Leu-Gly)(配列番号
2)およびアミノ酸No.516-527-stop(Asn-Tyr-Leu-Asp-
Trp-Ile-Arg-Asp-Asn-Met-Arg-Pro-Stop)(配列番号
3)をもとにこれらのアミノ酸配列に対応する塩基配列
を有するオリゴヌクレオチド各々 AAC CGC AGG CTG ACG
TGG GAG TAC TGT GATGTG CCC TCC (配列番号4); CG
C ATG ACT TTG GTG GGC ATC ATC AGC TGG GGCCTG GGC
(配列番号5); AAC TAC CTA GAC TGG ATT CGT GAC AA
C ATG CGA CCGTGA(配列番号6)を化学合成した。この
オリゴヌクレオチドに対してT4ポリヌクレオチドキナ
ーゼ(宝酒造製)を用いて50μlの反応液〔オリゴヌク
レオチド0.1μg,50mM Tris-HCl pH8.0, 10mM MgCl
2,10mMメルカプトエタノール、50μCiγ−32P AT
P(>5000Ci/mmole), 3ユニット T4ポリヌクレオチ
ドキナーゼ〕中で37℃1時間反応させ、オリゴヌクレオ
チドの5’末端を32Pで標識した。上記方法で標識した
オリゴヌクレオチド二種をプローブとして、別々に、D
NAを固定したレプリカフィルターに会合させた。会合
反応は10μCiのプローブを含む5×SSPE〔180mM
NaCl,10mM NaH2PO4, 1mM EDTA(pH7.4)〕,5×Denhar
dt's,0.1%SDS,100μg/ml変性サケ精子DNA
溶液10ml中で、35℃16時間行い、反応後フィルターを
5×SSC〔0.15M NaCl,0.015M Sodium citrate〕0.1
%SDS溶液で室温で30分ずつ3回さらに45℃30分ずつ
2回洗浄した〔T. Maniatisら、“Molecular Cloning”
Cold Spling HarborLaboratory,P. 309(1982)〕。
On the other hand, human tPA reported by D. Pennica et al. [Nature 301 : 214 (1983)].
Based on the amino acid sequence of amino acid No. 248-260 (Asn-A
rg-Arg-Leu-Thr-Trp-Glu-Tyr-Cys-Asp-Val-Pro-Ser)
(SEQ ID NO: 1), Amino acid No. 489-501 (Arg-Met-Thr-Leu
-Val-Gly-Ile-Ile-Ser-Trp-Gly-Leu-Gly) (SEQ ID NO: 2) and amino acid No. 516-527-stop (Asn-Tyr-Leu-Asp-
Based on Trp-Ile-Arg-Asp-Asn-Met-Arg-Pro-Stop) (SEQ ID NO: 3), each oligonucleotide having a nucleotide sequence corresponding to these amino acid sequences AAC CGC AGG CTG ACG
TGG GAG TAC TGT GATGTG CCC TCC (SEQ ID NO: 4); CG
C ATG ACT TTG GTG GGC ATC ATC AGC TGG GGCCTG GGC
(SEQ ID NO: 5); AAC TAC CTA GAC TGG ATT CGT GAC AA
C ATG CGA CCGTGA (SEQ ID NO: 6) was chemically synthesized. A 50 μl reaction solution [oligonucleotide 0.1 μg, 50 mM Tris-HCl pH8.0, 10 mM MgCl 2] was added to this oligonucleotide using T4 polynucleotide kinase (Takara Shuzo).
2, 10mM mercaptoethanol, 50μCiγ- 32 P AT
P (> 5000 Ci / mmole), 3 units T4 polynucleotide kinase] and reacted at 37 ° C. for 1 hour to label the 5 ′ end of the oligonucleotide with 32 P. Two oligonucleotides labeled by the above method were used as probes, and D
The NA was fixed to a fixed replica filter. The association reaction was performed with 5 × SSPE [180 mM containing 10 μCi probe]
NaCl, 10 mM NaH 2 PO 4 , 1 mM EDTA (pH 7.4)], 5 × Denhar
dt's, 0.1% SDS, 100 μg / ml denatured salmon sperm DNA
The reaction is carried out in 10 ml of the solution at 35 ° C. for 16 hours, and after the reaction, the filter is 5 × SSC [0.15M NaCl, 0.015M Sodium citrate]
% SDS solution at room temperature three times for 30 minutes and 45 ° C. for 30 minutes twice twice [T. Maniatis et al., “Molecular Cloning”]
Cold Spling Harbor Laboratory, P. 309 (1982)].

【0036】洗浄したフィルターよりラジオオートグラ
ムをとり、三種類のプローブの全部に対して反応する菌
株を一組2枚のレプリカフィルターのラジオオートグラ
ムを重ね合わせることにより探した。この方法により5
×105個のコロニーより三種類のプローブに対して反応
する1株〔Escherichia coli K12 DH1/TPA13〕を得た。
この菌株よりプラスミドDNA(pTPA13)をアルカリ法
〔ヌクレイック アシッズ リサーチ(Nucleic Acids Re
search) 1: 1513(1979)〕によって抽出精製し、cDN
Aの長さを検討したところ2.3kbであることが明らかに
なった。しかし、このcDNA鎖長ではN末端側までコ
ードしていないことがわかった。
Radioautograms were taken from the washed filters, and strains that react with all of the three types of probes were searched by superimposing a set of two radioautograms of replica filters. 5 by this method
One strain [Escherichia coli K12 DH1 / TPA13] that reacts with three kinds of probes was obtained from × 10 5 colonies.
From this strain, plasmid DNA (pTPA13) was prepared by the alkaline method [Nucleic Acids Res.
search) 1: 1513 (1979)] and purified by
Examination of the length of A revealed that it was 2.3 kb. However, it was found that this cDNA chain length did not encode up to the N-terminal side.

【0037】(2)ヒトtPA cDNAを含むファー
ジの単離 λgt10をベクターとしたヒトニューロブラストー
マ、cDNAライブラリー(クローンテック社)を大腸
菌C600、HflAを宿主として、軟寒天プレート上
に、約1×105クローンずつ、10枚まき、これを、ニト
ロセルロースフィルター(ミリポア社、HATFフィル
ター)上に移した後、0.5N NaOH溶液でとかし露出
変性したファージDNAをフィルター上に乾燥固定し
た。(Maniatisら、「モレキュラー・クローニング(Mo
leculler Cloning)」cold Spring Harbor Laboratory,
p320, 1982)。一方参考例1の(1)で得られたプラス
ミドpTPA13を制限酸素EcoRIおよびNarIで
切断して得られる0.3KbのDNA断片をニックトラン
スレーション法(Mainatisら、同上p109)により32P標
識し、プローブとした。標識したプローブと、DNAを
固定したフィルターを、標識プローブを含む、5×SS
PE(0.9M NaCl 50mMリン酸ナトリウム緩衝液(pH7.4),
5mM EDTA),50%ホルムアミド、5×Denhar dt's,0.1%
SDS, 100μg/ml変性サケ精子DNA溶液10ml中で
42℃、16時間、会合反応を行い、反応後フィルターを2
×SSC(1×SSC=0.15M NaCl、0.015Mクエン酸ナ
トリウム), 0.1% SDS溶液中で室温で30分ずつ2回、1
×SSC、0.1%SDS溶液中で68℃で30分ずつ2回洗浄し
た。洗浄したフィルターを乾燥させた後、ラジオオート
グラムをとり、プローブと反応するクローンを検索し
た。この方法により得られたクローンλTPA7よりDa
visらの方法(Davisら、「アドバンスト・バクテリアル・
ジェネティクス(Advanced Bacterial Genetics)」, cold
Sprihg Harbor Laboratory 1980) によりファージDN
Aを抽出し、数種の制限酵素を用いて検討した結果、ク
ローンλTPA7はpTPA13で欠けているヒトtP
AのN末端側をコードするcDNAを有することがわか
った。以上の結果、得られたpTPA13およびλTP
A7のcDNA部分を組み合わせることにより、ヒトt
PAのコード領域全体をカバーすることができた。また
得られたcDNA部分の塩基配列をジデオキシヌクレチ
オド合成鎖停止法〔Messingら、「ヌクレイック・アシッ
ズ・リサーチ(Nucleic Acids Research)」 9, 309, (198
1)〕によって決定した。報告されている塩基配列と比較
した結果、アミノ酸No.129(Arg)をコードする塩基配列
(No.552-554)CGGがTGGにかわっており、コードさ
れるアミノ酸がArg→Trpに置き換っていることが
わかった(図1)(配列番号7)。
(2) Isolation of phage containing human tPA cDNA Human neuroblastoma using λgt10 as a vector, cDNA library (Clontech) with E. coli C600 and HflA as hosts, on a soft agar plate, about 1 10 clones were spread on each of 10 5 clones, transferred to a nitrocellulose filter (HATF filter manufactured by Millipore), and the phage DNA that had been exposed and denatured by combing with a 0.5 N NaOH solution was dried and fixed on the filter. (Maniatis et al., “Molecular Cloning (Mo
leculler Cloning) '' cold Spring Harbor Laboratory,
p320, 1982). On the other hand, a 0.3 Kb DNA fragment obtained by digesting the plasmid pTPA13 obtained in (1) of Reference Example 1 with restriction oxygens EcoRI and NarI was labeled with 32 P by the nick translation method (Mainatis et al., Ibid., P109), and probed. And A labeled probe and a filter on which DNA is immobilized are added to a 5 × SS containing a labeled probe.
PE (0.9 M NaCl 50 mM sodium phosphate buffer (pH 7.4),
5 mM EDTA), 50% formamide, 5 × Denhar dt's, 0.1%
SDS, 100 μg / ml in denatured salmon sperm DNA solution 10 ml
Perform the association reaction at 42 ℃ for 16 hours, and after the reaction, filter
X SSC (1 x SSC = 0.15M NaCl, 0.015M sodium citrate), 0.1% SDS solution at room temperature for 30 minutes twice twice.
It was washed twice at 68 ° C. for 30 minutes each in a × SSC, 0.1% SDS solution. After the washed filter was dried, a radio-autogram was taken to search for a clone that reacts with the probe. Da from clone λTPA7 obtained by this method
vis et al. (Davis et al., "Advanced Bacterial
Genetics (Advanced Bacterial Genetics), cold
Sprihg Harbor Laboratory 1980) by Phage DN
As a result of extracting A and examining it with several kinds of restriction enzymes, the clone λTPA7 showed that human tP lacking in pTPA13.
It was found to have a cDNA encoding the N-terminal side of A. As a result of the above, the obtained pTPA13 and λTP
By combining the cDNA portion of A7, human t
It was possible to cover the entire PA coding area. The nucleotide sequence of the obtained cDNA portion was determined by the dideoxynucleotide synthesis chain termination method [Messing et al., "Nucleic Acids Research" 9 , 309, (198
1)]. As a result of comparison with the reported nucleotide sequence, the nucleotide sequence encoding amino acid No. 129 (Arg)
(No.552-554) It was found that CGG was replaced by TGG, and the encoded amino acid was replaced by Arg → Trp (FIG. 1) (SEQ ID NO: 7).

【0038】(3)動物細胞発現用プラスミドの構築 上記したλTPA7をEcoRIで切断し、0.8kbのD
NA断片を得た。一方プラスミドpTB652〔サイエン
ス(Science) 236 : 1116-1120, 1987)をEcoRI
で切断して得たアンピシリン耐性遺伝子、 MuLV−
LTRおよびSV40プロモーターを含む断片(約4.2kb)
を調製し、両者をligationしてプラスミドpλTPA7
E0.8を構築した。このpλTPA7E0.8をNarIお
よびClaIで消化して得た2.1kbのDNA断片とプラ
スミドpTPA13をNarIおよびClaIで消化して
調製したtPA cDNAを含む断片をligateし、プラ
スミドpTB920を構築した(図2)。次にpTB920を
BamHIで消化して得た2.7kbのDNA断片を、pT
B399〔セル ストラクチャー アンド ファンクション
(Cell Structure and Function) 12 : 208-217, 198
7〕のBamHI部位に挿入してpTB926を構築した。
このプラスミドをClaIで消化して4.0kbの断片を調
製し、pTB348(Cell Structure and Function 12 :
205-217, 1987)のClaI部位に組み込んでプラスミ
ドpTB927を構築した(図3)。
(3) Construction of plasmid for expressing animal cells The above-mentioned λTPA7 was cleaved with EcoRI to obtain 0.8 kb of D
The NA fragment was obtained. Meanwhile, plasmid pTB652 (Science 236 : 1116-1120, 1987) was transformed with EcoRI.
Ampicillin resistance gene obtained by digestion with Escherichia coli, MuLV-
Fragment containing LTR and SV40 promoter (about 4.2 kb)
Was prepared and ligated with both plasmid pλTPA7
E0.8 was built. A 2.1 kb DNA fragment obtained by digesting pλTPA7E0.8 with NarI and ClaI and a fragment containing tPA cDNA prepared by digesting plasmid pTPA13 with NarI and ClaI were ligated to construct plasmid pTB920 (FIG. 2). . Next, a 2.7 kb DNA fragment obtained by digesting pTB920 with BamHI was added to pT
B399 [Cell Structure and Function 12 : 208-217, 198
7] was inserted into the BamHI site to construct pTB926.
This plasmid was digested with ClaI to prepare a 4.0 kb fragment, and pTB348 (Cell Structure and Function 12 :
205-217, 1987) was incorporated into the ClaI site to construct plasmid pTB927 (Fig. 3).

【0039】参考例2 ヒトtPA cDNAの動物細
胞での発現:サルCOS−7細胞〔「セル(Cell)」, 27,
279-288 (1981)〕を5%胎児牛血清を含むDMEM培地
で単層培養(ファルコン径60mmプラスチックディッシ
ュ)した後、同培地で培地交換した。交換の4時間後に
公知の方法〔Grahamら、「ヴィロロジー(Virology)」,
52, 456 (1973)〕に従いディシュ1枚当りプラスミドp
TB920またはpTB927のDNA10μgを含むカルシウ
ムホスフェートゲルを調製し細胞に添加し、pTB920
感染細胞またはpTB927感染細胞をそれぞれ得た。さ
らにその4時間後グリセロール処理して5%胎児牛血清
を含む培地で上記pTB920感染COS−7細胞または
TB927感染COS−7細胞の培養を続けた。70〜72時間
後に培養上清を集め、上清中のtPA量をEIA法によ
り測定したところ200μg〜400μg/mlのtPAが検
出され、上記cDNAが正しくヒトtPAをコードして
いることが確められた。
Reference Example 2 Expression of human tPA cDNA in animal cells: monkey COS-7 cells ["Cell", 27 ,
279-288 (1981)] was subjected to monolayer culture (Falcon diameter 60 mm plastic dish) in DMEM medium containing 5% fetal bovine serum, and the medium was replaced with the same medium. After 4 hours of exchange, a known method [Graham et al., "Virology",
52 , 456 (1973)], plasmid p per dish
Calcium phosphate gel containing 10 μg of DNA of TB920 or pTB927 was prepared and added to cells.
Infected cells or pTB927 infected cells were obtained, respectively. Four hours later, the cells were treated with glycerol, and the pTB920-infected COS-7 cells or TB927-infected COS-7 cells were continuously cultured in a medium containing 5% fetal bovine serum. After 70 to 72 hours, the culture supernatant was collected, and the amount of tPA in the supernatant was measured by the EIA method. As a result, 200 μg to 400 μg / ml of tPA was detected, and it was confirmed that the above cDNA correctly encodes human tPA. Was given.

【0040】参考例3 プラスミノーゲンを含むフィブ
リンアガロースプレートを用いるtPA酵素活性測定法 tPA−1およびtPA−2のプラスミノーゲン活性化
能を、プラスミノーゲンを含むフィブリンアガロースプ
レート法を用いて測定した。プラスミノーゲンを含むフ
ィブリンアガロースプレートは以下の方法に従って作製
した。ウシフィブリノーゲン(生化学工業株式会社)を
50mMリン酸塩緩衝液(pH7.4)に溶解した後、ウシプ
ラスミンおよびウシプラスミノーゲンを除く目的でリシ
ンセファロース4Bクロマトグラフィーを行い素通リ画
分を集めた。このウシフィブリノーゲン溶液(蛋白質濃
度10mg/ml)3mlにヒトプラスミノーゲン溶液(10
u/ml、日本製薬工業株式会社)0.3mlを加えて50℃
にて2分間保温した後、あらかじめ50℃に保温しておい
た1%(W/V)アガロース〔FMC社、SeaKem(登録商
標)MEアガロースを12mM NaCl−50mMトリス塩酸
緩衝液(pH7.5)に溶解〕10mlと混合した。ただちに
ウシトロンビン溶液(100u/ml、持田製薬工業株式
会社)10μlを加えて混合した後、ゲルボンドフィルム
R(8×12.5cm、FMC社)上へ均一の厚さになるよう
に溶液を流し室温で1時間静置した。このようにして作
製したフィブリンアガロースプレートに直径3mmの穴を
あけ、tPA−1、tPA−2および標準tPA溶液
(ヒトメラノーマ細胞由来一本鎖tPA、バイオプール
社、スウェーデン)を5μl加え、37℃にて3時間反応
させた。溶解斑の直径を測定し、標準曲線から被験体中
のtPA酵素活性を算出した。
Reference Example 3 Method for measuring tPA enzyme activity using fibrin agarose plate containing plasminogen The plasminogen activating ability of tPA-1 and tPA-2 was measured using the fibrin agarose plate method containing plasminogen. did. A fibrin agarose plate containing plasminogen was prepared according to the following method. Bovine fibrinogen (Seikagaku Corporation)
After dissolving in 50 mM phosphate buffer (pH 7.4), lysine sepharose 4B chromatography was carried out for the purpose of removing bovine plasmin and bovine plasminogen, and the fractions having a flow through were collected. To 3 ml of this bovine fibrinogen solution (protein concentration 10 mg / ml), human plasminogen solution (10
u / ml, Nippon Pharmaceutical Industry Co., Ltd.)
1% (W / V) agarose [FMC, SeaKem (registered trademark) ME agarose, 12 mM NaCl-50 mM Tris-hydrochloric acid buffer solution (pH 7.5), which was kept at 50 ° C. for 2 minutes. Dissolved in 10 ml. Immediately after adding 10 μl of a bovine thrombin solution (100 u / ml, Mochida Pharmaceutical Co., Ltd.) and mixing, the solution was poured onto a gel bond film R (8 × 12.5 cm, FMC Co.) so as to have a uniform thickness, and then at room temperature. It was left still for 1 hour. A hole having a diameter of 3 mm was made in the fibrin agarose plate thus produced, and 5 μl of tPA-1, tPA-2 and a standard tPA solution (human melanoma cell-derived single-chain tPA, Biopool, Sweden) were added, and the temperature was 37 ° C. Was reacted for 3 hours. The diameter of the plaque was measured and the tPA enzyme activity in the subject was calculated from the standard curve.

【0041】参考例4 合成基質を用いるtPA酵素活
性測定法 tPA−1およびtPA−2のプラスミノーゲン活性化
能を、tPA酵素活性測定キット(SPECTROLYSE TM/fibr
in, バイオプール社)を用いて合成基質法にて測定し
た。すなわちtPA−1、tPA−2および標準tPA
溶液50μlとPAR溶液(0.04mg/mlヒトGluプラ
スミノーゲン、0.48μmol/ml D-But-CHT-Lys-pNA)1
50μlを混合し、氷中に15分間静置後DESAFIB-X(登録
商標)(プラスミンにより分解されたdes AAフィブリノ
ーゲン2.67mg/ml)5μlを混合し37℃にて1時間保
温した。STOP/fibrin溶液を20μl加え反応を止めた
後、405nmの吸光度を測定し標準曲線からtPA酵素活
性を算出した。
Reference Example 4 Method for Measuring tPA Enzyme Activity Using Synthetic Substrate The ability to activate plasminogen of tPA-1 and tPA-2 was measured by using a tPA enzyme activity measurement kit (SPECTROLYSE ™ / fibr).
in, BioPool Co., Ltd.). Ie tPA-1, tPA-2 and standard tPA
50 μl solution and PAR solution (0.04 mg / ml human Glu plasminogen, 0.48 μmol / ml D-But-CHT-Lys-pNA) 1
After mixing with 50 μl of the mixture and leaving it on ice for 15 minutes, 5 μl of DESAFIB-X (registered trademark) (des AA fibrinogen decomposed by plasmin 2.67 mg / ml) was mixed and incubated at 37 ° C. for 1 hour. After 20 μl of STOP / fibrin solution was added to stop the reaction, the absorbance at 405 nm was measured and the tPA enzyme activity was calculated from the standard curve.

【0042】実施例1 ムテインをコードする塩基配列
を有する組換えDNAの製造 参考例1に記載のプラスミドpTB927をBgl IIで消化
して2.1kbのDNA断片を得、これをさらにApaLIおよ
びBstYIで消化して1.3kbの断片を得た。このDNAの
両端をklenowフラグメントを用いた反応により平滑化し
た後、プラスミドpUC118のSmaI部位に組み込みプラス
ミドpTB1127を構築し、合成オリゴヌクレオチドを使
用する特定部位指向性変異誘発の鋳型として用いた。特
定部位指向性変異はOligonucleotide-directed in vitr
o Mutagenesis System (アマシャム社)と合成オリゴマ
ーを用いて行った。用いた合成オリゴマーは2本でその
配列はそれぞれ下に示すとおりである。 5'-ACTGTTTCCCTCAGACATATGAGGGGTGCTGCAGAA-3' (36mer)(配列番号8) 5'-GCACAGGAACCGCTCAGCAAAGATGGCAGCC-3' (31mer)(配列番号9) を用いることにより、C173はMに置換されると同時
にNdelの認識部位が導入された、ヒトtPA cD
NAを構築することができた(図4)。即ち、tPAのア
ミノ酸番号1〜173までのFEK1ドメインの欠失し
たtPAムテインが得られた。また、を用いることに
よりK296-G302が欠損すると同時にDdelの認識部
位が導入されたFEK1ドメイン欠失ヒトtPA cD
NAを構築することができた(図4)。を用いて得られ
たtPAムテイン、tPA−1の塩基配列およびそれか
ら推測されるアミノ酸配列を図5(配列番号10)に、
を用いて得られたtPAムテイン、tPA−2の塩基
配列およびそれから推測されるアミノ酸配列を図6(配
列番号11)に示す。これらムテインのtPAとの違い
を示すと以下のようである。 を用いた結果得られたプラスミドをpTB1128,さら
にを用いて得られたプラスミドをpTB1132とした
(図7)。
Example 1 Production of Recombinant DNA Having Nucleotide Sequence Encoding Mutein The plasmid pTB927 described in Reference Example 1 was digested with Bgl II to obtain a 2.1 kb DNA fragment, which was further digested with ApaLI and BstYI. A 1.3 kb fragment was obtained. After blunting both ends of this DNA by a reaction using a klenow fragment, a plasmid pTB1127 was constructed by incorporating it into the SmaI site of the plasmid pUC118 and used as a template for site-directed mutagenesis using a synthetic oligonucleotide. Oligonucleotide-directed in vitr
o Mutagenesis System (Amersham) and synthetic oligomers were used. Two synthetic oligomers were used and their sequences are as shown below. 5'-ACTGTTTCCCTCAGACATATGAGGGGTGCTGCAGAA-3 by using a '(36-mer) (SEQ ID NO: 8) 5'-GCACAGGAACCGCTCAGCAAAGATGGCAGCC-3' (31mer) ( SEQ ID NO: 9), C 173 has a recognition site for simultaneously Ndel when substituted M Introduced human tPA cD
We were able to construct NA (Fig. 4). That is, a tPA mutein lacking the FEK1 domain from amino acid Nos. 1 to 173 of tPA was obtained. Further, when the K 296 -G 302 is lost by using a simultaneously FEK1 domain deleted human recognition site has been introduced in DdeI tPA cD
We were able to construct NA (Fig. 4). FIG. 5 (SEQ ID NO: 10) shows the nucleotide sequences of tPA mutein and tPA-1 obtained by using
FIG. 6 (SEQ ID NO: 11) shows the nucleotide sequences of tPA mutein and tPA-2 obtained by using and the amino acid sequences deduced therefrom. The difference between these muteins and tPA is as follows. The resulting plasmid was designated as pTB1128, and the resulting plasmid was designated as pTB1132 (FIG. 7).

【0043】実施例2 ヒトtPAのムテインをコード
する遺伝子による大腸菌の形質転換 (1)ヒトtPAのムテイン発現用プラスミドpTB11
33およびpTB1134の構築 前記実施例1で得られたpTB1128およびpTB1132を
NdeIおよびBamHIで切断し、各々約1.1kbのDNA断片
を得た。この断片をプラスミドpET3c〔Srudier,
F. W. (Brookhaven National Labs. U.S.A.) より分与
をうけた〕のNdeI−BamHI部位に挿入して、プ
ラスミドpTB1133およびpTB1134を構築した(図
7)。 (2)形質転換 次に大腸菌MM294株に、T7ファージのRNAポリメ
ラーゼ遺伝子を組み込んだλファージDE3〔Studier,
F. W. ら、ジャーナル オブ モレキュラー バイオロジ
ー(J. Mol. Biol.), 189 :113-130 (1986)〕を溶原化
させ、さらにT7ファージのリゾチーム遺伝子をもつプ
ラスミドpLysS〔Studier, F. W. ら、ジャーナル オブ
モレキュラー バイオロジー(J. Mol. Biol.),189: 113
-130 (1986)〕を導入し、大腸菌MM294(DE3)/pLysS株を
作製した。この大腸菌株にpTB1133あるいはpTB11
34を導入し、大腸菌MM294(DE3)/pLysS,pTB1133ある
いは大腸菌MM294(DE3)/pLysS,pTB1134を各々につく
った。これらの菌株は各々ヒトtPAムテインtPA−
1あるいはtPA−2を産出するように作製されてい
た。
Example 2 Transformation of Escherichia coli with a gene encoding a human tPA mutein (1) Plasmid pTB11 for expressing human tPA mutein
Construction of 33 and pTB1134 pTB1128 and pTB1132 obtained in Example 1 were
It was digested with NdeI and BamHI to obtain a DNA fragment of about 1.1 kb each. This fragment was used as plasmid pET3c [Srudier,
FW (Brookhaven National Labs. USA)] and inserted into the NdeI-BamHI site to construct plasmids pTB1133 and pTB1134 (FIG. 7). (2) Transformation Next, Escherichia coli MM294 strain was incorporated with λ phage DE3 [Studier,
FW et al., Journal of Molecular Biology (J. Mol. Biol.), 189 : 113-130 (1986)] and lysogenized, and plasmid pLysS carrying the lysozyme gene of T7 phage [Studier, FW et al., Journal of
Molecular Biology (J. Mol. Biol.), 189 : 113
-130 (1986)] was introduced to prepare Escherichia coli MM294 (DE3) / pLysS strain. PTB1133 or pTB11 was added to this E. coli strain.
E. coli MM294 (DE3) / pLysS, pTB1133 or Escherichia coli MM294 (DE3) / pLysS, pTB1134 was introduced into each of these cells. Each of these strains is a human tPA mutein tPA-
1 or tPA-2 was produced.

【0044】実施例3 tPA−1およびtPA−2発
現大腸菌の培養 実施例2で得た大腸菌MM294 (DE3)/pLysS, PTB1133
あるいはMM294 (DE3)/pLysS,pTB1134を、200ml容
技付き三角フラスコ内の1%バクトトリプトン(ディフ
コラボラトリーズ、アメリカ)、0.5%バクトイーストエ
キス(ディフコラボラトリーズ、アメリカ)、0.5%Na
Cl、100μg/mlアンピシリンナトリウムおよび10
μg/mlクロラムフェニコールを含む液体培地40ml
に接種して37℃にて一晩振盪培養した。この培養液10m
lを1,000ml容三角フラスコ内の1%バクトトリプト
ン、0.5%バクトイーストエキス、0.5%NaCl、100
μg/mlアンピシリンナトリウムおよび10μg/ml
クロラムフェニコールを含む上記液体培地200mlに添
加してtPA−1は37℃にて、tPA−2は30℃にて4
時間、ついでイソプロピル-β-D-チオガラクトピラノシ
ド(和光純薬工業株式会社)0.1mMを添加してさらに4時
間振盪培養して培養液を得た。この培養液を遠心分離
し、菌体を集め−80℃で凍結して保存した。
Example 3 Culture of Escherichia coli expressing tPA-1 and tPA-2 Escherichia coli MM294 (DE3) / pLysS, PTB1133 obtained in Example 2
Alternatively, use MM294 (DE3) / pLysS, pTB1134 in a 200 ml Erlenmeyer flask equipped with a technique, 1% Bacto tryptone (Difco Laboratories, USA), 0.5% Bacto yeast extract (Difco Laboratories, USA), 0.5% Na.
Cl, 100 μg / ml sodium ampicillin and 10
40 ml of liquid medium containing μg / ml chloramphenicol
Was inoculated and cultured at 37 ° C. overnight with shaking. 10m of this culture
l in a 1,000 ml Erlenmeyer flask with 1% bactotryptone, 0.5% bacto yeast extract, 0.5% NaCl, 100
μg / ml ampicillin sodium and 10 μg / ml
Add 200 ml of the above liquid medium containing chloramphenicol to tPA-1 at 37 ° C and tPA-2 at 30 ° C.
After that, 0.1 mM of isopropyl-β-D-thiogalactopyranoside (Wako Pure Chemical Industries, Ltd.) was added, and the mixture was further shake-cultured for 4 hours to obtain a culture solution. The culture was centrifuged to collect the cells, which were frozen at -80 ° C and stored.

【0045】実施例4.tPA−1の賦活化条件の検討 実施例3で得たtPA−1発現大腸菌凍結菌体を50mMト
リス塩酸緩衝液(pH8.0)に懸濁した。懸濁液を超音波
処理(2A×2分間、2回)にかけ、溶菌液を得た後1
8,900×gで20分間遠心分離して沈澱物を得た。この沈
澱物を10mMトリス塩酸緩衝液(pH8.0)で洗浄して、1
8,900×gで20分間遠心分離して沈澱物を得た。さらに
この沈澱物を0.25%(v/v)トライトンX−100を含む10
mMトリス塩酸緩衝液(pH8.0)で洗浄して、18,900×g
で20分間遠心分離して沈澱物を得た。この沈澱物に抽出
用緩衝液(7M塩酸グアニジン−0.1M KH2PO4(p
H7.5)−5mM 2−メルカプトエタノール)を加えて4
℃にて一晩撹拌した。この抽出液を18,900×gで20分間
遠心分離して抽出上清を得、7M塩酸グアニジン−0.1
M KH2PO4(pH7.5)−5mM 2−メルカプトエタ
ノールに対して透析した。この抽出液を賦活化条件の検
討に用いた。
Example 4 Examination of activation condition of tPA-1 The frozen E. coli cells expressing tPA-1 obtained in Example 3 were suspended in 50 mM Tris-HCl buffer (pH 8.0). After sonicating the suspension (2A x 2 minutes, twice) to obtain a lysate, 1
A precipitate was obtained by centrifugation at 8,900 xg for 20 minutes. The precipitate was washed with 10 mM Tris-HCl buffer (pH 8.0) and
A precipitate was obtained by centrifugation at 8,900 xg for 20 minutes. This precipitate was further added with 0.25% (v / v) Triton X-100 10
Wash with mM Tris-HCl buffer (pH 8.0), 18,900 xg
A precipitate was obtained by centrifugation at 20 minutes. Extraction buffer (7M guanidine hydrochloride-0.1M KH 2 PO 4 (p
H7.5) -5 mM 2-mercaptoethanol) and added 4
Stir overnight at ° C. This extract was centrifuged at 18,900 xg for 20 minutes to obtain an extraction supernatant, and 7M guanidine hydrochloride-0.1
It was dialyzed against M KH 2 PO 4 (pH 7.5) -5 mM 2-mercaptoethanol. This extract was used for examination of activation conditions.

【0046】(1)至適pHの検討 pHの異なる賦活化用緩衝液を用いて、tPA−1抽出
液を賦活化した後tPA酵素活性を測定した。種々のp
Hの賦活化用緩衝液〔2.5M尿素−10mM NaCl−5mM
EDTA−10mMリシン−0.5mM還元型グルタチオン(G
SH)−0.3mM酸化型グルタチオンを含む50mMリン酸ナ
トリウム緩衝液(pH6.0およびpH7.0)あるいは50mM
トリス塩酸緩衝液(pH8.0,pH8.75およびpH9.
5)〕を脱気した後、tPA−1抽出液と混合し15℃に
て保温した。賦活化されたtPA−1溶液を50mMトリス
塩酸緩衝液(pH8.0)−0.01%Tween80に対して透析し
た後、tPA酵素活性を参考例3に従って測定した。p
H8.75またはpH9.5でtPA酵素活性は最大値を示し
た(図8)。図8において、pH8.75における活性を100
%とした。 (2)還元型グルタチオン(GSH)と酸化型グルタチ
オン(GSSG)の至適濃度の検討 量比の異なる還元型グルタチオンと酸化型グルタチオン
を含む賦活化用緩衝液(2.5M尿素−50mMトリス塩酸緩
衝液(pH8.75)−10mM NaCl−5mM EDTA−10m
Mリシン)を脱気した後、tPA−1抽出液と混合し、1
5℃にて保温した。賦活化されたtPA−1溶液を50mM
トリス塩酸緩衝液(pH8.0)−0.01%Tween80に対して
透析した後、tPA酵素活性を参考例3に従って測定し
た。GSH/GSSG=0.5mM/0.3mMまたは1mM/0.6m
MでtPA酵素活性は最大値を示した(図9、0.5mM GSH
/0.3mM GSSGにおける活性を100%とした)。 (3)賦活化における保温時間の検討 賦活化用緩衝液(2.5M尿素−50mMトリス塩酸緩衝液
(pH8.75)−10mM NaCl−5mM EDTA−10mMリ
シン−0.5mM GSH−0.3mM GSSG)とtPA−1抽
出液とを混合し、15℃にて1、2、3、4、5日間保温
した。賦活化されたtPA−1溶液を50mMトリス塩酸緩
衝液(pH8.0)−0.01%Tween80に対して透析した後、
tPA−1酵素活性を参考例3に従って測定した。酵素
活性は保温日数とともに上昇し、3日でほぼ最大に達し
た(図10)。
(1) Examination of Optimum pH tPA-1 extract was activated with buffers for activation having different pH, and then the tPA enzyme activity was measured. Various p
H activation buffer [2.5M urea-10mM NaCl-5mM
EDTA-10 mM lysine-0.5 mM reduced glutathione (G
SH) -50 mM sodium phosphate buffer (pH 6.0 and pH 7.0) containing 0.3 mM oxidized glutathione or 50 mM
Tris-HCl buffer (pH 8.0, pH 8.75 and pH 9.
5)] was degassed, then mixed with the tPA-1 extract and kept at 15 ° C. The activated tPA-1 solution was dialyzed against 50 mM Tris-HCl buffer (pH 8.0) -0.01% Tween 80, and then the tPA enzyme activity was measured according to Reference Example 3. p
The tPA enzyme activity showed the maximum value at H8.75 or pH 9.5 (Fig. 8). In FIG. 8, the activity at pH 8.75 is 100
%. (2) Optimal concentration of reduced glutathione (GSH) and oxidized glutathione (GSSG) Activation buffer containing reduced glutathione and oxidized glutathione (2.5M urea-50 mM Tris-HCl buffer) with different amounts ratio (PH8.75) -10mM NaCl-5mM EDTA-10m
M lysine) was degassed and then mixed with tPA-1 extract,
It was kept warm at 5 ° C. Activated tPA-1 solution at 50 mM
After dialyzing against Tris-HCl buffer (pH 8.0) -0.01% Tween 80, tPA enzyme activity was measured according to Reference Example 3. GSH / GSSG = 0.5mM / 0.3mM or 1mM / 0.6m
TPA enzyme activity showed the maximum value in M (Fig. 9, 0.5 mM GSH
/0.3mM GSSG activity 100%). (3) Examination of heat retention time for activation Activation buffer (2.5 M urea-50 mM Tris-HCl buffer (pH8.75) -10 mM NaCl-5 mM EDTA-10 mM lysine-0.5 mM GSH-0.3 mM GSSG) and tPA -1 extract was mixed and kept at 15 ° C. for 1, 2, 3, 4, 5 days. After activating the activated tPA-1 solution against 50 mM Tris-HCl buffer (pH 8.0) -0.01% Tween 80,
The tPA-1 enzyme activity was measured according to Reference Example 3. The enzyme activity increased with the number of days of incubation and reached a maximum at 3 days (Fig. 10).

【0047】実施例5.tPA−1およびtPA−2蛋
白質の抽出、賦活化および精製抽出、賦活化 実施例3で得たtPA−1発現大腸菌凍結菌体あるいは
tPA−2発現大腸菌凍結菌体を50mMトリス塩酸緩衝液
(pH8.0)50mlに懸濁した。懸濁液を超音波処理
(2A×2分間、2回)にかけ、溶菌液を得た後18,900
×gで20分間遠心分離して沈澱物を得た。この沈澱物を
10mMトリス塩酸緩衝液(pH8.0)50mlで洗浄して、1
8,900×gで20分間遠心分離して沈澱物を得た。さらに
この沈澱物を0.25%(v/v)トライトンX−100を含む10m
Mトリス塩酸緩衝液(pH8.0)で洗浄し、18,900×gで
20分間遠心分離して沈澱物を得た。この沈澱物に抽出用
緩衝液〔7M塩酸グアニジン−0.1M KH2PO4(pH
7.5)−5mM 2−メルカプトエタノール〕25mlを加え
て4℃にて一晩撹拌した。この抽出液を18,900×gで20
分間遠心分離して抽出上清25mlを得た。抽出上清25m
lを7M塩酸グアニジン−0.1M KH2PO4(pH7.5)
−5mM 2−メルカプトエタノールに対して透析した
後、脱気した賦活化用緩衝液〔2.5M尿素−50mMトリス
塩酸緩衝液(pH8.75)−10mM NaCl−5mM EDT
A−10mMリシン−0.5mM還元型グルタチオン−0.3mM酸化
型グルタチオン〕1,250mlに加えて撹拌した後、15℃
において保温した。
Example 5 Extraction, activation and purification extraction and activation of tPA-1 and tPA-2 proteins The tPA-1 expressing E. coli frozen cells or tPA-2 expressing E. coli frozen cells obtained in Example 3 were treated with 50 mM Tris-HCl buffer (pH 8). .0) suspended in 50 ml. Sonicate suspension
18,900 after being subjected to (2A x 2 minutes, twice) to obtain a lysate
A precipitate was obtained by centrifugation at × g for 20 minutes. This precipitate
Wash with 50 ml of 10 mM Tris-HCl buffer (pH 8.0) and
A precipitate was obtained by centrifugation at 8,900 xg for 20 minutes. This precipitate was added to 10 m containing 0.25% (v / v) Triton X-100.
Wash with M Tris-HCl buffer (pH 8.0) at 18,900 xg
A precipitate was obtained by centrifugation for 20 minutes. Extraction buffer [7M guanidine hydrochloride-0.1M KH 2 PO 4 (pH
7.5) -5 mM 2-mercaptoethanol] (25 ml) was added and the mixture was stirred at 4 ° C overnight. This extract is 20 at 18,900 × g
Centrifugation was performed for 25 minutes to obtain 25 ml of the extraction supernatant. Extraction supernatant 25m
1M 7M guanidine hydrochloride-0.1M KH 2 PO 4 (pH 7.5)
After dialysis against -5 mM 2-mercaptoethanol, it was degassed and then activated buffer [2.5 M urea-50 mM Tris-HCl buffer (pH8.75) -10 mM NaCl-5 mM EDT]
A-10 mM lysine-0.5 mM reduced glutathione-0.3 mM oxidized glutathione] 1,250 ml, and after stirring, 15 ° C
It was kept warm at.

【0048】精製 賦活化されたtPA−1およびtPA−2溶液の各々1,
250mlを50mMトリス塩酸緩衝液(pH8.0)−0.01%Twe
en80に対して透析した。透析内液を18,900×gで20分間
遠心分離して透析上清を得た。この透析上清を50mMトリ
ス塩酸緩衝液(pH8.0)で平衡化したQAEトヨパー
ル550C(東ソー社)カラム(カラム容量70ml)に負
荷して蛋白質を吸着させ、次に同緩衝液でカラムを洗浄
した後0〜1.0M NaClの直線濃度勾配溶出法(溶出
緩衝液容量600ml)にてtPA−1およびtPA−2
を溶出した。活性画分を0.5M NaCl−50mMトリス塩
酸緩衝液(pH8.0)−0.01% Tween80で平衡化したベ
ンザミジンセファロース6B(ファルマシア社、スウェ
ーデン)カラム(カラム容量20ml)に負荷して活性型
tPAを吸着させ、次に同緩衝液でカラムを洗浄した後
0.2Mアルギニン−0.5MNaCl−50mMトリス塩酸緩衝
液(pH8.0)−0.01%Tween80で活性型tPAを溶出し
た。以上の精製操作により、SDS−PAGEで単一バ
ンドを示すtPA−1標品およびtPA−2標品を得
た。
Purified and activated tPA-1 and tPA-2 solutions respectively 1,
250 ml of 50 mM Tris-HCl buffer (pH 8.0) -0.01% Twe
It was dialyzed against en80. The dialyzed solution was centrifuged at 18,900 xg for 20 minutes to obtain a dialysis supernatant. This dialysis supernatant was loaded onto a QAE Toyopearl 550C (Tosoh Corp.) column (column volume 70 ml) equilibrated with 50 mM Tris-HCl buffer (pH 8.0) to adsorb proteins, and then the column was washed with the same buffer. After that, a linear concentration gradient elution method of 0 to 1.0 M NaCl (elution buffer volume 600 ml) was applied to tPA-1 and tPA-2.
Was eluted. The active fraction was loaded on a column (column volume 20 ml) of benzamidine sepharose 6B (Pharmacia, Sweden) equilibrated with 0.5 M NaCl-50 mM Tris-HCl buffer (pH 8.0) -0.01% Tween80 to load active tPA. After adsorption and then washing the column with the same buffer
Active tPA was eluted with 0.2 M arginine-0.5 M NaCl-50 mM Tris-HCl buffer (pH 8.0) -0.01% Tween80. By the above purification operation, tPA-1 preparation and tPA-2 preparation showing a single band by SDS-PAGE were obtained.

【0049】実施例6.tPA−1およびtPA−2の
諸性質 実施例5で得たtPA−1およびtPA−2蛋白質につ
いて以下の諸性質を調べた。 (1)単一性および分子量 Laemmliの方法〔ネイチャー(Nature), 227, 680(197
0)〕に準じて還元および非還元条件下でSDS−PAG
Eを行い、クマジーブリリアントブルーで染色した。t
PA−1とtPA−2蛋白質は、いずれも単一のバンド
を示した。分子量は還元条件下でtPA−1は39,500、
tPA−2は39,000であり、非還元条件下ではtPA−
1は35,000、tPA−2は34,000であった。これらはい
ずれも一次構造より推定される理論値(tPA−1=3
9,621、tPA−2=38,802)によく一致した(図1
1)。 (2)tPA酵素活性 プラスミノーゲンを含まないフィブリンアガロースプレ
ート上ではtPA−1あるいはtPA−2によって溶解
斑が生じないことから、本tPA−1およびtPA−2
はプラスミノーゲンを基質としてプラスミンへ変換する
ことがわかった。 参考例3、4に従って測定した酵素
活性と、Lowryらの方法〔ジャーナル オブ バイオロジ
カル ケミストリー(J.B.C.) 193, 265(1951)〕に準
じてウシ血清アルブミンを標準蛋白質として求めた蛋白
質濃度からtPA−1とtPA−2のそれぞれの比活性
を求めた。プラスミノーゲンを含むフィブリンアガロー
スプレート法から求めたtPA−1の比活性は9.0×106
IU/mg、tPA−2の比活性は1.9×105IU/mgであっ
た。合成基質法から求めたtPA−1の比活性は4.3×1
05IU/mg、tPA−2の比活性は1.8×104IU/mgであっ
た。
Example 6 Properties of tPA-1 and tPA-2 The following properties of the tPA-1 and tPA-2 proteins obtained in Example 5 were examined. (1) Unity and molecular weight Laemmli's method [Nature, 227, 680 (197)
0)] according to SDS-PAG under reducing and non-reducing conditions.
E was performed and stained with Coomassie Brilliant Blue. t
Both PA-1 and tPA-2 proteins showed a single band. The molecular weight is 39,500 for tPA-1 under reducing conditions,
tPA-2 is 39,000, and under non-reducing conditions, tPA-
1 was 35,000 and tPA-2 was 34,000. These are all theoretical values estimated from the primary structure (tPA-1 = 3
9,621, tPA-2 = 38,802) (Fig. 1)
1). (2) tPA Enzyme Activity Since tPA-1 or tPA-2 does not cause lysis plaque on a fibrin agarose plate containing no plasminogen, the present tPA-1 and tPA-2.
Was found to convert plasminogen to plasmin as a substrate. From the enzyme activity measured according to Reference Examples 3 and 4, and the protein concentration obtained by using bovine serum albumin as a standard protein according to the method of Lowry et al. [Journal of Biological Chemistry (JBC) 193, 265 (1951)], tPA-1 The specific activities of tPA-2 and tPA-2 were determined. The specific activity of tPA-1 determined by the fibrin agarose plate method containing plasminogen was 9.0 × 10 6.
The specific activity of IU / mg and tPA-2 was 1.9 × 10 5 IU / mg. The specific activity of tPA-1 determined by the synthetic substrate method is 4.3 × 1.
The specific activity of 0 5 IU / mg and tPA-2 was 1.8 × 10 4 IU / mg.

【0050】(3)tPA−1およびtPA−2に対す
るPAI−1の阻害作用 実施例5で得られたtPA−1(分子量40,000)および
tPA−2(分子量39,000)の精製標品を用いて、これ
らのtPA変異体に対するプラスミノーゲンアクチベー
ターインヒビター−1(PAI−1)の阻害作用を調べ
た。対照としてアメリカン・ダイアグノスティカ社(ア
メリカ)から入手したメラノーマ細胞由来の天然型1本
鎖tPA(0.9mg/ml、分子量65,000)を用いた。PA
I−1(38μg/ml、分子量50,000)はバイオプール
社から入手した。PAI−1を4M塩酸グアニジンの存
在下で37℃で30分間保温したのちPBSに対して4℃で
一晩透析することにより活性化した。0.25pmoles(終濃
度0.005μM)のtPA変異体および天然型tPAと、
0.1M Tris-HCl(pH8.4)/0.1M NaCl/
0.01%Tween80で希釈した種々の濃度の活性化PAI−
1とを混合し(液量50μl)、室温で20分間反応させ
た。そののち、参考例4のSPECTROLYSE TM/fibrinキッ
トを用いて残存tPA活性を測定した。このtPA活性
測定の際、PARに続いてDESAFIB-X TMを加えて撹拌し
たあと、37℃でtPA−1の場合は1時間、tPA−2
の場合は15時間反応させた。図12にその結果を示す。
縦軸に残存活性の相対値を%で示した。この結果から明
らかなように、tPA−1は天然型tPAと同程度にP
AI−1によって阻害されたが、tPA−2は天然型t
PAやtPA−1よりもPAI−1によって阻害を受け
にくかった。したがってLys296−Gly302を欠失さ
せることによりPAI−1との反応性を低下させること
ができた。
(3) Inhibitory effect of PAI-1 on tPA-1 and tPA-2 Using the purified preparations of tPA-1 (molecular weight 40,000) and tPA-2 (molecular weight 39,000) obtained in Example 5, The inhibitory effect of plasminogen activator inhibitor-1 (PAI-1) on these tPA mutants was investigated. As a control, a natural single-chain tPA derived from melanoma cells (0.9 mg / ml, molecular weight 65,000) obtained from American Diagnostics (USA) was used. PA
I-1 (38 μg / ml, molecular weight 50,000) was obtained from Biopool. PAI-1 was activated by incubating it at 37 ° C. for 30 minutes in the presence of 4 M guanidine hydrochloride and then dialyzing it against PBS at 4 ° C. overnight. 0.25 pmoles (final concentration 0.005 μM) of tPA mutant and native tPA,
0.1M Tris-HCl (pH 8.4) /0.1M NaCl /
Different concentrations of activated PAI-diluted with 0.01% Tween80
1 was mixed (50 μl liquid volume) and reacted at room temperature for 20 minutes. After that, the residual tPA activity was measured using the SPECTROLYSE ™ / fibrin kit of Reference Example 4. When measuring this tPA activity, after adding PAR and DESAFIB-X ™ and stirring, 1 hour at 37 ° C. for tPA-1, tPA-2
In the case of, the reaction was carried out for 15 hours. The result is shown in FIG.
The vertical axis shows the relative value of residual activity in%. As is clear from this result, tPA-1 has the same level of P as that of natural tPA.
It was inhibited by AI-1, but tPA-2 is native t
It was less susceptible to inhibition by PAI-1 than PA or tPA-1. Thus it was possible to reduce the reactivity with PAI-1 by deleting the Lys 296 -Gly 302.

【0051】実施例7 ムテイン(tPA−6')をコー
ドする塩基配列を有する組換えDNAの製造 実施例1に記載のプラスミドpTB1128を合成オリゴヌ
クレオチドを使用する特定部位指向性変異誘発の鋳型と
して用いた。特定部位指向性変異はOligonucleotide-di
rected in vitro Mutagenesis System (アマシャム社)
と合成オリゴマーを用いて行った。用いた合成オリゴマ
ーの配列は下に示すとおりである。 5'−GGGCGACTCTTCGTGCTTGGCAAA−3' (24mer)(配列番号12) この合成オリゴマーを用いることにより、R298'299
298'299に置換されると同時にMboIIの認識部位が
導入されたFEK1ドメイン欠失ヒトtPA cDNA
を構築することができた(図13)。この合成オリゴマー
を用いて得られたtPAムテイン、tPA−6’の塩基
配列およびそれから推測されるアミノ酸配列を図14
(配列番号13)に示す。これらムテインのtPAとの
違いを示すと以下のようである。 この合成オリゴマーを用いた結果得られたプラスミド
をpTB1038とした(図13)。
Example 7 Production of Recombinant DNA Having Nucleotide Sequence Encoding Mutein (tPA-6 ′) The plasmid pTB1128 described in Example 1 was used as a template for site-directed mutagenesis using synthetic oligonucleotides. I was there. Specific site-directed mutation is Oligonucleotide-di
rected in vitro Mutagenesis System (Amersham)
And a synthetic oligomer. The sequences of the synthetic oligomers used are shown below. 5′-GGGCGACTCTTCGTGCTTGGCAAA-3 ′ (24mer) (SEQ ID NO: 12) By using this synthetic oligomer, R 298 ' 299 was replaced with E 298 ' 299 , and at the same time, a recognition site for MboII was introduced and the FEK1 domain was deleted. Human tPA cDNA
Could be constructed (Fig. 13). FIG. 14 shows the nucleotide sequences of tPA mutein and tPA-6 ′ obtained using this synthetic oligomer and the amino acid sequence deduced therefrom.
This is shown in (SEQ ID NO: 13). The difference between these muteins and tPA is as follows. The plasmid obtained as a result of using this synthetic oligomer was designated as pTB1038 (FIG. 13).

【0052】実施例8 ヒトtPAのムテイン(tPA
−6’)をコードする遺伝子による大腸菌の形質転換 (1)ヒトtPAのムテイン発現用プラスミドpTB12
77の構築 前記実施例7で得られたpTB1038をNdeIおよびBamH
Iで切断し、約1.1kbのDNA断片を得た。この断片を
プラスミドpET3c〔Srudier, F. W. (Brookhaven N
ational Labs. U.S.A.) より分与をうけた〕のNdeI
−BamHI部位に挿入して、プラスミドpTB1277を
構築した(図13)。 (2)形質転換 次に実施例2で示した大腸菌MM294(DE3)/pLysS株にpT
B1277を導入し、大腸菌MM294(DE3)/pLysS,pTB1277
をつくった。これらの菌株はヒトtPAムテインtPA
−6'を産出するように作製されていた。
Example 8 Human tPA mutein (tPA
Transformation of Escherichia coli with the gene encoding -6 ') (1) Human tPA mutein expression plasmid pTB12
Construction of 77 pTB1038 obtained in Example 7 above was transformed with NdeI and BamH.
Cleavage with I gave a DNA fragment of about 1.1 kb. This fragment was cloned into the plasmid pET3c [Srudier, FW (Brookhaven N
adeal (from ational Labs. USA)]
-Incorporated into the BamHI site to construct plasmid pTB1277 (Figure 13). (2) Transformation Next, the E. coli MM294 (DE3) / pLysS strain shown in Example 2 was transformed with pT.
B1277 was introduced into E. coli MM294 (DE3) / pLysS, pTB1277
Made. These strains are human tPA mutein tPA
It was designed to produce -6 '.

【0053】実施例9 ムテイン(tPA−7,tPA
−8)をコードする塩基配列を有する組換えDNAの製
造 実施例1に記載のプラスミドpTB1128とpTB1132合
成オリゴヌクレオチドを使用する特定部位指向性変異誘
発の鋳型として用いた。特定部位指向性変異はOligonuc
leotide-directed in vitro Mutagenesis System (アマ
シャム社)と合成オリゴマーを用いて行った。用いた合
成オリゴマーは2本でその配列はそれぞれ下に示すとお
りである。 5'−GCACAGGAAGTGATATCCGGGCGA−3' (24mer)(配列番号14) 5'−GCACAGGAAGTGATATGCAAAGAT−3' (24mer)(配列番号15) を用いることにより、E303304はY303304に置換
されると同時にEcoRVの認識部位が導入されたFE
K1ドメイン欠失tPAムテインが得られた。また、
を用いることにより、E303304はY303304に置換さ
れK296-G302欠損型FEK1ドメイン欠失ヒトtPA
cDNAを構築することができた(図15)。を用いて
得られたtPAムテイン、tPA−7の塩基配列および
それから推測されるアミノ酸配列を図16(配列番号1
6)に、を用いて得られたtPAムテイン、tPA−
8の塩基配列およびそれから推測されるアミノ酸配列を
図17(配列番号17)に示す。これらムテインのtP
Aとの違いを示すと以下のようである。 pTB1128にを用いた結果得られたプラスミドをpT
B1158、さらにpTB1132にを用いて得られたプラス
ミドをpTB1160とした(図15)。
Example 9 Mutein (tPA-7, tPA
Production of Recombinant DNA Having Nucleotide Sequence Encoding -8) The plasmid pTB1128 and pTB1132 synthetic oligonucleotides described in Example 1 were used as templates for site-directed mutagenesis. Oligonuc is a site-directed mutation
This was performed using a leotide-directed in vitro Mutagenesis System (Amersham) and a synthetic oligomer. Two synthetic oligomers were used and their sequences are as shown below. 5'-GCACAGGAAGTGATATCCGGGCGA-3 '(24mer) (SEQ ID NO: 14) By using 5'-GCACAGGAAGTGATATGCAAAGAT-3' (SEQ ID NO: 15), E 303 R 304 was replaced with Y 303 H 304 and at the same time. FE into which EcoRV recognition site has been introduced
A K1 domain deleted tPA mutein was obtained. Also,
By replacing E 303 R 304 with Y 303 H 304 , the human tPA lacking the K 296 -G 302 deficient FEK1 domain.
The cDNA could be constructed (Figure 15). The nucleotide sequences of the tPA mutein and tPA-7 obtained by using and the amino acid sequences deduced therefrom are shown in FIG. 16 (SEQ ID NO: 1).
6), the tPA mutein and tPA-obtained by using
FIG. 17 (SEQ ID NO: 17) shows the nucleotide sequence of 8 and the amino acid sequence deduced therefrom. TP of these muteins
The difference from A is as follows. The resulting plasmid using pTB1128 was designated as pT
The plasmid obtained by using B1158 and pTB1132 was designated as pTB1160 (FIG. 15).

【0054】実施例10 ヒトtPA(tPA−7,t
PA−8)のムテインをコードする遺伝子による大腸菌
の形質転換 (1)ヒトtPAのムテイン発現用プラスミドpTB11
59およびpTB1161の構築 前記実施例1で得られたpTB1158およびpTB1160を
NdeIおよびBamHIで切断し、各々約1.1kbのDNA断片
を得た。この断片をプラスミドpET3C〔Studier,
F. W. (Brookhaven National Labs. U.S.A.) より分与
をうけた〕のNdeI−BamHI部位に挿入して、プ
ラスミドpTB1159およびpTB1160を構築した(図1
5)。 (2)形質転換 次に実施例2で示した大腸菌MM294(DE3)/pLysS株にpT
B1159あるいはpTB1161を導入し、大腸菌MM294(DE3)
/pLysS,pTB1159あるいは大腸菌MM294(DE3)/pLysS,p
TB1161を各々につくった。これらの菌株は各々ヒトt
PAムテインtPA−7あるいはtPA−8を産出する
ように作製されていた。
Example 10 Human tPA (tPA-7, t
Transformation of Escherichia coli with the gene encoding the mutein of PA-8) (1) Plasmid pTB11 for expressing mutein of human tPA
Construction of 59 and pTB1161 pTB1158 and pTB1160 obtained in Example 1 above were
It was digested with NdeI and BamHI to obtain a DNA fragment of about 1.1 kb each. This fragment was used as plasmid pET3C [Studier,
FW (Brookhaven National Labs. USA).] Was inserted into the NdeI-BamHI site to construct plasmids pTB1159 and pTB1160 (Fig. 1).
5). (2) Transformation Next, the E. coli MM294 (DE3) / pLysS strain shown in Example 2 was transformed with pT.
B1159 or pTB1161 was introduced into E. coli MM294 (DE3)
/ pLysS, pTB1159 or E. coli MM294 (DE3) / pLysS, p
I made TB1161 for each. These strains are human t
It was engineered to produce the PA mutein tPA-7 or tPA-8.

【0055】実施例11 tPA−6’蛋白質の抽出、
賦活化および精製抽出 実施例7で得た大腸菌MM294(DE3)/plysS,pTB127
7を実施例3で示した培養条件下に培養し、tPA−
6’発現大腸菌体を得た。このtPA−6’発現大腸菌
菌体20gを50mMトリス塩酸緩衝液(pH8.0)0.2リットルに
懸濁した。懸濁液を超音波処理(2A×2分間,2回)
にかけ、溶菌液を得た後、18,900×gで20分間遠心分離
して沈殿物を得た。この沈殿物を0.5%(v/v)トラ
イトンX-100を含む50mMトリス塩酸緩衝液(pH8.0)0.2リ
ットルで洗浄して、18,900×gで20分間遠心分離して沈
殿物を得た。さらにこの沈殿物を50mMトリス塩酸緩衝液
(pH8.0)0.2リットルで洗浄して、18,900×gで20分間遠
心分離して沈殿物を得た。この沈殿物に抽出用緩衝液(7
M塩酸グアニジン−0.1M KH2PO4(pH7.5)−0.1M2-メル
カプトエタノール)0.1リットルを加えて4℃で一晩撹拌
した。この抽出液を18,900×gで20分間遠心分離して抽
出上清0.1リットルを得た。賦活化 賦活化用緩衝液〔2.5M尿素 50mMトリス塩酸緩衝液(pH8.
75)-10mM NaCl 5mM EDTA- 10mMリシン 0.5mM還元型
グルタチオン〕20リットルに、抽出上清0.1リットルを
加えて15℃で1時間撹拌した後、酸化型グルタチオンを
最終濃度0.3mMになるように加えて15℃で保温した。精製 賦活化されたtPA−6’溶液を限外濾過法により2リ
ットルに濃縮し、次に50mMトリス塩酸緩衝液(pH8.5) 0.
01%Tween80に対して透析した後、18,900×gで20分間遠
心分離して透析上清2リットルを得た。この透析上清を
50mMトリス塩酸緩衝液(pH8.5)で平衡化したQAEトヨ
パール550C(東ソー社)カラム(カラム容量150ml)に負荷
して蛋白質を吸着させ、次に同一緩衝液0.3リットルで
カラムを洗浄した後0〜1.0M NaClの直線勾配溶出
法(溶出緩衝液容量1,200ml)を用いてtPA−6’を溶
出した。活性画分0.2リットルを集め、50mMトリス塩酸
緩衝液(pH8.5)-0.01%Tween80に対して透析した。この
透析内液0.2リットルを同一緩衝液で平衡化したリシン
セファロース4B(ファルマシア社、スウエーデン)カラム
(カラム容量40ml)に負荷してtPA−6’を吸着させ
た。0.5M NaCl-50mMトリス塩酸緩衝液(pH8.5)-0.01%T
ween80 80mlでカラムを洗浄した後、0.2Mアルギニン−
0.5M NaCl−50mMトリス塩酸緩衝液(pH8.5)-0.01%Twee
n80 でtPA−6’を溶出した。以上の精製操作によ
り、SDS−PAGEで単一バンドを示すtPA−6’
標品38mgを得た。
Example 11 Extraction of tPA-6 'protein,
Activation and purification extraction E. coli MM294 (DE3) / plysS, pTB127 obtained in Example 7
7 was cultured under the culture conditions shown in Example 3, and tPA-
A 6'expressing E. coli body was obtained. 20 g of this E. coli cell expressing tPA-6 'was suspended in 0.2 liter of 50 mM Tris-HCl buffer (pH 8.0). Sonicate suspension (2A x 2 minutes, 2 times)
Then, the lysate was obtained and then centrifuged at 18,900 xg for 20 minutes to obtain a precipitate. This precipitate was washed with 0.2 liter of 50 mM Tris-HCl buffer (pH 8.0) containing 0.5% (v / v) Triton X-100, and centrifuged at 18,900 xg for 20 minutes to obtain a precipitate. Furthermore, this precipitate was added to 50 mM Tris-HCl buffer.
It was washed with 0.2 liter of (pH 8.0) and centrifuged at 18,900 xg for 20 minutes to obtain a precipitate. Extraction buffer (7
0.1 liter of M guanidine hydrochloride-0.1 M KH 2 PO 4 (pH 7.5) -0.1 M 2- mercaptoethanol) was added, and the mixture was stirred at 4 ° C. overnight. This extract was centrifuged at 18,900 xg for 20 minutes to obtain 0.1 liter of extraction supernatant. Activation buffer (2.5 M urea 50 mM Tris-HCl buffer (pH 8.
75) -10 mM NaCl 5 mM EDTA-10 mM lysine 0.5 mM reduced glutathione] To 20 liters, add 0.1 liter of extraction supernatant and stir at 15 ° C for 1 hour, and then add oxidized glutathione to a final concentration of 0.3 mM. And kept warm at 15 ° C. The purified activated tPA-6 'solution was concentrated to 2 liters by ultrafiltration and then 50 mM Tris-HCl buffer (pH 8.5).
After dialyzing against 01% Tween 80, it was centrifuged at 18,900 × g for 20 minutes to obtain 2 liters of dialysis supernatant. This dialysis supernatant
A QAE Toyopearl 550C (Tosoh Corporation) column (column volume 150 ml) equilibrated with 50 mM Tris-HCl buffer (pH 8.5) was loaded to adsorb the protein, and then the column was washed with 0.3 liter of the same buffer, and then 0 TPA-6 'was eluted using a linear gradient elution method of ~ 1.0 M NaCl (elution buffer volume 1,200 ml). 0.2 liter of the active fraction was collected and dialyzed against 50 mM Tris-HCl buffer (pH 8.5) -0.01% Tween80. Lysine Sepharose 4B (Pharmacia, Sweden) column equilibrated with 0.2 liter of this dialyzed solution
(Column volume 40 ml) was loaded to adsorb tPA-6 ′. 0.5M NaCl-50mM Tris-HCl buffer (pH8.5) -0.01% T
After washing the column with 80 ml of ween80, 0.2M arginine-
0.5M NaCl-50mM Tris-HCl buffer (pH8.5) -0.01% Twee
tPA-6 'was eluted at n80. By the above purification operation, tPA-6 ′ showing a single band on SDS-PAGE
38 mg of a standard product was obtained.

【0056】実施例12 tPA−6’の諸性質 実施例11で得たtPA−6’蛋白質について以下の諸
性質を調べた。 (1)単一性および分子量 Laemmli の方法〔ネイチャー(Nature),227,680(197
0)〕に準じて還元および非還元条件下でSDS-PAGEをおこ
ない、クマジ-ブリリアントブルーで染色した。tPA-6'
蛋白質は、単一バンドを示した。分子量は還元条件下で
39,000であり、非還元条件下では33,000であった。この
値は一次構造より推定される理論値(tPA-6'=39,561)に
よく一致した(図18)。 (2)tPA酵素活性 参考例3および4に従って測定した酵素活性と、Lowry
らの方法〔ジャーナルオブ バイオロジカル ケミストリ
ー(J.B.C.)193,265(1951)〕に準じてウシ血清アルブミ
ンを標準タンパク質として求めた蛋白質濃度からtPA-6'
の比活性を求めた。プラスミノーゲンを含むフィブリン
アガロースプレート法から求めたtAP-6'の比活性は3.1
×106IU/mgであり、合成基質法から求めたtPA-6'の比活
性は2.6×104Iu/mgであった。 (3)tPA-6'に対するPAI-1の阻害作用 実施例11で得られたtPA-6'の精製標品を用いてPAI-1
による阻害作用を調べた。対照としてCHO細胞で産生し
た組換え型一本鎖 tPA(Activase(登録商標),ジェネン
テック社、アメリカ)と、実施例5で得られたtPA-2とを
用いた。PAI-1の活性化は実施例6に従った。125fmoles
のActivase(登録商標),tPA-2およびtPA-6'と,0.1M
トリス塩酸緩衝液(pH8.4)-0.1M NaCl -0.01% Tween80
で稀釈した種々の濃度の活性化PAI-1とを混合し(液量50
μl)、室温で20分間反応させた。その後、参考例4のSP
ECTROLYSE TM/fibrin キットを用いて残存tPA活性を測
定した(表1)。 表1 PAI−1によるtPAムテインの阻害 酵 素 IC50(fmole) Activase(登録商標) 62.5(1) tPA−2 383.6(6.1) tPA−6’ >8,000 (>120) tPA−7 137.9(2.2) tPA−8 353.4(5.7) IC50:125 fmolesのActivase(登録商標)およびtPAムテインの酵素活 性を、50%阻害するのに必要な活性型PAI−1の量。 この表からtPA-6'はtPA-2よりもさらにPAI-1によって阻
害されにくいことがわかった。従ってArg298とArg299
Glu298とGlu299に変換することにより、PAI-1との反応
性を著しく低下させることができた。
Example 12 Various Properties of tPA-6 ′ The following properties of the tPA-6 ′ protein obtained in Example 11 were examined. (1) Unity and molecular weight Laemmli's method [Nature, 227,680 (197)
SDS-PAGE was carried out under reducing and non-reducing conditions according to (0)] and stained with Coomassie-Brilliant Blue. tPA-6 '
The protein showed a single band. Molecular weight is under reducing conditions
39,000 and 33,000 under non-reducing conditions. This value was in good agreement with the theoretical value estimated from the primary structure (tPA-6 '= 39,561) (Fig. 18). (2) tPA enzyme activity The enzyme activity measured according to Reference Examples 3 and 4 and Lowry
TPA-6 'from the protein concentration obtained by using bovine serum albumin as a standard protein according to the method described in [Journal of Biological Chemistry (JBC) 193,265 (1951)].
Was determined. The specific activity of tAP-6 'determined by the fibrin agarose plate method containing plasminogen was 3.1.
× a 10 6 IU / mg, specific activity of tPA-6 'obtained from the synthetic substrate method was 2.6 × 10 4 Iu / mg. (3) Inhibitory effect of PAI-1 on tPA-6 ′ PAI-1 was prepared using the purified preparation of tPA-6 ′ obtained in Example 11.
The inhibitory effect by As a control, recombinant single-chain tPA produced in CHO cells (Activase (registered trademark), Genentech, Inc., USA) and tPA-2 obtained in Example 5 were used. Activation of PAI-1 was according to Example 6. 125fmoles
Activase®, tPA-2 and tPA-6 ', 0.1M
Tris-HCl buffer (pH 8.4) -0.1M NaCl -0.01% Tween80
Mix with various concentrations of activated PAI-1 diluted with
μl) and reacted at room temperature for 20 minutes. After that, SP of Reference Example 4
Residual tPA activity was measured using the ECTROLYSE ™ / fibrin kit (Table 1). Table 1 Inhibition enzyme of tPA mutein by PAI-1 IC 50 (fmole) Activase® 62.5 (1) tPA-2 383.6 (6.1) tPA-6 '> 8,000 (> 120) tPA-7 137.9 (2.2) tPA-8 353. 4 (5.7) IC 50 : the amount of active PAI-1 required to inhibit the enzyme activity of 125 fmoles of Activase® and tPA mutein by 50%. From this table, it was found that tPA-6 'was more difficult to be inhibited by PAI-1 than tPA-2. So Arg 298 and Arg 299
By converting into Glu 298 and Glu 299 , the reactivity with PAI-1 could be significantly reduced.

【0057】実施例13 tPA-7およびPA-8蛋白質の抽
出、賦活性化および精製抽出 実施例10で得た大腸菌 MM294(DE3)/pLysS pTB1159お
よび MM294(DE3)/plysS,1161を実施例3に従って培養
し、それぞれtPA-7とtPA-8発現大腸菌菌体を得た。tPA-
7とtPA-8発現大腸菌菌体の破砕と、不溶性遺伝子産物の
洗浄は実施例11に従って行った。tPA-7とtPA-8発現大
腸菌より得られた沈殿物に抽出用緩衝液〔7M塩酸グアニ
ジン-0.1M KH2PO4(pH7.5)〕を加えて4℃で2時間撹拌
した、この抽出液を18,900×gで20分間遠心分離してそ
れぞれの抽出上清を得た。賦活化 賦活化用緩衝液〔2.5M 尿素-50mMトリス塩酸緩衝液(pH
8.75)-10mM NaCl-5mM EDTA-10mMリシン-0.5mM還元型グ
ルタチオン-0.3mM酸化型グルタチオン〕にtPA-7およびt
PA-8の抽出上清を加えて15℃で保温した。精製 実施例5に示した方法に従って、QAEイオン交換クロマ
トグラフイーを行い、tPA-7とtPA-8を溶出した。それぞ
れの活性画分を50mMトリス塩酸緩衝液(pH8.0)-0.01%Tw
een80 で平衡化したベンザミジンセファロース6Bカラ
ム(カラム容量20ml)に負荷し、次に0.5MNaCl-50mMトリ
ス塩酸緩衝液(pH8.0)-0.01%Tween80 で洗浄した後、0.
2Mアルギニン-0.5M NaCl-50mMトリス塩酸緩衝液(pH8.0)
-0.01%Tween80 でtPA-7とtPA-8をそれぞれ溶出した。
さらに活性画分を50mMトリス塩酸緩衝液(pH8.0)-0.01%
Tween80に対して透析した後、同緩衝液で平衡化したリ
シンセファロース4Bカラムに負荷した。0.5MNaCl-50mM
トリス塩酸緩衝液(pH8.0)-0.01%Tween80でカラムを洗
浄した後、0.2Mアルギニン-0.5M NaCl-50mMトリス塩酸
緩衝液(pH8.0)0.01%Tween80を用いてtPA-7およびtPA-8
をそれぞれ溶出した。以上の精製操作によりSDS-PAGEで
単一バンドを示すtPA-7標品およびtPA-8標品を得た。
[0057] Example 13 tPA-7 and PA-8 Extraction of the protein, the E. coli was obtained in activatable and purification extraction Example 10 MM294 (DE3) / pLysS pTB1159 and MM294 (DE3) / plysS, 1161 Example 3 The cells were cultured according to the above procedure to obtain tPA-7 and tPA-8-expressing E. coli cells. tPA-
Crushing of E. coli cells expressing 7 and tPA-8 and washing of the insoluble gene product were carried out according to Example 11. Extraction buffer [7 M guanidine hydrochloride-0.1 M KH 2 PO 4 (pH 7.5)] was added to the precipitates obtained from E. coli expressing tPA-7 and tPA-8, and the mixture was stirred at 4 ° C. for 2 hours. The liquid was centrifuged at 18,900 xg for 20 minutes to obtain each extraction supernatant. Activation buffer (2.5M Urea-50mM Tris-HCl buffer (pH
8.75) -10 mM NaCl-5 mM EDTA-10 mM lysine-0.5 mM reduced glutathione-0.3 mM oxidized glutathione] to tPA-7 and t
The extraction supernatant of PA-8 was added and the mixture was kept warm at 15 ° C. According to the method shown in Purification Example 5, QAE ion exchange chromatography was performed to elute tPA-7 and tPA-8. 50 mM Tris-HCl buffer (pH 8.0) -0.01% Tw for each active fraction
Loaded onto a benzamidine sepharose 6B column (column volume 20 ml) equilibrated with een80, and then washed with 0.5 M NaCl-50 mM Tris-HCl buffer (pH 8.0) -0.01% Tween80, and then 0.
2M Arginine-0.5M NaCl-50mM Tris-HCl buffer (pH8.0)
-TPA-7 and tPA-8 were eluted with -0.01% Tween80, respectively.
The active fraction was added to 50 mM Tris-HCl buffer (pH 8.0) -0.01%.
After dialyzing against Tween80, it was loaded on a lysine sepharose 4B column equilibrated with the same buffer. 0.5M NaCl-50mM
After washing the column with Tris-HCl buffer (pH8.0) -0.01% Tween80, 0.2M arginine-0.5M NaCl-50mM Tris-HCl buffer (pH8.0) 0.01% Tween80 was used to tPA-7 and tPA- 8
Were eluted respectively. By the above purification operation, tPA-7 standard preparation and tPA-8 standard preparation showing a single band by SDS-PAGE were obtained.

【0058】実施例14 tPA-7およびtPA-8の諸性質 実施例13で得たtPA-7およびtPA-8蛋白質について以下の
諸性質を調べた。 (1)単一性および分子量 Laemmli の方法〔ネイチャー(Nature),227,680(1970)〕
に準じて還元および非還元条件下でSDS-PAGE を行い、
クマジ-ブリリアントブルーで染色した。tPA-7およびtP
A-8蛋白質はいずれも単一のバンドを示した。分子量は
還元条件下でtPA-7は39,000、tPA-8は38,000と算出さ
れ、非還元条件下ではtPA-7は33,000、tPA-8は32,000と
算出された。これらはいずれも一次構造より推定される
理論値(tPA-7=39,636、tPA-8=38,817)に良く一致した
(図19、図20)。 (2)tPA酵素活性 参考例3および4に従って測定した酵素活性と、Lowry
らの方法〔ジャーナルオブ バイオロジカル ケミストリ
ー(J.B.C.)193,265(1951)〕に準じてウシ血清アルブミ
ンを標準蛋白質として求めた蛋白質濃度からtPA-7とtPA
-8のそれぞれの比活性を求めた。プラスミノーゲンを含
むフィブリンアガロースプレート法から求めたtPA-7の
比活性は9.4×106IU/mg,tPA-8の非活性は4.4×105IU/mg
であった。合成基質法から求めたtPA-7の比活性は4.1×
105IU/mg,tPA-8の比活性は1.4×104IU/mgであった。 (3)tPA-7およびtPA-8に対するPAI-1の阻害作用 実施例13で得られたtPA-7およびtPA-8の精製標品を用い
てPAI-1による阻害作用を調べた。対照としてActivase
(登録商標)を用いた。PAI-1の活性化、tPAと活性化PA
I-1との反応および残存tPA活性の測定は実施例12に従っ
た(表1)。この結果から、tPA-7はActivase(登録商
標)と同様にPAI-1により阻害されるが、tPA-8はActiva
se(登録商標)に比較してPAI-1により阻害されにくい
ことがわかった。
Example 14 Properties of tPA-7 and tPA-8 The following properties of the tPA-7 and tPA-8 proteins obtained in Example 13 were examined. (1) Unity and molecular weight Laemmli's method [Nature, 227,680 (1970)]
SDS-PAGE under reducing and non-reducing conditions according to
It was stained with Coomassie-Brilliant Blue. tPA-7 and tP
All A-8 proteins showed a single band. The molecular weights were calculated to be 39,000 for tPA-7 and 38,000 for tPA-8 under reducing conditions, and 33,000 for tPA-7 and 32,000 for tPA-8 under non-reducing conditions. All of these were in good agreement with the theoretical values estimated from the primary structure (tPA-7 = 39,636, tPA-8 = 38,817).
(Figure 19, Figure 20). (2) tPA enzyme activity The enzyme activity measured according to Reference Examples 3 and 4 and Lowry
TPA-7 and tPA from the protein concentration obtained by using bovine serum albumin as a standard protein according to the method of J. et al.
Each specific activity of -8 was determined. The specific activity of tPA-7 determined by the fibrin agarose plate method containing plasminogen was 9.4 × 10 6 IU / mg, and the inactivity of tPA-8 was 4.4 × 10 5 IU / mg.
Met. The specific activity of tPA-7 calculated from the synthetic substrate method is 4.1 ×
The specific activity of 10 5 IU / mg, tPA-8 was 1.4 × 10 4 IU / mg. (3) Inhibitory effect of PAI-1 on tPA-7 and tPA-8 The purified sample of tPA-7 and tPA-8 obtained in Example 13 was used to examine the inhibitory effect of PAI-1. Activase as a control
(Registered trademark) was used. PAI-1 activation, tPA and activated PA
Reaction with I-1 and measurement of residual tPA activity was according to Example 12 (Table 1). From this result, tPA-7 is inhibited by PAI-1 similarly to Activase (registered trademark), but tPA-8 is inhibited by Activa.
It was found that it was less likely to be inhibited by PAI-1 than se (registered trademark).

【0059】[0059]

【実施例15】tPA−11ムテインをコードする塩基
配列を有する組換えDNAの製造 実施例1に記載のプラスミドpTB1128を合成オリゴヌ
クレオチドを使用する特定部位指向性変異誘発の鋳型と
して用いた。特定部位指向性変異は Oligonucleotido-d
irected in vitro Mutagenesis System(アマシャム
社)と合成オリゴマーを用いて行なった。用いた合成オ
リゴマーは2本でその配列はそれぞれ下に示すとおりで
ある。 5'-CCG CTC TCC TGG CGA CCT CCT-3' (21mer)(配列番号18) 5'-TGG CGA CTT CTT GTG CTT GGC AAA-3' (24mer)(配列番号19) を用いることにより、P301を置換することなくその
部位に存在したNciIの認識部位を消失させたpTB
1431が得られた。このプラスミドとを用いることによ
り、R298299がK298299に置換されたFEK1ドメ
イン欠失ヒトtPAcDNAを構築することができた
(図21)。を用いて得られたtPAムテイン、tP
A−11の塩基配列及びそれから推測されるアミノ酸配列
を図22(配列番号20)に示す。
Example 15 Production of Recombinant DNA Having a Nucleotide Sequence Encoding tPA-11 Mutein The plasmid pTB1128 described in Example 1 was used as a template for site-directed mutagenesis using synthetic oligonucleotides. Site-directed mutation is Oligonucleotido-d
It was performed using an irected in vitro Mutagenesis System (Amersham) and a synthetic oligomer. Two synthetic oligomers were used and their sequences are as shown below. By using 5'-CCG CTC TCC TGG CGA CCT CCT-3 '(21mer) (SEQ ID NO: 18) 5'-TGG CGA CTT CTT GTG CTT GGC AAA-3' (24mer) (SEQ ID NO: 19), P 301 PTB in which the NciI recognition site present at that site was eliminated without replacing
1431 was obtained. By using this plasmid, it was possible to construct an FEK1 domain-deleted human tPA cDNA in which R 298 ' 299 was replaced with K 298 ' 299 (Fig. 21). TPA mutein and tP obtained using
The nucleotide sequence of A-11 and the amino acid sequence deduced therefrom are shown in Fig. 22 (SEQ ID NO: 20).

【0060】このムテインのtPAとの違いを示すと以
下のようである。
The difference between this mutein and tPA is as follows.

【0061】アミノ酸番号 を用いて得られたプラスミドをpTB1334とした(図
23)。
Amino acid number The resulting plasmid was designated as pTB1334 (Fig. 23).

【0062】[0062]

【実施例16】ヒトtPAムテイン、tPA−11をコー
ドする遺伝子による大腸菌の形質転換 (1)ヒトtPAのムテイン発現用プラスミドpTB13
35の構築 前記実施例15で得られたpTB1334をNdeI及びB
amHIで切断し、各々約1.1kbのDNA断片を得
た。この断片をプラスミドpET3C〔Srudier,F.W.(B
rookhaven National Labs. U.S.A.)より分与を受けた〕
のNdeI−BamHI部位に挿入して、プラスミドp
TB1335を構築した(図23)。 (2)形質転換 次に、実施例2で示した大腸菌MM294(DE3)/p
LysS株にpTB1335を導入し、大腸菌MM294(D
E3)/pLysS,pTB1335をつくった。この菌株
はヒトtPAムテインtPA−11を産出するように作製
されていた。
Example 16 Transformation of Escherichia coli with genes encoding human tPA mutein and tPA-11 (1) Plasmid pTB13 for expressing human tPA mutein
Construction of 35 pTB1334 obtained in the above Example 15 was transformed with NdeI and B
It was cleaved with amHI to obtain a DNA fragment of about 1.1 kb. This fragment was used as plasmid pET3C [Srudier, FW (B
(Rookhaven National Labs. USA)
At the NdeI-BamHI site of
TB1335 was constructed (Figure 23). (2) Transformation Next, the Escherichia coli MM294 (DE3) / p shown in Example 2 was obtained.
PTB1335 was introduced into the LysS strain, and E. coli MM294 (D
E3) / pLysS, pTB1335 was made. This strain was engineered to produce the human tPA mutein tPA-11.

【0063】[0063]

【実施例17】tPA−12ムテインをコードする塩基
配列を有する組換えDNAの製造 実施例15に記載のプラスミドpTB1431を合成オリゴ
ヌクレオチドを使用する特定部位指向性変異誘発の鋳型
として用いた。特定部位指向性変異はOligonucleotido-
directed in vitro Mutagenesis System(アマシャム
社)と合成オリゴマーを用いて行なった。用いた合成オ
リゴマーの配列は下に示すとおりである。 5'-TGG CGA TAG TAG GTG CTT GGC AAA-3' (24mer)(配列番号21) この合成オリゴマーを用いることにより、R298299
298299に置換されたFEK1ドメイン欠失ヒトtP
AcDNAを構築することができた(図24)。このtP
Aムテイン、tPA−12の塩基配列及びそれから推測さ
れるアミノ酸配列を図25(配列番号22)に示す。
Example 17 Preparation of Recombinant DNA Having Nucleotide Sequence Encoding tPA-12 Mutein The plasmid pTB1431 described in Example 15 was used as a template for site-directed mutagenesis using synthetic oligonucleotides. Site-directed mutation is Oligonucleotido-
This was performed using a directed in vitro Mutagenesis System (Amersham) and a synthetic oligomer. The sequences of the synthetic oligomers used are shown below. 5'-TGG CGA TAG TAG GTG CTT GGC AAA-3 '(24mer) (SEQ ID NO: 21) By using this synthetic oligomer, F298 domain-deleted human tP in which R 298 ' 299 was replaced with D 298 ' 299 was used.
A cDNA could be constructed (Fig. 24). This tP
The nucleotide sequences of A mutein and tPA-12 and the amino acid sequences deduced therefrom are shown in FIG. 25 (SEQ ID NO: 22).

【0064】このムテインのtPAとの違いを示すと以
下のようである。 アミノ酸番号 この合成オリゴマーを用いて得られたプラスミドをp
TB1353とした(図26)
The difference between this mutein and tPA is as follows. Amino acid number The plasmid obtained by using this synthetic oligomer is
TB1353 (Fig. 26)

【0065】。..

【実施例18】ヒトtPAムテイン、tPA−12をコ
ードする遺伝子による大腸菌の形質転換 (1)ヒトtPAのムテイン発現用プラスミドpTB13
54の構築 前記実施例17で得られたpTB1353をNdeI及びB
amHIで切断し、各々約1.1kbのDNA断片を得
た。この断片をプラスミドpET3C〔Srudier,F.W.(B
rookhaven National Labs. U.S.A.)より分与を受けた〕
のNdeI−BamHI部位に挿入して、プラスミドp
TB1354を構築した(図26)。
Example 18 Transformation of Escherichia coli with genes encoding human tPA mutein and tPA-12 (1) Plasmid pTB13 for expressing human tPA mutein
Construction of 54 pTB1353 obtained in the above Example 17 was transformed with NdeI and B
It was cleaved with amHI to obtain a DNA fragment of about 1.1 kb. This fragment was used as plasmid pET3C [Srudier, FW (B
(Rookhaven National Labs. USA)
At the NdeI-BamHI site of
TB1354 was constructed (Figure 26).

【0066】(2)形質転換 次に、実施例2で示した大腸菌MM294(DE3)/p
LysS株にpTB1354を導入し、大腸菌MM294(D
E3)/pLysS,pTB1354をつくった。この菌株
はヒトtPAムテインtPA−12を産出するように作
製されていた。
(2) Transformation Next, the Escherichia coli MM294 (DE3) / p shown in Example 2 was transformed.
PTB1354 was introduced into the LysS strain, and Escherichia coli MM294 (D
E3) / pLysS, pTB1354 was made. This strain was engineered to produce the human tPA mutein tPA-12.

【0067】[0067]

【実施例19】tPA−13ムテインをコードする塩基
配列を有する組換えDNAの製造 実施例15に記載のプラスミドpTB1431を合成オリゴ
ヌクレオチドを使用する特定部位指向性変異誘発の鋳型
として用いた。特定部位指向性変異はOligonucleotido-
directed in vitro Mutagenesis System(アマシャム
社)と合成オリゴマーを用いて行なった。用いた合成オ
リゴマーの配列は下に示すとおりである。 5'-TGG CGA CTG CTG GTG CTT GGC AAA-3' (24mer)(配列番号23) この合成オリゴマーを用いることにより、R298299
298299に置換されたFEK1ドメイン欠失ヒトtP
AcDNAを構築することができた(図27)。このtP
Aムテイン、tPA−13の塩基配列及びそれから推測
されるアミノ酸配列を図28(配列番号24)に示す。こ
のムテインのtPAとの違いを示すと以下のようであ
る。 アミノ酸番号 この合成オリゴマーを用いて得られたプラスミドをp
TB1356とした(図29)。
Example 19 Production of Recombinant DNA Having Nucleotide Sequence Encoding tPA-13 Mutein The plasmid pTB1431 described in Example 15 was used as a template for site-directed mutagenesis using synthetic oligonucleotides. Site-directed mutation is Oligonucleotido-
This was performed using a directed in vitro Mutagenesis System (Amersham) and a synthetic oligomer. The sequences of the synthetic oligomers used are shown below. 5′-TGG CGA CTG CTG GTG CTT GGC AAA-3 ′ (24mer) (SEQ ID NO: 23) By using this synthetic oligomer, R 298 ' 299 was replaced with Q 298 ' 299, and human tP lacking FEK1 domain was substituted.
A cDNA could be constructed (Fig. 27). This tP
The nucleotide sequence of A mutein and tPA-13 and the amino acid sequence deduced therefrom are shown in FIG. 28 (SEQ ID NO: 24). The difference between this mutein and tPA is as follows. Amino acid number The plasmid obtained by using this synthetic oligomer is
It was designated as TB1356 (Fig. 29).

【0068】[0068]

【実施例20】ヒトtPAムテイン、tPA−13をコ
ードする遺伝子による大腸菌の形質転換 (1)ヒトtPAのムテイン発現用プラスミドpTB13
57の構築 前記実施例19で得られたpTB1356をNdeI及びB
amHIで切断し、各々約1.1kbのDNA断片を得
た。この断片をプラスミドpET3C〔Srudier,F.W.(B
rookhaven National Labs. U.S.A.)より分与を受けた〕
のNdeI−BamHI部位に挿入して、プラスミドp
TB1357を構築した(図29)。 (2)形質転換 次に、実施例2で示した大腸菌MM294(DE3)/p
LysS株にpTB1357を導入し、大腸菌MM294(D
E3)/pLysS,pTB1357をつくった。この菌株
はヒトtPAムテインtPA−13を産出するように作
製されていた。
[Example 20] Transformation of Escherichia coli with genes encoding human tPA mutein and tPA-13 (1) Plasmid pTB13 for expressing human tPA mutein
Construction of 57 The pTB1356 obtained in the above Example 19 was transformed with NdeI and B
It was cleaved with amHI to obtain a DNA fragment of about 1.1 kb. This fragment was used as plasmid pET3C [Srudier, FW (B
(Rookhaven National Labs. USA)
At the NdeI-BamHI site of
TB1357 was constructed (Figure 29). (2) Transformation Next, the Escherichia coli MM294 (DE3) / p shown in Example 2 was obtained.
PTB1357 was introduced into the LysS strain, and E. coli MM294 (D
E3) / pLysS, pTB1357 was made. This strain was engineered to produce the human tPA mutein tPA-13.

【0069】[0069]

【実施例21】tPA−14ムテインをコードする塩基
配列を有する組換えDNAの製造 実施例15に記載のプラスミドpTB1431を合成オリゴ
ヌクレオチドを使用する特定部位指向性変異誘発の鋳型
として用いた。特定部位指向性変異はOligonucleotido-
directed in vitro Mutagenesis System(アマシャム
社)と合成オリゴマーを用いて行なった。用いた合成オ
リゴマーの配列は下に示すとおりである。 5'-TGG CGA CGC TGC GTG CTT GGC AAA-3' (24mer)(配列番号25) この合成オリゴマーを用いることにより、R298299
298299に置換されたFEK1ドメイン欠失ヒトtP
AcDNAを構築することができた(図30)。このtP
Aムテイン、tPA−14の塩基配列及びそれから推測
されるアミノ酸配列を図31(配列番号26)に示す。こ
のムテインのtPAとの違いを示すと以下のようであ
る。 アミノ酸番号 この合成オリゴマーを用いて得られたプラスミドをp
TB1359とした(図32)。
Example 21 Production of Recombinant DNA Having Nucleotide Sequence Encoding tPA-14 Mutein The plasmid pTB1431 described in Example 15 was used as a template for site-directed mutagenesis using a synthetic oligonucleotide. Site-directed mutation is Oligonucleotido-
This was performed using a directed in vitro Mutagenesis System (Amersham) and a synthetic oligomer. The sequences of the synthetic oligomers used are shown below. 5′-TGG CGA CGC TGC GTG CTT GGC AAA-3 ′ (24mer) (SEQ ID NO: 25) By using this synthetic oligomer, R 298 ' 299 was replaced with A 298 ' 299 , and the FEK1 domain-deleted human tP was deleted.
A cDNA could be constructed (Fig. 30). This tP
The nucleotide sequence of A mutein and tPA-14 and the amino acid sequence deduced therefrom are shown in FIG. 31 (SEQ ID NO: 26). The difference between this mutein and tPA is as follows. Amino acid number The plasmid obtained by using this synthetic oligomer is
It was designated as TB1359 (Fig. 32).

【0070】[0070]

【実施例22】ヒトtPAムテイン、tPA−14をコ
ードする遺伝子による大腸菌の形質転換 (1)ヒトtPAのムテイン発現用プラスミドpTB13
60の構築 前記実施例21で得られたpTB1359をNdeI及びB
amHIで切断し、各々約1.1kbのDNA断片を得
た。この断片をプラスミドpET3C〔Srudier,F.W.(B
rookhaven National Labs. U.S.A.)より分与を受けた〕
のNdeI−BamHI部位に挿入して、プラスミドp
TB1360を構築した(図32)。 (2)形質転換 次に、実施例2で示した大腸菌MM294(DE3)/p
LysS株にpTB1360を導入し、大腸菌MM294(D
E3)/pLysS,pTB1360をつくった。この菌株
はヒトtPAムテインtPA−14を産出するように作
製されていた。
Example 22 Transformation of Escherichia coli with genes encoding human tPA mutein and tPA-14 (1) Plasmid pTB13 for expressing human tPA mutein
Construction of 60 pTB1359 obtained in the above Example 21 was transformed with NdeI and B
It was cleaved with amHI to obtain a DNA fragment of about 1.1 kb. This fragment was used as plasmid pET3C [Srudier, FW (B
(Rookhaven National Labs. USA)
At the NdeI-BamHI site of
TB1360 was constructed (Fig. 32). (2) Transformation Next, the Escherichia coli MM294 (DE3) / p shown in Example 2 was obtained.
PTB1360 was introduced into the LysS strain, and E. coli MM294 (D
E3) / pLysS, pTB1360 were made. This strain was engineered to produce the human tPA mutein tPA-14.

【0071】[0071]

【実施例23】tPA−15ムテインをコードする塩基
配列を有する組換えDNAの製造 実施例15に記載のプラスミドpTB1431を合成オリゴ
ヌクレオチドを使用する特定部位指向性変異誘発の鋳型
として用いた。特定部位指向性変異はOligonucleotido-
directed in vitro Mutagenesis System(アマシャム
社)と合成オリゴマーを用いて行なった。用いた合成オ
リゴマーの配列は下に示すとおりである。 5'-TGG CGA CCT ATC GTG CTT GGC AAA-3' (24mer)(配列番号27) この合成オリゴマーを用いることにより、R298がD298
に置換されたFEK1ドメイン欠失ヒトtPAcDNA
を構築することができた(図33)。このtPAムテイ
ン、tPA−15の塩基配列及びそれから推測されるア
ミノ酸配列を図34(配列番号28)に示す。このムテイ
ンのtPAとの違いを示すと以下のようである。 アミノ酸番号 この合成オリゴマーを用いて得られたプラスミドをp
TB1362とした(図35)。
Example 23 Production of Recombinant DNA Having Nucleotide Sequence Encoding tPA-15 Mutein The plasmid pTB1431 described in Example 15 was used as a template for site-directed mutagenesis using synthetic oligonucleotides. Site-directed mutation is Oligonucleotido-
This was performed using a directed in vitro Mutagenesis System (Amersham) and a synthetic oligomer. The sequences of the synthetic oligomers used are shown below. 5'-TGG CGA CCT ATC GTG CTT GGC AAA-3 '(24mer) (SEQ ID NO: 27) By using this synthetic oligomer, R 298 becomes D 298.
FEK1 domain-deleted human tPA cDNA substituted with
Could be constructed (Fig. 33). The base sequence of this tPA mutein and tPA-15 and the amino acid sequence deduced therefrom are shown in FIG. 34 (SEQ ID NO: 28). The difference between this mutein and tPA is as follows. Amino acid number The plasmid obtained by using this synthetic oligomer is
TB1362 (Fig. 35).

【0072】[0072]

【実施例24】ヒトtPAムテイン、tPA−15をコ
ードする遺伝子による大腸菌の形質転換 (1)ヒトtPAのムテイン発現用プラスミドpTB13
63の構築 前記実施例23で得られたpTB1362をNdeI及びB
amHIで切断し、各々約1.1kbのDNA断片を得
た。この断片をプラスミドpET3C〔Srudier,F.W.(B
rookhaven National Labs. U.S.A.)より分与を受けた〕
のNdeI−BamHI部位に挿入して、プラスミドp
TB1363を構築した(図35)。 (2)形質転換 次に、実施例2で示した大腸菌MM294(DE3)/p
LysS株にpTB1363を導入し、大腸菌MM294(D
E3)/pLysS,pTB1363をつくった。この菌株
はヒトtPAムテインtPA−15を産出するように作
製されていた。
[Example 24] Transformation of Escherichia coli with genes encoding human tPA mutein and tPA-15 (1) Plasmid pTB13 for expressing human tPA mutein
Construction of 63 pTB1362 obtained in the above Example 23 was transformed with NdeI and B
It was cleaved with amHI to obtain a DNA fragment of about 1.1 kb. This fragment was used as plasmid pET3C [Srudier, FW (B
(Rookhaven National Labs. USA)
At the NdeI-BamHI site of
TB1363 was constructed (Figure 35). (2) Transformation Next, the Escherichia coli MM294 (DE3) / p shown in Example 2 was obtained.
PTB1363 was introduced into the LysS strain, and E. coli MM294 (D
E3) / pLysS, pTB1363 was created. This strain was engineered to produce the human tPA mutein tPA-15.

【0073】[0073]

【実施例25】tPA−16ムテインをコードする塩基
配列を有する組換えDNAの製造 実施例15に記載のプラスミドpTB1431を合成オリゴ
ヌクレオチドを使用する特定部位指向性変異誘発の鋳型
として用いた。特定部位指向性変異はOligonucleotido-
directed in vitro Mutagenesis System(アマシャム
社)と合成オリゴマーを用いて行なった。用いた合成オ
リゴマーの配列は下に示すとおりである。 5'-TGG CGA GTC CCT GTG CTT GGC AAA-3' (24mer)(配列番号29) この合成オリゴマーを用いることにより、R299がD299
に置換されたFEK1ドメイン欠失ヒトtPAcDNA
を構築することができた(図36)。このtPAムテイ
ン、tPA−16の塩基配列及びそれから推測されるア
ミノ酸配列を図37(配列番号30)に示す。このムテイ
ンのtPAとの違いを示すと以下のようである。 アミノ酸番号 この合成オリゴマーを用いて得られたプラスミドをp
TB1345とした(図38)。
Example 25 Production of Recombinant DNA Having Nucleotide Sequence Encoding tPA-16 Mutein The plasmid pTB1431 described in Example 15 was used as a template for site-directed mutagenesis using synthetic oligonucleotides. Site-directed mutation is Oligonucleotido-
This was performed using a directed in vitro Mutagenesis System (Amersham) and a synthetic oligomer. The sequences of the synthetic oligomers used are shown below. 5′-TGG CGA GTC CCT GTG CTT GGC AAA-3 ′ (24mer) (SEQ ID NO: 29) By using this synthetic oligomer, R 299 becomes D 299.
FEK1 domain-deleted human tPA cDNA substituted with
Could be constructed (Fig. 36). The nucleotide sequence of this tPA mutein and tPA-16 and the amino acid sequence deduced therefrom are shown in FIG. 37 (SEQ ID NO: 30). The difference between this mutein and tPA is as follows. Amino acid number The plasmid obtained by using this synthetic oligomer is
It was designated as TB1345 (Fig. 38).

【0074】[0074]

【実施例26】ヒトtPAムテイン、tPA−16をコ
ードする遺伝子による大腸菌の形質転換 (1)ヒトtPAのムテイン発現用プラスミドpTB13
46の構築 前記実施例25で得られたpTB1345をNdeI及びB
amHIで切断し、各々約1.1kbのDNA断片を得
た。この断片をプラスミドpET3C〔Srudier,F.W.(B
rookhaven National Labs. U.S.A.)より分与を受けた〕
のNdeI−BamHI部位に挿入して、プラスミドp
TB1346を構築した(図38)。 (2)形質転換 次に、実施例2で示した大腸菌MM294(DE3)/p
LysS株にpTB1346を導入し、大腸菌MM294(D
E3)/pLysS,pTB1346をつくった。この菌株
はヒトtPAムテインtPA−16を産出するように作
製されていた。
Example 26 Transformation of Escherichia coli with genes encoding human tPA mutein and tPA-16 (1) Plasmid pTB13 for expressing human tPA mutein
Construction of 46 pTB1345 obtained in Example 25 above was transformed with NdeI and B
It was cleaved with amHI to obtain a DNA fragment of about 1.1 kb. This fragment was used as plasmid pET3C [Srudier, FW (B
(Rookhaven National Labs. USA)
At the NdeI-BamHI site of
TB1346 was constructed (Figure 38). (2) Transformation Next, the Escherichia coli MM294 (DE3) / p shown in Example 2 was obtained.
PTB1346 was introduced into the LysS strain, and Escherichia coli MM294 (D
E3) / pLysS, pTB1346 was made. This strain was engineered to produce the human tPA mutein tPA-16.

【0075】[0075]

【実施例27】tPA−17ムテインをコードする塩基
配列を有する組換えDNAの製造 実施例15に記載のプラスミドpTB1431を合成オリゴ
ヌクレオチドを使用する特定部位指向性変異誘発の鋳型
として用いた。特定部位指向性変異はOligonucleotido-
directed in vitro Mutagenesis System(アマシャム
社)と合成オリゴマーを用いて行なった。用いた合成オ
リゴマーの配列は下に示すとおりである。 5'-TGG CGA CTT CTC GTG CTT GGC AAA-3' (24mer)(配列番号31) この合成オリゴマーを用いることにより、R298'299
298299に置換されたFEK1ドメイン欠失ヒトtP
AcDNAを構築することができた(図39)。このtP
Aムテイン、tPA−17の塩基配列及びそれから推測
されるアミノ酸配列を図40(配列番号32)に示す。
Example 27 Production of Recombinant DNA Having Nucleotide Sequence Encoding tPA-17 Mutein The plasmid pTB1431 described in Example 15 was used as a template for site-directed mutagenesis using synthetic oligonucleotides. Site-directed mutation is Oligonucleotido-
This was performed using a directed in vitro Mutagenesis System (Amersham) and a synthetic oligomer. The sequences of the synthetic oligomers used are shown below. 5'-TGG CGA CTT CTC GTG CTT GGC AAA-3 '(24mer) ( SEQ ID NO: 31) By using this synthetic oligomer, R 298' FEK1 domain deleted human tP that 299 is replaced with E 298 K 299
A cDNA could be constructed (Fig. 39). This tP
The nucleotide sequence of A mutein and tPA-17 and the amino acid sequence deduced therefrom are shown in FIG. 40 (SEQ ID NO: 32).

【0076】このムテインのtPAとの違いを示すと以
下のようである。
The difference between this mutein and tPA is as follows.

【0077】アミノ酸番号 この合成オリゴマーを用いて得られたプラスミドをp
TB1365とした(図41)。
Amino acid number The plasmid obtained by using this synthetic oligomer is
It was set to TB1365 (Fig. 41).

【0078】[0078]

【実施例28】ヒトtPAムテイン、tPA−17をコ
ードする遺伝子による大腸菌の形質転換 (1)ヒトtPAのムテイン発現用プラスミドpTB13
66の構築 前記実施例27で得られたpTB1365をNdeI及びB
amHIで切断し、各々約1.1kbのDNA断片を得
た。この断片をプラスミドpET3C〔Srudier,F.W.(B
rookhaven National Labs. U.S.A.)より分与を受けた〕
のNdeI−BamHI部位に挿入して、プラスミドp
TB1366を構築した(図41)。 (2)形質転換 次に、実施例2で示した大腸菌MM294(DE3)/p
LysS株にpTB1366を導入し、大腸菌MM294(D
E3)/pLysS,pTB1366をつくった。この菌株
はヒトtPAムテインtPA−17を産出するように作
製されていた。
Example 28 Transformation of Escherichia coli with genes encoding human tPA mutein and tPA-17 (1) Plasmid pTB13 for expressing mutein of human tPA
Construction of 66 The pTB1365 obtained in Example 27 above was transformed with NdeI and B
It was cleaved with amHI to obtain a DNA fragment of about 1.1 kb. This fragment was used as plasmid pET3C [Srudier, FW (B
(Rookhaven National Labs. USA)
At the NdeI-BamHI site of
TB1366 was constructed (Figure 41). (2) Transformation Next, the Escherichia coli MM294 (DE3) / p shown in Example 2 was obtained.
PTB1366 was introduced into the LysS strain, and E. coli MM294 (D
E3) / pLysS, pTB1366 was made. This strain was engineered to produce the human tPA mutein tPA-17.

【0079】[0079]

【実施例29】tPA−18ムテインをコードする塩基
配列を有する組換えDNAの製造 実施例15に記載のプラスミドpTB1431を合成オリゴ
ヌクレオチドを使用する特定部位指向性変異誘発の鋳型
として用いた。特定部位指向性変異はOligonucleotido-
directed in vitro Mutagenesis System(アマシャム
社)と合成オリゴマーを用いて行なった。用いた合成オ
リゴマーの配列は下に示すとおりである。 5'-TGG CGA CTC CTT GTG CTT GGC AAA-3' (24mer)(配列番号33) この合成オリゴマーを用いることにより、R298'299
298299に置換されたFEK1ドメイン欠失ヒトtP
AcDNAを構築することができた(図42)。このtP
Aムテイン、tPA−18の塩基配列及びそれから推測
されるアミノ酸配列を図43(配列番号34)に示す。こ
のムテインのtPAとの違いを示すと以下のようであ
る。 アミノ酸番号 この合成オリゴマーを用いて得られたプラスミドをp
TB1368とした(図44)。
Example 29 Production of Recombinant DNA Having Nucleotide Sequence Encoding tPA-18 Mutein The plasmid pTB1431 described in Example 15 was used as a template for site-directed mutagenesis using synthetic oligonucleotides. Site-directed mutation is Oligonucleotido-
This was performed using a directed in vitro Mutagenesis System (Amersham) and a synthetic oligomer. The sequences of the synthetic oligomers used are shown below. 5'-TGG CGA CTC CTT GTG CTT GGC AAA-3 '(24mer) (SEQ ID NO: 33) By using this synthetic oligomer, R 298 ' 299 was substituted with K 298 E 299 for deletion of FEK1 domain-deleted human tP.
A cDNA could be constructed (Fig. 42). This tP
The nucleotide sequences of A mutein and tPA-18 and the amino acid sequences deduced therefrom are shown in FIG. 43 (SEQ ID NO: 34). The difference between this mutein and tPA is as follows. Amino acid number The plasmid obtained by using this synthetic oligomer is
It was designated as TB1368 (Fig. 44).

【0080】[0080]

【実施例30】ヒトtPAムテイン、tPA−18をコ
ードする遺伝子による大腸菌の形質転換 (1)ヒトtPAのムテイン発現用プラスミドpTB13
69の構築 前記実施例29で得られたpTB1368をNdeI及びB
amHIで切断し、各々約1.1kbのDNA断片を得
た。この断片をプラスミドpET3C〔Srudier,F.W.(B
rookhaven National Labs. U.S.A.)より分与を受けた〕
のNdeI−BamHI部位に挿入して、プラスミドp
TB1369を構築した(図44)。 (2)形質転換 次に、実施例2で示した大腸菌MM294(DE3)/p
LysS株にpTB1369を導入し、大腸菌MM294(D
E3)/pLysS,pTB1369をつくった。この菌株
はヒトtPAムテインtPA−18を産出するように作
製されていた。
Example 30 Transformation of Escherichia coli with genes encoding human tPA mutein and tPA-18 (1) Plasmid pTB13 for expressing human tPA mutein
Construction of 69 The pTB1368 obtained in Example 29 above was transformed with NdeI and B
It was cleaved with amHI to obtain a DNA fragment of about 1.1 kb. This fragment was used as plasmid pET3C [Srudier, FW (B
(Rookhaven National Labs. USA)
At the NdeI-BamHI site of
TB1369 was constructed (Figure 44). (2) Transformation Next, the Escherichia coli MM294 (DE3) / p shown in Example 2 was obtained.
PTB1369 was introduced into the LysS strain, and E. coli MM294 (D
E3) / pLysS, pTB1369 was made. This strain was engineered to produce the human tPA mutein tPA-18.

【0081】[0081]

【実施例31】tPA−5ムテインをコードする塩基配
列を有する組換えDNAの製造 実施例15に記載のプラスミドpTB1431を合成オリゴ
ヌクレオチドを使用する特定部位指向性変異誘発の鋳型
として用いた。特定部位指向性変異はOligonucleotido-
directed in vitro Mutagenesis System(アマシャム
社)と合成オリゴマーを用いて行なった。用いた合成オ
リゴマーの配列は下に示すとおりである。 5'-GCA CAG GAA CTC CTC TCC TGG -3' (21mer)(配列番号35) この合成オリゴマーを用いることにより、R304がE304
に置換されたFEK1ドメイン欠失ヒトtPAcDNA
を構築することができた(図45)。このtPAムテイ
ン、tPA−5の塩基配列及びそれから推測されるアミ
ノ酸配列を図46(配列番号36)に示す。このムテイン
のtPAとの違いを示すと以下のようである。 アミノ酸番号 この合成オリゴマーを用いて得られたプラスミドをp
TB1271とした(図47)。
Example 31 Production of Recombinant DNA Having Nucleotide Sequence Encoding tPA-5 Mutein The plasmid pTB1431 described in Example 15 was used as a template for site-directed mutagenesis using synthetic oligonucleotides. Site-directed mutation is Oligonucleotido-
This was performed using a directed in vitro Mutagenesis System (Amersham) and a synthetic oligomer. The sequences of the synthetic oligomers used are shown below. 5'-GCA CAG GAA CTC CTC TCC TGG -3 '(21mer) (SEQ ID NO: 35) By using this synthetic oligomer, R 304 is converted to E 304.
FEK1 domain-deleted human tPA cDNA substituted with
Could be constructed (Fig. 45). The nucleotide sequence of this tPA mutein and tPA-5 and the amino acid sequence deduced therefrom are shown in FIG. 46 (SEQ ID NO: 36). The difference between this mutein and tPA is as follows. Amino acid number The plasmid obtained by using this synthetic oligomer is
It was set to TB1271 (FIG. 47).

【0082】[0082]

【実施例32】ヒトtPAムテイン、tPA−5をコー
ドする遺伝子による大腸菌の形質転換 (1)ヒトtPAのムテイン発現用プラスミドpTB12
72の構築 前記実施例31で得られたpTB1271をNdeI及びB
amHIで切断し、各々約1.1kbのDNA断片を得
た。この断片をプラスミドpET3C〔Srudier,F.W.(B
rookhaven National Labs. U.S.A.)より分与を受けた〕
のNdeI−BamHI部位に挿入して、プラスミドp
TB1272を構築した(図47)。 (2)形質転換 次に、実施例2で示した大腸菌MM294(DE3)/p
LysS株にpTB1272を導入し、大腸菌MM294(D
E3)/pLysS,pTB1272をつくった。この菌株
はヒトtPAムテインtPA−5を産出するように作製
されていた。
[Example 32] Transformation of Escherichia coli with genes encoding human tPA mutein and tPA-5 (1) Plasmid pTB12 for expressing human tPA mutein
Construction of 72 pTB1271 obtained in the above Example 31 was transformed with NdeI and B
It was cleaved with amHI to obtain a DNA fragment of about 1.1 kb. This fragment was used as plasmid pET3C [Srudier, FW (B
(Rookhaven National Labs. USA)
At the NdeI-BamHI site of
TB1272 was constructed (Figure 47). (2) Transformation Next, the Escherichia coli MM294 (DE3) / p shown in Example 2 was obtained.
PTB1272 was introduced into the LysS strain, and E. coli MM294 (D
E3) / pLysS, pTB1272 was made. This strain was engineered to produce the human tPA mutein tPA-5.

【0083】[0083]

【実施例33】tPA−5蛋白質の抽出、賦活化、精製
及び諸性質抽出、賦活化、精製 実施例32で得られた大腸菌MM294(DE3)/p
LysS,pTB1272を実施例3で示した培養条件
下に培養し、tPA−5発現大腸菌体を得た。実施例1
3に記載した方法に従って、3リットル分の培養菌体か
ら得られたtPA−5蛋白質の抽出上清を賦活化用緩衝
液に加えて賦活化し、QAE−イオン交換カラムクロマ
トグラフィー、ベンゼミジンセファロース6Bカラムク
ロマトグラフィー、リシンセファロース4Bカラムクロ
マトグラフィーを行ない、精製標品を得た。収量:1.5
mg。諸性質 (1)単一性及び分子量 Laemmli の方法〔ネイチャー(Nature)、227、680(19
70)〕に準じて還元及び非還元条件下でSDS−PAG
Eを行なった。tPA−5は単一の蛋白バンドを示し
た。還元条件下での分子量は39,500と非還元条件下での
分子量は35,000とそれぞれ算出された。 (2)PAI−1の阻害作用 実施例12に記載した方法に従って、精製標品に対する
PAI−1の阻害作用を調べた結果、IC50は130fmole
s(Activaseの2.1倍)と算出された。
EXAMPLE 33 Extraction of tPA-5 protein, activation, purification and properties extraction, activation, purification Example 32 Escherichia coli obtained in MM294 (DE3) / p
LysS and pTB1272 were cultured under the culture conditions shown in Example 3 to obtain tPA-5-expressing Escherichia coli. Example 1
According to the method described in 3, the extraction supernatant of tPA-5 protein obtained from 3 liters of cultured cells was added to the activation buffer for activation, and QAE-ion exchange column chromatography, benzemidine sepharose 6B was used. Column chromatography and lysine sepharose 4B column chromatography were performed to obtain a purified sample. Yield: 1.5
mg. Properties (1) Singleness and molecular weight Laemmli's method [Nature, 227, 680 (19
70)] and SDS-PAG under reducing and non-reducing conditions.
Performed E. tPA-5 showed a single protein band. The molecular weight was calculated to be 39,500 under reducing conditions and 35,000 under non-reducing conditions. (2) Inhibitory effect of PAI-1 According to the method described in Example 12, the inhibitory effect of PAI-1 on the purified preparation was examined. As a result, IC 50 was 130 fmoles.
It was calculated as s (2.1 times that of Activase).

【0084】[0084]

【実施例34】tPA−6ムテインをコードする塩基配
列を有する組換えDNAの製造 実施例31に記載のプラスミドpTB1271を合成オリゴ
ヌクレオチドを使用する特定部位指向性変異誘発の鋳型
として用いた。特定部位指向性変異はOligonucleotido-
directed in vitro Mutagenesis System(アマシャム
社)と合成オリゴマーを用いて行なった。用いた合成オ
リゴマーの配列は下に示すとおりである。 5'-TGG CGA CTC TTC GTG CTT GGC AAA-3' (24mer)(配列番号37) この合成オリゴマーを用いることにより、R298'299'
304がE298'299'304に置換されたFEK1ドメイン欠失
ヒトtPAcDNAを構築することができた(図48)。
このtPAムテイン、tPA−6の塩基配列及びそれか
ら推測されるアミノ酸配列を図49(配列番号38)に示
す。このムテインのtPAとの違いを示すと以下のよう
である。 アミノ酸番号 この合成オリゴマーを用いて得られたプラスミドをp
TB1325とした(図50)。
Example 34 Production of Recombinant DNA Having Nucleotide Sequence Encoding tPA-6 Mutein The plasmid pTB1271 described in Example 31 was used as a template for site-directed mutagenesis using synthetic oligonucleotides. Site-directed mutation is Oligonucleotido-
This was performed using a directed in vitro Mutagenesis System (Amersham) and a synthetic oligomer. The sequences of the synthetic oligomers used are shown below. 5'-TGG CGA CTC TTC GTG CTT GGC AAA-3 '(24mer) (SEQ ID NO: 37) By using this synthetic oligomer, R 298 ' 299 '
304 can build FEK1 domain deleted human tPAcDNA substituted on E 298 '299' 304 (Figure 48).
The nucleotide sequences of this tPA mutein and tPA-6 and the amino acid sequences deduced therefrom are shown in FIG. 49 (SEQ ID NO: 38). The difference between this mutein and tPA is as follows. Amino acid number The plasmid obtained by using this synthetic oligomer is
It was designated as TB1325 (Fig. 50).

【0085】[0085]

【実施例35】ヒトtPAムテイン、tPA−6をコー
ドする遺伝子による大腸菌の形質転換 (1)ヒトtPAのムテイン発現用プラスミドpTB13
26の構築 前記実施例34で得られたpTB1325をNdeI及びB
amHIで切断し、各々約1.1kbのDNA断片を得
た。この断片をプラスミドpET3C〔Srudier,F.W.(B
rookhaven National Labs. U.S.A.)より分与を受けた〕
のNdeI−BamHI部位に挿入して、プラスミドp
TB1326を構築した(図50)。 (2)形質転換 次に、実施例2で示した大腸菌MM294(DE3)/p
LysS株にpTB1326を導入し、大腸菌MM294(D
E3)/pLysS,pTB1326をつくった。この菌株
はヒトtPAムテインtPA−6を産出するように作製
されていた。
Example 35: Transformation of Escherichia coli with genes encoding human tPA mutein and tPA-6 (1) Plasmid pTB13 for expressing human tPA mutein
Construction of 26 pTB1325 obtained in the above Example 34 was transformed with NdeI and B
It was cleaved with amHI to obtain a DNA fragment of about 1.1 kb. This fragment was used as plasmid pET3C [Srudier, FW (B
(Rookhaven National Labs. USA)
At the NdeI-BamHI site of
TB1326 was constructed (Figure 50). (2) Transformation Next, the Escherichia coli MM294 (DE3) / p shown in Example 2 was obtained.
PTB1326 was introduced into the LysS strain, and E. coli MM294 (D
E3) / pLysS, pTB1326 was created. This strain was engineered to produce the human tPA mutein tPA-6.

【0086】[0086]

【実施例36】tPA−6蛋白質の抽出、賦活化、精製
及び諸性質抽出、賦活化、精製 実施例35で得られた大腸菌MM294(DE3)/p
LysS,pTB1326を実施例3で示した培養条件
下に培養し、tPA−6発現大腸菌体を得た。実施例1
3に記載した方法に従って、3リットル分の培養菌体か
ら得られたtPA−6蛋白質の抽出上清を賦活化用緩衝
液に加えて賦活化し、QAE−イオン交換カラムクロマ
トグラフィー、ベンゼミジンセファロース6Bカラムク
ロマトグラフィー、リシンセファロース4Bカラムクロ
マトグラフィーを行ない、精製標品を得た。収量:11.2
mg。諸性質 (1)単一性及び分子量 Laemmli の方法〔ネイチャー(Nature)、227、680(19
70)〕に準じて還元及び非還元条件下でSDS−PAG
Eを行なった。tPA−6は単一の蛋白バンドを示し
た。還元条件下での分子量は39,500と非還元条件下での
分子量は35,000とそれぞれ算出された。 (2)PAI−1の阻害作用 実施例12に記載した方法に従って、精製標品に対する
PAI−1の阻害作用を調べた結果、IC50は>8,000f
moles(Activase の>120倍)と算出された。
Example 36 tPA-6 protein extraction, activation, purification and properties extraction, activation, purification Example 35 Escherichia coli obtained in MM294 (DE3) / p
LysS and pTB1326 were cultured under the culture conditions shown in Example 3 to obtain tPA-6-expressing Escherichia coli. Example 1
According to the method described in 3, the extraction supernatant of tPA-6 protein obtained from 3 liters of cultured bacterial cells was added to the activation buffer to activate it, and QAE-ion exchange column chromatography, benzemidine sepharose 6B was used. Column chromatography and lysine sepharose 4B column chromatography were performed to obtain a purified sample. Yield: 11.2
mg. Properties (1) Singleness and molecular weight Laemmli's method [Nature, 227, 680 (19
70)] and SDS-PAG under reducing and non-reducing conditions.
Performed E. tPA-6 showed a single protein band. The molecular weight was calculated to be 39,500 under reducing conditions and 35,000 under non-reducing conditions. (2) Inhibitory effect of PAI-1 According to the method described in Example 12, the inhibitory effect of PAI-1 on the purified preparation was examined. As a result, IC 50 was> 8,000f.
It was calculated as moles (> 120 times that of Activase).

【0087】[0087]

【実施例37】tPA−11,12,13,14,1
5,16,17,18蛋白質の抽出、賦活化及び精製抽出、賦活化 実施例16,18,20,22,24,26,28及び
30でそれぞれ得られた大腸菌MM294(DE3)/
pLysS,pTB1355,MM294(DE3)/
pLysS,pTB1354,MM294(DE3)/
pLysS,pTB1357,MM294(DE3)/
pLysS,pTB1360,MM294(DE3)/
pLysS,pTB1363,MM294(DE3)/
pLysS,pTB1346,MM294(DE3)/
pLysS,pTB1366及びMM294(DE3)
/pLysS,pTB1369を実施例3で示した培養
条件下に培養し、tPA−11,12,13,14,1
5,16,17及び18発現大腸菌体を得た。実施例1
3に記載した方法に従って、それぞれ3リットル分の培
養菌体から得られたtPAムテイン蛋白質の抽出上清を
賦活化用緩衝液に加えて賦活化した。精製 賦活化されたtPAムテインそれぞれについて、実施例
13に記載した方法に従って、QAE−イオン交換カラ
ムクロマトグラフィー、ベンゼミジンセファロース6B
カラムクロマトグラフィー、リシンセファロース4Bカ
ラムクロマトグラフィーを行ない、精製標品を得た。収
量:tPA−11,2.3mg:tPA−12,7.0
mg:tPA−13,3.4mg:tPA−14,2.
5mg:tPA−15,4.6mg:tPA−16,
9.6mg:tPA−17,2.0mg:tPA−1
8,1.5mg。
[Example 37] tPA-11, 12, 13, 14, 1
5,16,17,18 protein extraction, activation and purification extraction, activation E. coli MM294 (DE3) / obtained in Examples 16, 18, 20, 22, 24, 26, 28 and 30 respectively
pLysS, pTB1355, MM294 (DE3) /
pLysS, pTB1354, MM294 (DE3) /
pLysS, pTB1357, MM294 (DE3) /
pLysS, pTB1360, MM294 (DE3) /
pLysS, pTB1363, MM294 (DE3) /
pLysS, pTB1346, MM294 (DE3) /
pLysS, pTB1366 and MM294 (DE3)
/ PLysS, pTB1369 was cultured under the culture conditions shown in Example 3, and tPA-11,12,13,14,1.
E. coli bodies expressing 5, 16, 17 and 18 were obtained. Example 1
According to the method described in 3, the extraction supernatant of tPA mutein protein obtained from 3 liters of the cultured bacterial cells was added to the activation buffer to activate the protein. For each of the purified activated tPA muteins, QAE-ion exchange column chromatography, benzemidine sepharose 6B according to the method described in Example 13.
Column chromatography and lysine sepharose 4B column chromatography were performed to obtain a purified sample. Yield: tPA-11, 2.3 mg: tPA-12, 7.0
mg: tPA-13,3.4 mg: tPA-14,2.
5 mg: tPA-15, 4.6 mg: tPA-16,
9.6 mg: tPA-17, 2.0 mg: tPA-1
8,1.5 mg.

【0088】[0088]

【実施例38】tPA−11,12,13,14,1
5,16,17,18蛋白質の諸性質 実施例37で得られたtPAムテイン蛋白質について以
下の諸性質を調べた。
[Embodiment 38] tPA-11, 12, 13, 14, 1
Properties of 5, 16, 17, 18 Proteins The following properties of the tPA mutein protein obtained in Example 37 were examined.

【0089】(1)単一性及び分子量 Laemmli の方法〔ネイチャー(Nature)、227、680(19
70)〕に準じて還元及び非還元条件下でSDS−PAG
Eを行なった。上記のtPAムテインは、いずれも単一
の蛋白バンドを示した。還元条件下での分子量は39,500
と非還元条件下での分子量はいずれも35,000とそれぞれ
算出された。
(1) Unity and molecular weight Laemmli's method [Nature, 227 , 680 (19
70)] and SDS-PAG under reducing and non-reducing conditions.
Performed E. Each of the above tPA muteins showed a single protein band. Molecular weight under reducing conditions is 39,500
And the molecular weights under non-reducing conditions were calculated to be 35,000, respectively.

【0090】(2)PAI−1の阻害作用 実施例12に記載した方法に従って、精製標品に対する
PAI−1の阻害作用を調べた(表2)。
(2) Inhibitory effect of PAI-1 According to the method described in Example 12, the inhibitory effect of PAI-1 on the purified preparation was examined (Table 2).

【0091】表2 PAI−1によるtPAムテイン
の阻害 酵素 IC50*(fmole) Activase(登録商標) 62.5(1) tPA−11 90.0(1.4) tPA−12 >5000(>80) tPA−13 >5000(>80) tPA−14 >5000(>80) tPA−15 188(3.0) tPA−16 375(6.0) tPA−17 900(14.4)tPA−18 325(5.2) *IC50:125fmoles のActivase(登録商標)及びt
PAムテインの酵素活性を、50%阻害するのに必要な活
性型PAI−1の量。 この表から、ActivaseとPAI−1との反応性に比較し
て、tPAムテインとPAI−1との反応性はいずれの
場合にも顕著に低下していることが明らかである。
Table 2 tPA muteins according to PAI-1
Inhibitory enzyme IC 50 * (fmole) Activase (registered trademark) 62.5 (1) tPA-11 90.0 (1.4) tPA-12> 5000 (> 80) tPA-13> 5000 (> 80) tPA -14> 5000 (> 80) tPA-15 188 (3.0) tPA-16 375 (6.0) tPA-17 900 (14.4) tPA-18 325 (5.2) * IC 50 of 125 fmoles. Activase (registered trademark) and t
The amount of active PAI-1 required to inhibit the enzymatic activity of PA mutein by 50%. From this table, it is clear that the reactivity between tPA mutein and PAI-1 is markedly reduced in each case as compared with the reactivity between Activase and PAI-1.

【0092】[0092]

【実施例39】血中半減期の延長 ウサギを用いて、プラスミノーゲンアクティベーターの
血中半減期を測定した。tPA−2及びActivase(登録
商標)(蛋白質量0.42mg/kg)をウサギ耳静脈から
単回投与し、頚静脈に挿入したカテーテルから継時的に
採血した。血液はクエン酸加血漿として測定まで−80℃
に保存し、試料中のtPA抗原量をサンドイッチELI
SA法により測定した。得られた結果を図51と表3に
示す。tPA−2の血漿中濃度時間曲線下面積(AUC
∞)はActivase(登録商標)のそれに比較して約8倍に
増大しており、血中から消失しにくくなったことを示し
ている。tPA−2のAUC∞の増大は、主にα相にお
ける血中半減期(t1/2α)の延長によると考えられ
た。 表3 ウサギにtPA−2およびActivase(登録商標) を投与したときの薬動力学的パラメーター tPA−2 Activase(登録商標) t1/2 α(min) 6.6 1.5 t1/2 β(min) 37 22 AUC(0→∞)(ng・min/ml) 147655 18475 Cl(ml/min/kg) 2.9 24.4
Example 39 Prolongation of half-life in blood The half-life in blood of plasminogen activator was measured using rabbits. TPA-2 and Activase (registered trademark) (protein content 0.42 mg / kg) were administered once from the rabbit ear vein, and blood was continuously collected from the catheter inserted into the jugular vein. Blood is citrated plasma until measurement at -80 ℃
The amount of tPA antigen in the sample was stored in sandwich ELI.
It was measured by the SA method. The obtained results are shown in FIG. 51 and Table 3. Area under the plasma concentration-time curve of tPA-2 (AUC
∞) is about 8 times larger than that of Activase (registered trademark), indicating that it is difficult to disappear from the blood. It was considered that the increase in AUC∞ of tPA-2 was mainly due to the prolongation of the blood half-life (t1 / 2α) in the α phase. Table 3 Pharmacokinetic parameters when administering tPA-2 and Activase (registered trademark) to rabbits tPA-2 Activase (registered trademark) t1 / 2 α (min) 6.6 1.5 t1 / 2 β (min ) 37 22 AUC (0 → ∞) (ng · min / ml) 147655 18475 Cl (ml / min / kg) 2.9 24.4

【0093】[0093]

【実施例40】tPA−6’の血栓溶解活性 ウサギ頚静脈モデル〔ジャーナル・オブ・クリニカル・
インベスティゲーション(J.Clin.Inves
t.),71,368(1983)〕を用いてtPA−
6’の血栓溶解効果を調べた。ウサギ頚静脈にヒト血液
とトロンビンを投与して血栓を作成した後、tPA−
6’(0.5mg/kg,0.1mg/kg)およびA
ctivase(登録商標)(0.5mg/kg)を耳
静脈から単回投与し1時間後に血栓湿重量、フィブリノ
ーゲン量およびα2PI活性を測定した。得られた結果
を図52に示す。tPA−6’の0.5mg/kg投与
により血栓湿重量は対照の23%に低下し、またAct
ivase(登録商標)の0.5mg/kg投与により
42%に低下した。一方、tPA−6’の0.1mg/
kg投与により血栓湿重量は42%に低下した。フィブ
リノーゲン量とα2PI活性は投与前と比較して変化は
なかった。これらの結果から、tPA−6’はActi
vase(登録商標)の約1/5の投与量で同等の血栓
溶解効果を示すことが明らかとなった。
[Example 40] Thrombolytic activity of tPA-6 'Rabbit jugular vein model [Journal of Clinical
Investigation (J. Clin. Invests
t. ), 71, 368 (1983)].
The thrombolytic effect of 6'was investigated. Human blood and thrombin were administered to the jugular vein of a rabbit to form a thrombus, and then tPA-
6 '(0.5 mg / kg, 0.1 mg / kg) and A
Ctivase (registered trademark) (0.5 mg / kg) was administered once via the ear vein, and 1 hour later, the wet weight of thrombus, the amount of fibrinogen and the α 2 PI activity were measured. The obtained results are shown in FIG. The administration of 0.5 mg / kg of tPA-6 ′ reduced the wet weight of thrombus to 23% of that of the control.
Administration of 0.5 mg / kg of ivase® reduced the dose to 42%. On the other hand, 0.1 mg / of tPA-6 '
The wet weight of thrombus was reduced to 42% by the administration of kg. The amount of fibrinogen and α 2 PI activity did not change compared with before administration. From these results, tPA-6 ′ is Acti
It was revealed that a dose of about ⅕ of Vase (registered trademark) has an equivalent thrombolytic effect.

【0094】[0094]

【効果】本発明で得られるtPAムテインは血中での半
減期が長く、さらに血漿プロテアーゼ阻害物質により不
活性化されない。また、低分子量化されているために血
栓への浸透性が良く、溶解活性がより高い。したがって
in vivoでの使用において、投与量を減少できるため全
身性の出血傾向の副作用を抑えることができる。また、
本ムテインを大腸菌形質転換体に産生させた場合には、
不溶性の封入体として蓄積されるので容易に精製取得で
きる。さらに、ジスルフィド結合の数が天然型tPAと
比較して少ないので不溶性封入体中の不活性型ムテイン
の賦活化が容易であるという利点をもつ。このようなム
テインは心筋梗塞、脳梗塞、肺塞栓症および末梢動静脈
血栓症などの治療薬として用いることができる。
[Effect] The tPA mutein obtained in the present invention has a long half-life in blood and is not inactivated by a plasma protease inhibitor. Further, since it has a low molecular weight, it has good permeability to thrombus and higher lytic activity. Therefore
When used in vivo, the dose can be reduced and the side effects of systemic bleeding tendency can be suppressed. Also,
When this mutein is produced in an E. coli transformant,
Since it accumulates as an insoluble inclusion body, it can be easily purified and obtained. Furthermore, since the number of disulfide bonds is smaller than that of natural tPA, there is an advantage that activation of inactive mutein in the insoluble inclusion body is easy. Such muteins can be used as therapeutic agents for myocardial infarction, cerebral infarction, pulmonary embolism, peripheral arteriovenous thrombosis and the like.

【0095】[0095]

【配列表】配列番号:1 配列の長さ:13 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド フラグメント型:中間部フラグメント 配列 Asn Arg Arg Leu Thr Trp Glu Tyr Cys Asp Val Pro Ser 1 5 10 配列番号:2 配列の長さ:13 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド フラグメント型:中間部フラグメント 配列 Arg-Met-Thr-Leu-Val-Gly-Ile-Ile-Ser-Trp-Gly-Leu-Gly 1 5 10 配列番号:3 配列の長さ:12 配列の型:アミノ酸 トポロジー:直線状 配列の種類:ペプチド フラグメント型:C末端フラグメント-stop 配列 配列番号:4 配列の長さ:39 配列の型:核酸 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 AAC CGC AGG CTG ACG TGG GAG TAC TGT GAT GTG CCC TCC 39 配列番号:5 配列の長さ:39 配列の型:核酸 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 CGC ATG ACT TTG GTG GGC ATC ATC AGC TGG GGC CTG GGC 39 配列番号:6 配列の長さ:39 配列の型:核酸 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 AAC TAC CTA GAC TGG ATT CGT GAC AAC ATG CGA CCG TGA 39 配列番号:7 配列の長さ:1800 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:cDNA to mRNA 起源 ヒト包皮由来初代培養細胞 配列の特徴 存在位置:552..554 特徴を決定した方法:E 配列 AAAACCTCTG CGAGGAAAGG GAAGGAGCAA GCCGTGAATT TAAGGGACGC TGTGAAGCAA 60 TC ATG GAT GCA ATG AAG AGA GGG CTC TGC TGT GTG CTG CTG CTG TGT 107 Met Asp Ala Met Lys Arg Gly Leu Cys Cys Val Leu Leu Leu Cys -35 -30 -25 GGA GCA GTC TTC GTT TCG CCC AGC CAG GAA ATC CAT GCC CGA TTC AGA 155 Gly Ala Val Phe Val Ser Pro Ser Gln Glu Ile His Ala Arg Phe Arg -20 -15 -10 -5 AGA GGA GCC AGA TCT TAC CAA GTG ATC TGC AGA GAT GAA AAA ACG CAG 203 Arg Gly Ala Arg Ser Tyr Gln Val Ile Cys Arg Asp Glu Lys Thr Gln 1 5 10 ATG ATA TAC CAG CAA CAT CAG TCA TGG CTG CGC CCT GTG CTC AGA AGC 251 Met Ile Tyr Gln Gln His Gln Ser Trp Leu Arg Pro Val Leu Arg Ser 15 20 25 AAC CGG GTG GAA TAT TGC TGG TGC AAC AGT GGC AGG GCA CAG TGC CAC 299 Asn Arg Val Glu Tyr Cys Trp Cys Asn Ser Gly Arg Ala Gln Cys His 30 35 40 TCA GTG CCT GTC AAA AGT TGC AGC GAG CCA AGG TGT TTC AAC GGG GGC 347 Ser Val Pro Val Lys Ser Cys Ser Glu Pro Arg Cys Phe Asn Gly Gly 45 50 55 60 ACC TGC CAG CAG GCC CTG TAC TTC TCA GAT TTC GTG TGC CAG TGC CCC 395 Thr Cys Gln Gln Ala Leu Tyr Phe Ser Asp Phe Val Cys Gln Cys Pro 65 70 75 GAA GGA TTT GCT GGG AAG TGC TGT GAA ATA GAT ACC AGG GCC ACG TGC 443 Glu Gly Phe Ala Gly Lys Cys Cys Glu Ile Asp Thr Arg Ala Thr Cys 80 85 90 TAC GAG GAC CAG GGC ATC AGC TAC AGG GGC ACG TGG AGC ACA GCG GAG 491 Tyr Glu Asp Gln Gly Ile Ser Tyr Arg Gly Thr Trp Ser Thr Ala Glu 95 100 105 AGT GGC GCC GAG TGC ACC AAC TGG AAC AGC AGC GCG TTG GCC CAG AAG 539 Ser Gly Ala Glu Cys Thr Asn Trp Asn Ser Ser Ala Leu Ala Gln Lys 110 115 120 CCC TAC AGT GGG TGG AGG CCA GAC GCC ATC AGG CTG GGC CTG GGG AAC 587 Pro Tyr Ser Gly Trp Arg Pro Asp Ala Ile Arg Leu Gly Leu Gly Asn 125 130 135 140 CAC AAC TAC TGC AGA AAC CCA GAT CGA GAC TCA AAG CCC TGG TGC TAC 635 His Asn Tyr Cys Arg Asn Pro Asp Arg Asp Ser Lys Pro Trp Cys Tyr 145 150 155 GTC TTT AAG GCG GGG AAG TAC AGC TCA GAG TTC TGC AGC ACC CCT GCC 683 Val Phe Lys Ala Gly Lys Tyr Ser Ser Glu Phe Cys Ser Thr Pro Ala 160 165 170 TGC TCT GAG GGA AAC AGT GAC TGC TAC TTT GGG AAT GGG TCA GCC TAC 731 Cys Ser Glu Gly Asn Ser Asp Cys Tyr Phe Gly Asn Gly Ser Ala Tyr 175 180 185 CGT GGC ACG CAC AGC CTC ACC GAG TCG GGT GCC TCC TGC CTC CCG TGG 779 Arg Gly Thr His Ser Leu Thr Glu Ser Gly Ala Ser Cys Leu Pro Trp 190 195 200 AAT TCC ATG ATC CTG ATA GGC AAG GTT TAC ACA GCA CAG AAC CCC AGT 827 Asn Ser Met Ile Leu Ile Gly Lys Val Tyr Thr Ala Gln Asn Pro Ser 205 210 215 220 GCC CAG GCA CTG GGC CTG GGC AAA CAT AAT TAC TGC CGG AAT CCT GAT 875 Ala Gln Ala Leu Gly Leu Gly Lys His Asn Tyr Cys Arg Asn Pro Asp 225 230 235 GGG GAT GCC AAG CCC TGG TGC CAC GTG CTG AAG AAC CGC AGG CTG ACG 923 Gly Asp Ala Lys Pro Trp Cys His Val Leu Lys Asn Arg Arg Leu Thr 240 245 250 TGG GAG TAC TGT GAT GTG CCC TCC TGC TCC ACC TGC GGC CTG AGA CAG 971 Trp Glu Tyr Cys Asp Val Pro Ser Cys Ser Thr Cys Gly Leu Arg Gln 255 260 265 TAC AGC CAG CCT CAG TTT CGC ATC AAA GGA GGG CTC TTC GCC GAC ATC 1019 Tyr Ser Gln Pro Gln Phe Arg Ile Lys Gly Gly Leu Phe Ala Asp Ile 270 275 280 GCC TCC CAC CCC TGG CAG GCT GCC ATC TTT GCC AAG CAC AGG AGG TCG 1067 Ala Ser His Pro Trp Gln Ala Ala Ile Phe Ala Lys His Arg Arg Ser 285 290 295 300 CCC GGA GAG CGG TTC CTG TGC GGG GGC ATA CTC ATC AGC TCC TGC TGG 1115 Pro Gly Glu Arg Phe Leu Cys Gly Gly Ile Leu Ile Ser Ser Cys Trp 305 310 315 ATT CTC TCT GCC GCC CAC TGC TTC CAG GAG AGG TTT CCG CCC CAC CAC 1163 Ile Leu Ser Ala Ala His Cys Phe Gln Glu Arg Phe Pro Pro His His 320 325 330 CTG ACG GTG ATC TTG GGC AGA ACA TAC CGG GTG GTC CCT GGC GAG GAG 1211 Leu Thr Val Ile Leu Gly Arg Thr Tyr Arg Val Val Pro Gly Glu Glu 335 340 345 GAG CAG AAA TTT GAA GTC GAA AAA TAC ATT GTC CAT AAG GAA TTC GAT 1259 Glu Gln Lys Phe Glu Val Glu Lys Tyr Ile Val His Lys Glu Phe Asp 350 355 360 GAT GAC ACT TAC GAC AAT GAC ATT GCG CTG CTG CAG CTG AAA TCG GAT 1307 Asp Asp Thr Tyr Asp Asn Asp Ile Ala Leu Leu Gln Leu Lys Ser Asp 365 370 375 380 TCG TCC CGC TGT GCC CAG GAG AGC AGC GTG GTC CGC ACT GTG TGC CTT 1355 Ser Ser Arg Cys Ala Gln Glu Ser Ser Val Val Arg Thr Val Cys Leu 385 390 395 CCC CCG GAG GAC CTG CAG CTG CCG GAC TGG ACG GAG TGT GAG CTC TCC 1403 Pro Pro Glu Asp Leu Gln Leu Pro Asp Trp Thr Glu Cys Glu Leu Ser 400 405 410 GGC TAC GGC AAG CAT GAG GCC TTG TCT CCT TTC TAT TCG GAG CGG CTG 1451 Gly Tyr Gly Lys His Glu Ala Leu Ser Pro Phe Tyr Ser Glu Arg Leu 415 420 425 AAG GAG GCT CAT GTC AGA CTG TAC CCA TCC AGC CGC TGC ACA TCA CAA 1499 Lys Glu Ala His Val Arg Leu Tyr Pro Ser Ser Arg Cys Thr Ser Gln 430 435 440 CAT TTA CTT AAC AGA ACA GTC ACC GAC AAC ATG CTG TGT GCT GGA GAC 1547 His Leu Leu Asn Arg Thr Val Thr Asp Asn Met Leu Cys Ala Gly Asp 445 450 455 460 ACT CGG AGC GGC GGG CCC CAG GCA AAC TTG CAC GAC GCC TGC CAG GGC 1595 Thr Arg Ser Gly Gly Pro Gln Ala Asn Leu His Asp Ala Cys Gln Gly 465 470 475 GAT TCG GGA GGC CCC CTG GTG TGT CTG AAC GAT GGC CGC ATG ACT TTG 1643 Asp Ser Gly Gly Pro Leu Val Cys Leu Asn Asp Gly Arg Met Thr Leu 480 485 490 GTG GGC ATC ATC AGC TGG GGC CTG GGC TGT GGA CAG AAG GAT GTC CCG 1691 Val Gly Ile Ile Ser Trp Gly Leu Gly Cys Gly Gln Lys Asp Val Pro 495 500 505 GGT GTG TAC ACC AAG GTT ACC AAC TAC CTA GAC TGG ATT CGT GAC AAC 1739 Gly Val Tyr Thr Lys Val Thr Asn Tyr Leu Asp Trp Ile Arg Asp Asn 510 515 520 ATG CGA CCG TGACCAGGAA CACCCGACTC CTCAAAAGCA AATGAGATCC 1788 Met Arg Pro 525 527 CGCCTCTTCT TC 1800 配列番号:8 配列の長さ:36 配列の型:核酸 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 ACTGTTTCCC TCAGACATAT GAGGGGTGCT GCAGAA 36 配列番号:9 配列の長さ:31 配列の型:核酸 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 GCACAGGAAC CGCTCAGCAA AGATGGCAGC C 31 配列番号:10 配列の長さ:1068 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:他の核酸 配列番号7を修飾 配列の特徴 存在位置:1〜173までのアミノ酸欠損 特徴を決定した方法:P 配列 ATG TCT GAG GGA AAC AGT GAC TGC TAC TTT GGG AAT GGG TCA GCC TAC 48 Met Ser Glu Gly Asn Ser Asp Cys Tyr Phe Gly Asn Gly Ser Ala Tyr 1 5 10 15 CGT GGC ACG CAC AGC CTC ACC GAG TCG GGT GCC TCC TGC CTC CCG TGG 96 Arg Gly Thr His Ser Leu Thr Glu Ser Gly Ala Ser Cys Leu Pro Trp 20 25 30 AAT TCC ATG ATC CTG ATA GGC AAG GTT TAC ACA GCA CAG AAC CCC AGT 144 Asn Ser Met Ile Leu Ile Gly Lys Val Tyr Thr Ala Gln Asn Pro Ser 35 40 45 GCC CAG GCA CTG GGC CTG GGC AAA CAT AAT TAC TGC CGG AAT CCT GAT 192 Ala Gln Ala Leu Gly Leu Gly Lys His Asn Tyr Cys Arg Asn Pro Asp 50 55 60 GGG GAT GCC AAG CCC TGG TGC CAC GTG CTG AAG AAC CGC AGG CTG ACG 240 Gly Asp Ala Lys Pro Trp Cys His Val Leu Lys Asn Arg Arg Leu Thr 65 70 75 80 TGG GAG TAC TGT GAT GTG CCC TCC TGC TCC ACC TGC GGC CTG AGA CAG 288 Trp Glu Tyr Cys Asp Val Pro Ser Cys Ser Thr Cys Gly Leu Arg Gln 85 90 95 TAC AGC CAG CCT CAG TTT CGC ATC AAA GGA GGG CTC TTC GCC GAC ATC 336 Tyr Ser Gln Pro Gln Phe Arg Ile Lys Gly Gly Leu Phe Ala Asp Ile 100 105 110 GCC TCC CAC CCC TGG CAG GCT GCC ATC TTT GCC AAG CAC AGG AGG TCG 384 Ala Ser His Pro Trp Gln Ala Ala Ile Phe Ala Lys His Arg Arg Ser 115 120 125 CCC GGA GAG CGG TTC CTG TGC GGG GGC ATA CTC ATC AGC TCC TGC TGG 432 Pro Gly Glu Arg Phe Leu Cys Gly Gly Ile Leu Ile Ser Ser Cys Trp 130 135 140 ATT CTC TCT GCC GCC CAC TGC TTC CAG GAG AGG TTT CCG CCC CAC CAC 480 Ile Leu Ser Ala Ala His Cys Phe Gln Glu Arg Phe Pro Pro His His 145 150 155 160 CTG ACG GTG ATC TTG GGC AGA ACA TAC CGG GTG GTC CCT GGC GAG GAG 528 Leu Thr Val Ile Leu Gly Arg Thr Tyr Arg Val Val Pro Gly Glu Glu 165 170 175 GAG CAG AAA TTT GAA GTC GAA AAA TAC ATT GTC CAT AAG GAA TTC GAT 576 Glu Gln Lys Phe Glu Val Glu Lys Tyr Ile Val His Lys Glu Phe Asp 180 185 190 GAT GAC ACT TAC GAC AAT GAC ATT GCG CTG CTG CAG CTG AAA TCG GAT 624 Asp Asp Thr Tyr Asp Asn Asp Ile Ala Leu Leu Gln Leu Lys Ser Asp 195 200 205 TCG TCC CGC TGT GCC CAG GAG AGC AGC GTG GTC CGC ACT GTG TGC CTT 672 Ser Ser Arg Cys Ala Gln Glu Ser Ser Val Val Arg Thr Val Cys Leu 210 215 220 CCC CCG GAG GAC CTG CAG CTG CCG GAC TGG ACG GAG TGT GAG CTC TCC 720 Pro Pro Glu Asp Leu Gln Leu Pro Asp Trp Thr Glu Cys Glu Leu Ser 225 230 235 240 GGC TAC GGC AAG CAT GAG GCC TTG TCT CCT TTC TAT TCG GAG CGG CTG 768 Gly Tyr Gly Lys His Glu Ala Leu Ser Pro Phe Tyr Ser Glu Arg Leu 245 250 255 AAG GAG GCT CAT GTC AGA CTG TAC CCA TCC AGC CGC TGC ACA TCA CAA 816 Lys Glu Ala His Val Arg Leu Tyr Pro Ser Ser Arg Cys Thr Ser Gln 260 265 270 CAT TTA CTT AAC AGA ACA GTC ACC GAC AAC ATG CTG TGT GCT GGA GAC 864 His Leu Leu Asn Arg Thr Val Thr Asp Asn Met Leu Cys Ala Gly Asp 275 280 285 ACT CGG AGC GGC GGG CCC CAG GCA AAC TTG CAC GAC GCC TGC CAG GGC 912 Thr Arg Ser Gly Gly Pro Gln Ala Asn Leu His Asp Ala Cys Gln Gly 290 295 300 GAT TCG GGA GGC CCC CTG GTG TGT CTG AAC GAT GGC CGC ATG ACT TTG 960 Asp Ser Gly Gly Pro Leu Val Cys Leu Asn Asp Gly Arg Met Thr Leu 305 310 315 320 GTG GGC ATC ATC AGC TGG GGC CTG GGC TGT GGA CAG AAG GAT GTC CCG 1008 Val Gly Ile Ile Ser Trp Gly Leu Gly Cys Gly Gln Lys Asp Val Pro 325 330 335 GGT GTG TAC ACC AAG GTT ACC AAC TAC CTA GAC TGG ATT CGT GAC AAC 1056 Gly Val Tyr Thr Lys Val Thr Asn Tyr Leu Asp Trp Ile Arg Asp Asn 340 345 350 ATG CGA CCG TGA 1068 Met Arg Pro 355 配列番号:11 配列の長さ:1047 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:他の核酸 配列番号7を修飾 配列の特徴 存在位置:1〜173までのアミノ酸欠損、296〜302まで
のアミノ酸欠損 特徴を決定した方法:P 配列 ATG TCT GAG GGA AAC AGT GAC TGC TAC TTT GGG AAT GGG TCA GCC TAC 48 Met Ser Glu Gly Asn Ser Asp Cys Tyr Phe Gly Asn Gly Ser Ala Tyr 1 5 10 15 CGT GGC ACG CAC AGC CTC ACC GAG TCG GGT GCC TCC TGC CTC CCG TGG 96 Arg Gly Thr His Ser Leu Thr Glu Ser Gly Ala Ser Cys Leu Pro Trp 20 25 30 AAT TCC ATG ATC CTG ATA GGC AAG GTT TAC ACA GCA CAG AAC CCC AGT 144 Asn Ser Met Ile Leu Ile Gly Lys Val Tyr Thr Ala Gln Asn Pro Ser 35 40 45 GCC CAG GCA CTG GGC CTG GGC AAA CAT AAT TAC TGC CGG AAT CCT GAT 192 Ala Gln Ala Leu Gly Leu Gly Lys His Asn Tyr Cys Arg Asn Pro Asp 50 55 60 GGG GAT GCC AAG CCC TGG TGC CAC GTG CTG AAG AAC CGC AGG CTG ACG 240 Gly Asp Ala Lys Pro Trp Cys His Val Leu Lys Asn Arg Arg Leu Thr 65 70 75 80 TGG GAG TAC TGT GAT GTG CCC TCC TGC TCC ACC TGC GGC CTG AGA CAG 288 Trp Glu Tyr Cys Asp Val Pro Ser Cys Ser Thr Cys Gly Leu Arg Gln 85 90 95 TAC AGC CAG CCT CAG TTT CGC ATC AAA GGA GGG CTC TTC GCC GAC ATC 336 Tyr Ser Gln Pro Gln Phe Arg Ile Lys Gly Gly Leu Phe Ala Asp Ile 100 105 110 GCC TCC CAC CCC TGG CAG GCT GCC ATC TTT GCT GAG CGG TTC CTG TGC 384 Ala Ser His Pro Trp Gln Ala Ala Ile Phe Ala Glu Arg Phe Leu Cys 115 120 125 GGG GGC ATA CTC ATC AGC TCC TGC TGG ATT CTC TCT GCC GCC CAC TGC 432 Gly Gly Ile Leu Ile Ser Ser Cys Trp Ile Leu Ser Ala Ala His Cys 130 135 140 TTC CAG GAG AGG TTT CCG CCC CAC CAC CTG ACG GTG ATC TTG GGC AGA 480 Phe Gln Glu Arg Phe Pro Pro His His Leu Thr Val Ile Leu Gly Arg 145 150 155 160 ACA TAC CGG GTG GTC CCT GGC GAG GAG GAG CAG AAA TTT GAA GTC GAA 528 Thr Tyr Arg Val Val Pro Gly Glu Glu Glu Gln Lys Phe Glu Val Glu 165 170 175 AAA TAC ATT GTC CAT AAG GAA TTC GAT GAT GAC ACT TAC GAC AAT GAC 576 Lys Tyr Ile Val His Lys Glu Phe Asp Asp Asp Thr Tyr Asp Asn Asp 180 185 190 ATT GCG CTG CTG CAG CTG AAA TCG GAT TCG TCC CGC TGT GCC CAG GAG 624 Ile Ala Leu Leu Gln Leu Lys Ser Asp Ser Ser Arg Cys Ala Gln Glu 195 200 205 AGC AGC GTG GTC CGC ACT GTG TGC CTT CCC CCG GAG GAC CTG CAG CTG 672 Ser Ser Val Val Arg Thr Val Cys Leu Pro Pro Glu Asp Leu Gln Leu 210 215 220 CCG GAC TGG ACG GAG TGT GAG CTC TCC GGC TAC GGC AAG CAT GAG GCC 720 Pro Asp Trp Thr Glu Cys Glu Leu Ser Gly Tyr Gly Lys His Glu Ala 225 230 235 240 TTG TCT CCT TTC TAT TCG GAG CGG CTG AAG GAG GCT CAT GTC AGA CTG 768 Leu Ser Pro Phe Tyr Ser Glu Arg Leu Lys Glu Ala His Val Arg Leu 245 250 255 TAC CCA TCC AGC CGC TGC ACA TCA CAA CAT TTA CTT AAC AGA ACA GTC 816 Tyr Pro Ser Ser Arg Cys Thr Ser Gln His Leu Leu Asn Arg Thr Val 260 265 270 ACC GAC AAC ATG CTG TGT GCT GGA GAC ACT CGG AGC GGC GGG CCC CAG 864 Thr Asp Asn Met Leu Cys Ala Gly Asp Thr Arg Ser Gly Gly Pro Gln 275 280 285 GCA AAC TTG CAC GAC GCC TGC CAG GGC GAT TCG GGA GGC CCC CTG GTG 912 Ala Asn Leu His Asp Ala Cys Gln Gly Asp Ser Gly Gly Pro Leu Val 290 295 300 TGT CTG AAC GAT GGC CGC ATG ACT TTG GTG GGC ATC ATC AGC TGG GGC 960 Cys Leu Asn Asp Gly Arg Met Thr Leu Val Gly Ile Ile Ser Trp Gly 305 310 315 320 CTG GGC TGT GGA CAG AAG GAT GTC CCG GGT GTG TAC ACC AAG GTT ACC 1008 Leu Gly Cys Gly Gln Lys Asp Val Pro Gly Val Tyr Thr Lys Val Thr 325 330 335 AAC TAC CTA GAC TGG ATT CGT GAC AAC ATG CGA CCG TGA 1047 Asn Tyr Leu Asp Trp Ile Arg Asp Asn Met Arg Pro 340 345 348 配列番号:12 配列の長さ:24 配列の型:核酸 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 GGGCGACTCTTCGTGCTTGGCAAA 24 配列番号:13 配列の長さ:1068 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:他の核酸 配列番号7を修飾 配列の特徴 存在位置:1〜173までのアミノ酸欠損、298及び299位
アミノ酸置換 特徴を決定した方法:P 配列 ATG TCT GAG GGA AAC AGT GAC TGC TAC TTT GGG AAT GGG TCA GCC TAC 48 Met Ser Glu Gly Asn Ser Asp Cys Tyr Phe Gly Asn Gly Ser Ala Tyr 1 5 10 15 CGT GGC ACG CAC AGC CTC ACC GAG TCG GGT GCC TCC TGC CTC CCG TGG 96 Arg Gly Thr His Ser Leu Thr Glu Ser Gly Ala Ser Cys Leu Pro Trp 20 25 30 AAT TCC ATG ATC CTG ATA GGC AAG GTT TAC ACA GCA CAG AAC CCC AGT 144 Asn Ser Met Ile Leu Ile Gly Lys Val Tyr Thr Ala Gln Asn Pro Ser 35 40 45 GCC CAG GCA CTG GGC CTG GGC AAA CAT AAT TAC TGC CGG AAT CCT GAT 192 Ala Gln Ala Leu Gly Leu Gly Lys His Asn Tyr Cys Arg Asn Pro Asp 50 55 60 GGG GAT GCC AAG CCC TGG TGC CAC GTG CTG AAG AAC CGC AGG CTG ACG 240 Gly Asp Ala Lys Pro Trp Cys His Val Leu Lys Asn Arg Arg Leu Thr 65 70 75 80 TGG GAG TAC TGT GAT GTG CCC TCC TGC TCC ACC TGC GGC CTG AGA CAG 288 Trp Glu Tyr Cys Asp Val Pro Ser Cys Ser Thr Cys Gly Leu Arg Gln 85 90 95 TAC AGC CAG CCT CAG TTT CGC ATC AAA GGA GGG CTC TTC GCC GAC ATC 336 Tyr Ser Gln Pro Gln Phe Arg Ile Lys Gly Gly Leu Phe Ala Asp Ile 100 105 110 GCC TCC CAC CCC TGG CAG GCT GCC ATC TTT GCC AAG CAC GAA GAG TCG 384 Ala Ser His Pro Trp Gln Ala Ala Ile Phe Ala Lys His Glu Glu Ser 115 120 125 CCC GGA GAG CGG TTC CTG TGC GGG GGC ATA CTC ATC AGC TCC TGC TGG 432 Pro Gly Glu Arg Phe Leu Cys Gly Gly Ile Leu Ile Ser Ser Cys Trp 130 135 140 ATT CTC TCT GCC GCC CAC TGC TTC CAG GAG AGG TTT CCG CCC CAC CAC 480 Ile Leu Ser Ala Ala His Cys Phe Gln Glu Arg Phe Pro Pro His His 145 150 155 160 CTG ACG GTG ATC TTG GGC AGA ACA TAC CGG GTG GTC CCT GGC GAG GAG 528 Leu Thr Val Ile Leu Gly Arg Thr Tyr Arg Val Val Pro Gly Glu Glu 165 170 175 GAG CAG AAA TTT GAA GTC GAA AAA TAC ATT GTC CAT AAG GAA TTC GAT 576 Glu Gln Lys Phe Glu Val Glu Lys Tyr Ile Val His Lys Glu Phe Asp 180 185 190 GAT GAC ACT TAC GAC AAT GAC ATT GCG CTG CTG CAG CTG AAA TCG GAT 624 Asp Asp Thr Tyr Asp Asn Asp Ile Ala Leu Leu Gln Leu Lys Ser Asp 195 200 205 TCG TCC CGC TGT GCC CAG GAG AGC AGC GTG GTC CGC ACT GTG TGC CTT 672 Ser Ser Arg Cys Ala Gln Glu Ser Ser Val Val Arg Thr Val Cys Leu 210 215 220 CCC CCG GAG GAC CTG CAG CTG CCG GAC TGG ACG GAG TGT GAG CTC TCC 720 Pro Pro Glu Asp Leu Gln Leu Pro Asp Trp Thr Glu Cys Glu Leu Ser 225 230 235 240 GGC TAC GGC AAG CAT GAG GCC TTG TCT CCT TTC TAT TCG GAG CGG CTG 768 Gly Tyr Gly Lys His Glu Ala Leu Ser Pro Phe Tyr Ser Glu Arg Leu 245 250 255 AAG GAG GCT CAT GTC AGA CTG TAC CCA TCC AGC CGC TGC ACA TCA CAA 816 Lys Glu Ala His Val Arg Leu Tyr Pro Ser Ser Arg Cys Thr Ser Gln 260 265 270 CAT TTA CTT AAC AGA ACA GTC ACC GAC AAC ATG CTG TGT GCT GGA GAC 864 His Leu Leu Asn Arg Thr Val Thr Asp Asn Met Leu Cys Ala Gly Asp 275 280 285 ACT CGG AGC GGC GGG CCC CAG GCA AAC TTG CAC GAC GCC TGC CAG GGC 912 Thr Arg Ser Gly Gly Pro Gln Ala Asn Leu His Asp Ala Cys Gln Gly 290 295 300 GAT TCG GGA GGC CCC CTG GTG TGT CTG AAC GAT GGC CGC ATG ACT TTG 960 Asp Ser Gly Gly Pro Leu Val Cys Leu Asn Asp Gly Arg Met Thr Leu 305 310 315 320 GTG GGC ATC ATC AGC TGG GGC CTG GGC TGT GGA CAG AAG GAT GTC CCG 1008 Val Gly Ile Ile Ser Trp Gly Leu Gly Cys Gly Gln Lys Asp Val Pro 325 330 335 GGT GTG TAC ACC AAG GTT ACC AAC TAC CTA GAC TGG ATT CGT GAC AAC 1056 Gly Val Tyr Thr Lys Val Thr Asn Tyr Leu Asp Trp Ile Arg Asp Asn 340 345 350 ATG CGA CCG TGA 1068 Met Arg Pro 355 配列番号:14 配列の長さ:24 配列の型:核酸 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 GCACAGGAAG TGATATCCGG GCGA 24 配列番号:15 配列の長さ:24 配列の型:核酸 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 GCACAGGAAG TGATATGCAA AGAT 24 配列番号:16 配列の長さ:1068 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:他の核酸 配列番号7を修飾 配列の特徴 存在位置:1〜173までのアミノ酸欠損 303,304位の
アミノ酸置換 特徴を決定した方法:P 配列 ATG TCT GAG GGA AAC AGT GAC TGC TAC TTT GGG AAT GGG TCA GCC TAC 48 Met Ser Glu Gly Asn Ser Asp Cys Tyr Phe Gly Asn Gly Ser Ala Tyr 1 5 10 15 CGT GGC ACG CAC AGC CTC ACC GAG TCG GGT GCC TCC TGC CTC CCG TGG 96 Arg Gly Thr His Ser Leu Thr Glu Ser Gly Ala Ser Cys Leu Pro Trp 20 25 30 AAT TCC ATG ATC CTG ATA GGC AAG GTT TAC ACA GCA CAG AAC CCC AGT 144 Asn Ser Met Ile Leu Ile Gly Lys Val Tyr Thr Ala Gln Asn Pro Ser 35 40 45 GCC CAG GCA CTG GGC CTG GGC AAA CAT AAT TAC TGC CGG AAT CCT GAT 192 Ala Gln Ala Leu Gly Leu Gly Lys His Asn Tyr Cys Arg Asn Pro Asp 50 55 60 GGG GAT GCC AAG CCC TGG TGC CAC GTG CTG AAG AAC CGC AGG CTG ACG 240 Gly Asp Ala Lys Pro Trp Cys His Val Leu Lys Asn Arg Arg Leu Thr 65 70 75 80 TGG GAG TAC TGT GAT GTG CCC TCC TGC TCC ACC TGC GGC CTG AGA CAG 288 Trp Glu Tyr Cys Asp Val Pro Ser Cys Ser Thr Cys Gly Leu Arg Gln 85 90 95 TAC AGC CAG CCT CAG TTT CGC ATC AAA GGA GGG CTC TTC GCC GAC ATC 336 Tyr Ser Gln Pro Gln Phe Arg Ile Lys Gly Gly Leu Phe Ala Asp Ile 100 105 110 GCC TCC CAC CCC TGG CAG GCT GCC ATC TTT GCC AAG CAC AGG AGG TCG 384 Ala Ser His Pro Trp Gln Ala Ala Ile Phe Ala Lys His Arg Arg Ser 115 120 125 CCC GGA TAT CAC TTC CTG TGC GGG GGC ATA CTC ATC AGC TCC TGC TGG 432 Pro Gly Tyr His Phe Leu Cys Gly Gly Ile Leu Ile Ser Ser Cys Trp 130 135 140 ATT CTC TCT GCC GCC CAC TGC TTC CAG GAG AGG TTT CCG CCC CAC CAC 480 Ile Leu Ser Ala Ala His Cys Phe Gln Glu Arg Phe Pro Pro His His 145 150 155 160 CTG ACG GTG ATC TTG GGC AGA ACA TAC CGG GTG GTC CCT GGC GAG GAG 528 Leu Thr Val Ile Leu Gly Arg Thr Tyr Arg Val Val Pro Gly Glu Glu 165 170 175 GAG CAG AAA TTT GAA GTC GAA AAA TAC ATT GTC CAT AAG GAA TTC GAT 576 Glu Gln Lys Phe Glu Val Glu Lys Tyr Ile Val His Lys Glu Phe Asp 180 185 190 GAT GAC ACT TAC GAC AAT GAC ATT GCG CTG CTG CAG CTG AAA TCG GAT 624 Asp Asp Thr Tyr Asp Asn Asp Ile Ala Leu Leu Gln Leu Lys Ser Asp 195 200 205 TCG TCC CGC TGT GCC CAG GAG AGC AGC GTG GTC CGC ACT GTG TGC CTT 672 Ser Ser Arg Cys Ala Gln Glu Ser Ser Val Val Arg Thr Val Cys Leu 210 215 220 CCC CCG GAG GAC CTG CAG CTG CCG GAC TGG ACG GAG TGT GAG CTC TCC 720 Pro Pro Glu Asp Leu Gln Leu Pro Asp Trp Thr Glu Cys Glu Leu Ser 225 230 235 240 GGC TAC GGC AAG CAT GAG GCC TTG TCT CCT TTC TAT TCG GAG CGG CTG 768 Gly Tyr Gly Lys His Glu Ala Leu Ser Pro Phe Tyr Ser Glu Arg Leu 245 250 255 AAG GAG GCT CAT GTC AGA CTG TAC CCA TCC AGC CGC TGC ACA TCA CAA 816 Lys Glu Ala His Val Arg Leu Tyr Pro Ser Ser Arg Cys Thr Ser Gln 260 265 270 CAT TTA CTT AAC AGA ACA GTC ACC GAC AAC ATG CTG TGT GCT GGA GAC 864 His Leu Leu Asn Arg Thr Val Thr Asp Asn Met Leu Cys Ala Gly Asp 275 280 285 ACT CGG AGC GGC GGG CCC CAG GCA AAC TTG CAC GAC GCC TGC CAG GGC 912 Thr Arg Ser Gly Gly Pro Gln Ala Asn Leu His Asp Ala Cys Gln Gly 290 295 300 GAT TCG GGA GGC CCC CTG GTG TGT CTG AAC GAT GGC CGC ATG ACT TTG 960 Asp Ser Gly Gly Pro Leu Val Cys Leu Asn Asp Gly Arg Met Thr Leu 305 310 315 320 GTG GGC ATC ATC AGC TGG GGC CTG GGC TGT GGA CAG AAG GAT GTC CCG 1008 Val Gly Ile Ile Ser Trp Gly Leu Gly Cys Gly Gln Lys Asp Val Pro 325 330 335 GGT GTG TAC ACC AAG GTT ACC AAC TAC CTA GAC TGG ATT CGT GAC AAC 1056 Gly Val Tyr Thr Lys Val Thr Asn Tyr Leu Asp Trp Ile Arg Asp Asn 340 345 350 ATG CGA CCG TGA 1068 Met Arg Pro 355 配列番号:17 配列の長さ:1047 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:他の核酸 配列番号7を修飾 配列の特徴 存在位置:1〜173までのアミノ酸欠損、296〜302ま
でのアミノ酸欠損、303および304位アミノ酸置換 特徴を決定した方法:P 配列 ATG TCT GAG GGA AAC AGT GAC TGC TAC TTT GGG AAT GGG TCA GCC TAC 48 Met Ser Glu Gly Asn Ser Asp Cys Tyr Phe Gly Asn Gly Ser Ala Tyr 1 5 10 15 CGT GGC ACG CAC AGC CTC ACC GAG TCG GGT GCC TCC TGC CTC CCG TGG 96 Arg Gly Thr His Ser Leu Thr Glu Ser Gly Ala Ser Cys Leu Pro Trp 20 25 30 AAT TCC ATG ATC CTG ATA GGC AAG GTT TAC ACA GCA CAG AAC CCC AGT 144 Asn Ser Met Ile Leu Ile Gly Lys Val Tyr Thr Ala Gln Asn Pro Ser 35 40 45 GCC CAG GCA CTG GGC CTG GGC AAA CAT AAT TAC TGC CGG AAT CCT GAT 192 Ala Gln Ala Leu Gly Leu Gly Lys His Asn Tyr Cys Arg Asn Pro Asp 50 55 60 GGG GAT GCC AAG CCC TGG TGC CAC GTG CTG AAG AAC CGC AGG CTG ACG 240 Gly Asp Ala Lys Pro Trp Cys His Val Leu Lys Asn Arg Arg Leu Thr 65 70 75 80 TGG GAG TAC TGT GAT GTG CCC TCC TGC TCC ACC TGC GGC CTG AGA CAG 288 Trp Glu Tyr Cys Asp Val Pro Ser Cys Ser Thr Cys Gly Leu Arg Gln 85 90 95 TAC AGC CAG CCT CAG TTT CGC ATC AAA GGA GGG CTC TTC GCC GAC ATC 336 Tyr Ser Gln Pro Gln Phe Arg Ile Lys Gly Gly Leu Phe Ala Asp Ile 100 105 110 GCC TCC CAC CCC TGG CAG GCT GCC ATC TTT GCT TAT CAC TTC CTG TGC 384 Ala Ser His Pro Trp Gln Ala Ala Ile Phe Ala Tyr His Phe Leu Cys 115 120 125 GGG GGC ATA CTC ATC AGC TCC TGC TGG ATT CTC TCT GCC GCC CAC TGC 432 Gly Gly Ile Leu Ile Ser Ser Cys Trp Ile Leu Ser Ala Ala His Cys 130 135 140 TTC CAG GAG AGG TTT CCG CCC CAC CAC CTG ACG GTG ATC TTG GGC AGA 480 Phe Gln Glu Arg Phe Pro Pro His His Leu Thr Val Ile Leu Gly Arg 145 150 155 160 ACA TAC CGG GTG GTC CCT GGC GAG GAG GAG CAG AAA TTT GAA GTC GAA 528 Thr Tyr Arg Val Val Pro Gly Glu Glu Glu Gln Lys Phe Glu Val Glu 165 170 175 AAA TAC ATT GTC CAT AAG GAA TTC GAT GAT GAC ACT TAC GAC AAT GAC 576 Lys Tyr Ile Val His Lys Glu Phe Asp Asp Asp Thr Tyr Asp Asn Asp 180 185 190 ATT GCG CTG CTG CAG CTG AAA TCG GAT TCG TCC CGC TGT GCC CAG GAG 624 Ile Ala Leu Leu Gln Leu Lys Ser Asp Ser Ser Arg Cys Ala Gln Glu 195 200 205 AGC AGC GTG GTC CGC ACT GTG TGC CTT CCC CCG GAG GAC CTG CAG CTG 672 Ser Ser Val Val Arg Thr Val Cys Leu Pro Pro Glu Asp Leu Gln Leu 210 215 220 CCG GAC TGG ACG GAG TGT GAG CTC TCC GGC TAC GGC AAG CAT GAG GCC 720 Pro Asp Trp Thr Glu Cys Glu Leu Ser Gly Tyr Gly Lys His Glu Ala 225 230 235 240 TTG TCT CCT TTC TAT TCG GAG CGG CTG AAG GAG GCT CAT GTC AGA CTG 768 Leu Ser Pro Phe Tyr Ser Glu Arg Leu Lys Glu Ala His Val Arg Leu 245 250 255 TAC CCA TCC AGC CGC TGC ACA TCA CAA CAT TTA CTT AAC AGA ACA GTC 816 Tyr Pro Ser Ser Arg Cys Thr Ser Gln His Leu Leu Asn Arg Thr Val 260 265 270 ACC GAC AAC ATG CTG TGT GCT GGA GAC ACT CGG AGC GGC GGG CCC CAG 864 Thr Asp Asn Met Leu Cys Ala Gly Asp Thr Arg Ser Gly Gly Pro Gln 275 280 285 GCA AAC TTG CAC GAC GCC TGC CAG GGC GAT TCG GGA GGC CCC CTG GTG 912 Ala Asn Leu His Asp Ala Cys Gln Gly Asp Ser Gly Gly Pro Leu Val 290 295 300 TGT CTG AAC GAT GGC CGC ATG ACT TTG GTG GGC ATC ATC AGC TGG GGC 960 Cys Leu Asn Asp Gly Arg Met Thr Leu Val Gly Ile Ile Ser Trp Gly 305 310 315 320 CTG GGC TGT GGA CAG AAG GAT GTC CCG GGT GTG TAC ACC AAG GTT ACC 1008 Leu Gly Cys Gly Gln Lys Asp Val Pro Gly Val Tyr Thr Lys Val Thr 325 330 335 AAC TAC CTA GAC TGG ATT CGT GAC AAC ATG CGA CCG TGA 1047 Asn Tyr Leu Asp Trp Ile Arg Asp Asn Met Arg Pro 340 345 348。
[Sequence listing] SEQ ID NO: 1 Sequence length: 13 Sequence type: Amino acid Topology: Linear Sequence type: Peptide Fragment type: Intermediate fragment sequence Asn Arg Arg Leu Thr Trp Glu Tyr Cys Asp Val Pro Ser 1 5 10 SEQ ID NO: 2 Sequence length: 13 Sequence type: Amino acid Topology: Linear Sequence type: Peptide Fragment type: Intermediate fragment Sequence Arg-Met-Thr-Leu-Val-Gly-Ile-Ile- Ser-Trp-Gly-Leu-Gly 1 5 10 SEQ ID NO: 3 Sequence length: 12 Sequence type: Amino acid Topology: Linear Sequence type: Peptide Fragment type: C-terminal fragment-stop sequence SEQ ID NO: 4 Sequence length: 39 Sequence type: Nucleic acid Topology: Linear Sequence type: Other nucleic acid Synthetic DNA Sequence AAC CGC AGG CTG ACG TGG GAG TAC TGT GAT GTG CCC TCC 39 SEQ ID NO: 5 Sequence Length: 39 Sequence type: Nucleic acid Topology: Linear Sequence type: Other nucleic acid Synthetic DNA sequence CGC ATG ACT TTG GTG GGC ATC ATC AGC TGG GGC CTG GGC 39 SEQ ID NO: 6 Sequence length: 39 Sequence Type: Nucleic acid Topology: Linear Sequence type: Other nucleic acid Synthetic DNA sequence AAC TAC CTA GAC TGG ATT CGT GAC AAC ATG CGA CCG TGA 39 SEQ ID NO: 7 Sequence length: 1800 Sequence type: Nucleic acid Number of strands : Double-strand Topology: Linear Sequence type: cDNA to mRNA Origin human foreskin-derived primary culture cell Sequence features Location: 552..554 Method of determining features: E sequence AAAACCTCTG CGAGGAAAGG GAAGGAGCAA GCCGTGAATT TAAGGGACGC TGTGAAGCAA 60 TC ATG GAT GCA ATG AAG AGA GGG CTC TGC TGT GTG CTG CTG CTG TGT 107 Met Asp Ala Met Lys Arg Gly Leu Cys Cys Val Leu Leu Leu Cys -35 -30 -25 GGA GCA GTC TTC GTT TCG CCC AGC CAG GAA ATC CAT GCC CGA TTC AGA 155 Gly Ala Val Phe Val Ser Pro Ser Gln Glu Ile His Ala Arg Phe Arg -20 -15 -10 -5 AGA GGA GCC AGA TCT TAC CAA GTG ATC TGC AGA GAT GAA AAA ACG CAG 203 Arg Gly Ala Arg Ser Tyr Gln Val Ile Cys Arg Asp Glu Lys Thr Gln 1 5 10 ATG ATA TAC CAG CAA CAT CAG TCA TGG CTG CGC CCT GTG CTC AGA AGC 251 Met Ile Tyr Gln Gln His Gln Ser Trp Leu Arg Pro Val Leu Arg Ser 15 20 25 AAC CGG GTG GAA TAT TGC TGG TGC AAC AGT GGC AGG GCA CAG TGC CAC 299 Asn Arg Val Glu Tyr Cys Trp Cys Asn Ser Gly Arg Ala Gln Cys His 30 35 40 TCA GTG CCT GTC AAA AGT TGC AGC GAG CCA AGG TGT TTC AAC GGG GGC 347 Ser Val Pro Val Lys Ser Cys Ser Glu Pro Arg Cys Phe Asn Gly Gly 45 50 55 60 ACC TGC CAG CAG GCC CTG TAC TTC TCA GAT TTC GTG TGC CAG TGC CCC 395 Thr Cys Gln Gln Ala Leu Tyr Phe Ser Asp Phe Val Cys Gln Cys Pro 65 70 75 GAA GGA TTT GCT GGG AAG TGC TGT GAA ATA GAT ACC AGG GCC ACG TGC 44 3 Glu Gly Phe Ala Gly Lys Cys Cys Glu Ile Asp Thr Arg Ala Thr Cys 80 85 90 TAC GAG GAC CAG GGC ATC AGC TAC AGG GGC ACG TGG AGC ACA GCG GAG 491 Tyr Glu Asp Gln Gly Ile Ser Tyr Arg Gly Thr Trp Ser Thr Ala Glu 95 100 105 AGT GGC GCC GAG TGC ACC AAC TGG AAC AGC AGC GCG TTG GCC CAG AAG 539 Ser Gly Ala Glu Cys Thr Asn Trp Asn Ser Ser Ala Leu Ala Gln Lys 110 115 120 CCC TAC AGT GGG TGG AGG CCA GAC GCC ATC AGG CTG GGC CTG GGG AAC 587 Pro Tyr Ser Gly Trp Arg Pro Asp Ala Ile Arg Leu Gly Leu Gly Asn 125 130 135 140 CAC AAC TAC TGC AGA AAC CCA GAT CGA GAC TCA AAG CCC TGG TGC TAC 635 His Asn Tyr Cys Arg Asn Pro Asp Arg Asp Ser Lys Pro Trp Cys Tyr 145 150 155 GTC TTT AAG GCG GGG AAG TAC AGC TCA GAG TTC TGC AGC ACC CCT GCC 683 Val Phe Lys Ala Gly Lys Tyr Ser Ser Glu Phe Cys Ser Thr Pro Ala 160 165 170 TGC TCT GAG GGA AAC AGT GAC TGC TAC TTT GGG AAT GGG TCA GCC TAC 731 Cys Ser Glu Gly Asn Ser Asp Cys Tyr Phe Gly Asn Gly Ser Ala Tyr 175 180 185 CGT GGC ACG CAC AGC CTC ACC GAG TCG GGT GCC TCC TGC CTC CC G TGG 779 Arg Gly Thr His Ser Leu Thr Glu Ser Gly Ala Ser Cys Leu Pro Trp 190 195 200 AAT TCC ATG ATC CTG ATA GGC AAG GTT TAC ACA GCA CAG AAC CCC AGT 827 Asn Ser Met Ile Leu Ile Gly Lys Val Tyr Thr Ala Gln Asn Pro Ser 205 210 215 220 GCC CAG GCA CTG GGC CTG GGC AAA CAT AAT TAC TGC CGG AAT CCT GAT 875 Ala Gln Ala Leu Gly Leu Gly Lys His Asn Tyr Cys Arg Asn Pro Asp 225 230 235 GGG GAT GCC AAG CCC TGG TGC CAC GTG CTG AAG AAC CGC AGG CTG ACG 923 Gly Asp Ala Lys Pro Trp Cys His Val Leu Lys Asn Arg Arg Leu Thr 240 245 250 TGG GAG TAC TGT GAT GTG CCC TCC TGC TCC ACC TGC GGC CTG AGA CAG 971 Trp Glu Tyr Cys Asp Val Pro Ser Cys Ser Thr Cys Gly Leu Arg Gln 255 260 265 TAC AGC CAG CCT CAG TTT CGC ATC AAA GGA GGG CTC TTC GCC GAC ATC 1019 Tyr Ser Gln Pro Gln Phe Arg Ile Lys Gly Gly Leu Phe Ala Asp Ile 270 275 280 GCC TCC CAC CCC TGG CAG GCT GCC ATC TTT GCC AAG CAC AGG AGG TCG 1067 Ala Ser His Pro Trp Gln Ala Ala Ile Phe Ala Lys His Arg Arg Ser 285 290 295 300 CCC GGA GAG CGG TTC CTG TGC GGG GGC ATA CTC ATC AGC TCC TGC TGG 1115 Pro Gly Glu Arg Phe Leu Cys Gly Gly Ile Leu Ile Ser Ser Cys Trp 305 310 315 ATT CTC TCT GCC GCC CAC TGC TTC CAG GAG AGG TTT CCG CCC CAC CAC 1163 Ile Leu Ser Ala Ala Hisa Cys Phe Gln Glu Arg Phe Pro Pro His His 320 325 330 CTG ACG GTG ATC TTG GGC AGA ACA TAC CGG GTG GTC CCT GGC GAG GAG 1211 Leu Thr Val Ile Leu Gly Arg Thr Tyr Arg Val Val Pro Gly Glu Glu 335 340 345 GAG CAG AAA TTT GAA GTC GAA AAA TAC ATT GTC CAT AAG GAA TTC GAT 1259 Glu Gln Lys Phe Glu Val Glu Lys Tyr Ile Val His Lys Glu Phe Asp 350 355 360 GAT GAC ACT TAC GAC AAT GAC ATT GCG CTG CTG CAG CTG AAA TCG GAT 1307 Asp Asp Thr Tyr Asp Asn Asp Ile Ala Leu Leu Gln Leu Lys Ser Asp 365 370 375 380 TCG TCC CGC TGT GCC CAG GAG AGC AGC GTG GTC CGC ACT GTG TGC CTT 1355 Ser Ser Arg Cys Ala Gln Glu Ser Ser Val Val Arg Thr Val Cys Leu 385 390 395 CCC CCG GAG GAC CTG CAG CTG CCG GAC TGG ACG GAG TGT GAG CTC TCC 1403 Pro Pro Glu Asp Leu Gln Leu Pro Asp Trp Thr Glu Cys Glu Leu Ser 400 405 410 GGC TAC GGC AAG CAT G AG GCC TTG TCT CCT TTC TAT TCG GAG CGG CTG 1451 Gly Tyr Gly Lys His Glu Ala Leu Ser Pro Phe Tyr Ser Glu Arg Leu 415 420 425 AAG GAG GCT CAT GTC AGA CTG TAC CCA TCC AGC CGC TGC ACA TCA CAA 1499 Lys Glu Ala His Val Arg Leu Tyr Pro Ser Ser Arg Cys Thr Ser Gln 430 435 440 CAT TTA CTT AAC AGA ACA GTC ACC GAC AAC ATG CTG TGT GCT GGA GAC 1547 His Leu Leu Asn Arg Thr Val Thr Asp Asn Met Leu Cys Ala Gly Asp 445 450 455 460 ACT CGG AGC GGC GGG CCC CAG GCA AAC TTG CAC GAC GCC TGC CAG GGC 1595 Thr Arg Ser Gly Gly Pro Gln Ala Asn Leu His Asp Ala Cys Gln Gly 465 470 475 GAT TCG GGA GGC CCC CTG GTG TGT CTG AAC GAT GGC CGC ATG ACT TTG 1643 Asp Ser Gly Gly Pro Leu Val Cys Leu Asn Asp Gly Arg Met Thr Leu 480 485 490 GTG GGC ATC ATC AGC TGG GGC CTG GGC TGT GGA CAG AAG GAT GTC CCG 1691 Val Gly Ile Ile Ser Trp Gly Leu Gly Cys Gly Gln Lys Asp Val Pro 495 500 505 GGT GTG TAC ACC AAG GTT ACC AAC TAC CTA GAC TGG ATT CGT GAC AAC 1739 Gly Val Tyr Thr Lys Val Thr Asn Tyr Leu Asp Trp Ile Arg Asp Asn 510 515 520 AT G CGA CCG TGACCAGGAA CACCCGACTC CTCAAAAGCA AATGAGATCC 1788 Met Arg Pro 525 527 CGCCTCTTCT TC 1800 SEQ ID NO: 8 Sequence length: 36 Sequence type: Nucleic acid Topology: Linear Sequence type: Other nucleic acid Synthetic DNA sequence ACTGTTTCCC TCAGACATAT GAGGGGTG 36 SEQ ID NO: 9 Sequence length: 31 Sequence type: Nucleic acid Topology: Linear Sequence type: Other nucleic acid Synthetic DNA Sequence GCACAGGAAC CGCTCAGCAA AGATGGCAGC C 31 SEQ ID NO: 10 Sequence length: 1068 Sequence type: Number of nucleic acid strands: Double stranded Topology: Linear Sequence type: Other nucleic acids Modified SEQ ID NO: 7 Sequence features Location: Amino acid deletions from 1 to 173 Method to determine features: P sequence ATG TCT GAG GGA AAC AGT GAC TGC TAC TTT GGG AAT GGG TCA GCC TAC 48 Met Ser Glu Gly Asn Ser Asp Cys Tyr Phe Gly Asn Gly Ser Ala Tyr 1 5 10 15 CGT GGC ACG CAC AGC CTC ACC GAG TCG GGT GCC TCC TGC CTC CCG TGG 96 Arg Gly Thr His Ser Leu Thr Glu Ser Gly A la Ser Cys Leu Pro Trp 20 25 30 AAT TCC ATG ATC CTG ATA GGC AAG GTT TAC ACA GCA CAG AAC CCC AGT 144 Asn Ser Met Ile Leu Ile Gly Lys Val Tyr Thr Ala Gln Asn Pro Ser 35 40 45 GCC CAG GCA CTG GGC CTG GGC AAA CAT AAT TAC TGC CGG AAT CCT GAT 192 Ala Gln Ala Leu Gly Leu Gly Lys His Asn Tyr Cys Arg Asn Pro Asp 50 55 60 GGG GAT GCC AAG CCC TGG TGC CAC GTG CTG AAG AAC CGC AGG CTG ACG 240 Gly Asp Ala Lys Pro Trp Cys His Val Leu Lys Asn Arg Arg Leu Thr 65 70 75 80 TGG GAG TAC TGT GAT GTG CCC TCC TGC TCC ACC TGC GGC CTG AGA CAG 288 Trp Glu Tyr Cys Asp Val Pro Ser Cys Ser Thr Cys Gly Leu Arg Gln 85 90 95 TAC AGC CAG CCT CAG TTT CGC ATC AAA GGA GGG CTC TTC GCC GAC ATC 336 Tyr Ser Gln Pro Gln Phe Arg Ile Lys Gly Gly Leu Phe Ala Asp Ile 100 105 110 GCC TCC CAC CCC TGG CAG GCT GCC ATC TTT GCC AAG CAC AGG AGG TCG 384 Ala Ser His Pro Trp Gln Ala Ala Ile Phe Ala Lys His Arg Arg Ser 115 120 125 CCC GGA GAG CGG TTC CTG TGC GGG GGC ATA CTC ATC AGC TCC TGC TGG 432 Pro Gly Glu Arg Phe Leu Cys Gly Gly Ile Leu I le Ser Ser Cys Trp 130 135 140 ATT CTC TCT GCC GCC CAC TGC TTC CAG GAG AGG TTT CCG CCC CAC CAC 480 Ile Leu Ser Ala Ala His Cys Phe Gln Glu Arg Phe Pro Pro His His 145 150 155 160 CTG ACG GTG ATC TTG GGC AGA ACA TAC CGG GTG GTC CCT GGC GAG GAG 528 Leu Thr Val Ile Leu Gly Arg Thr Tyr Arg Val Val Pro Gly Glu Glu 165 170 175 GAG CAG AAA TTT GAA GTC GAA AAA TAC ATT GTC CAT AAG GAA TTC GAT 576 Glu Gln Lys Phe Glu Val Glu Lys Tyr Ile Val His Lys Glu Phe Asp 180 185 190 GAT GAC ACT TAC GAC AAT GAC ATT GCG CTG CTG CAG CTG AAA TCG GAT 624 Asp Asp Thr Tyr Asp Asn Asp Ile Ala Leu Leu Gln Leu Lys Ser Asp 195 200 205 TCG TCC CGC TGT GCC CAG GAG AGC AGC GTG GTC CGC ACT GTG TGC CTT 672 Ser Ser Arg Cys Ala Gln Glu Ser Ser Val Val Arg Thr Val Cys Leu 210 215 220 CCC CCG GAG GAC CTG CAG CTG CCG GAC TGG ACG GAG TGT GAG CTC TCC 720 Pro Pro Glu Asp Leu Gln Leu Pro Asp Trp Thr Glu Cys Glu Leu Ser 225 230 235 240 GGC TAC GGC AAG CAT GAG GCC TTG TCT CCT TTC TAT TCG GAG CGG CTG 768 Gly Tyr Gly Lys His Glu Ala L eu Ser Pro Phe Tyr Ser Glu Arg Leu 245 250 255 AAG GAG GCT CAT GTC AGA CTG TAC CCA TCC AGC CGC TGC ACA TCA CAA 816 Lys Glu Ala His Val Arg Leu Tyr Pro Ser Ser Arg Cys Thr Ser Gln 260 265 270 CAT TTA CTT AAC AGA ACA GTC ACC GAC AAC ATG CTG TGT GCT GGA GAC 864 His Leu Leu Asn Arg Thr Val Thr Asp Asn Met Leu Cys Ala Gly Asp 275 280 285 ACT CGG AGC GGC GGG CCC CAG GCA AAC TTG CAC GAC GCC TGC CAG GGC 912 Thr Arg Ser Gly Gly Pro Gln Ala Asn Leu His Asp Ala Cys Gln Gly 290 295 295 GAT TCG GGA GGC CCC CTG GTG TGT CTG AAC GAT GGC CGC ATG ACT TTG 960 Asp Ser Gly Gly Pro Leu Val Cys Leu Asn Asp Gly Arg Met Thr Leu 305 310 315 320 GTG GGC ATC ATC AGC TGG GGC CTG GGC TGT GGA CAG AAG GAT GTC CCG 1008 Val Gly Ile Ile Ser Trp Gly Leu Gly Cys Gly Gln Lys Asp Val Pro 325 330 335 GGT GTG TAC ACC AAG GTT ACC AAC TAC CTA GAC TGG ATT CGT GAC AAC 1056 Gly Val Tyr Thr Lys Val Thr Asn Tyr Leu Asp Trp Ile Arg Asp Asn 340 345 350 ATG CGA CCG TGA 1068 Met Arg Pro 355 SEQ ID NO: 11 Sequence Length: 1047 Distribution Type: Nucleic acid Number of strands: Double-strand Topology: Linear Sequence type: Other nucleic acid Modified SEQ ID NO: 7 Sequence characteristics Location: Amino acid deletion from 1-173, Amino acid deletion from 296 to 302 Characteristics Method for determining P sequence: ATG TCT GAG GGA AAC AGT GAC TGC TAC TTT GGG AAT GGG TCA GCC TAC 48 Met Ser Glu Gly Asn Ser Asp Cys Tyr Phe Gly Asn Gly Ser Ala Tyr 1 5 10 15 CGT GGC ACG CAC AGC CTC ACC GAG TCG GGT GCC TCC TGC CTC CCG TGG 96 Arg Gly Thr His Ser Leu Thr Glu Ser Gly Ala Ser Cys Leu Pro Trp 20 25 30 AAT TCC ATG ATC CTG ATA GGC AAG GTT TAC ACA GCA CAG AAC CCC AGT 144 Asn Ser Met Ile Leu Ile Gly Lys Val Tyr Thr Ala Gln Asn Pro Ser 35 40 45 GCC CAG GCA CTG GGC CTG GGC AAA CAT AAT TAC TGC CGG AAT CCT GAT 192 Ala Gln Ala Leu Gly Leu Gly Lys His Asn Tyr Cys Arg Asn Pro Asp 50 55 60 GGG GAT GCC AAG CCC TGG TGC CAC GTG CTG AAG AAC CGC AGG CTG ACG 240 Gly Asp Ala Lys Pro Trp Cys His Val Leu Lys Asn Arg Arg Leu Thr 65 70 75 80 TGG GAG TAC TGT GAT GTG CCC TCC TGC TCC ACC TGC GGC CTG AGA CAG 288 Trp Glu Tyr Cys Asp Val Pro Ser Cys Ser Thr Cys Gly Leu Arg Gln 85 90 95 TAC AGC CAG CCT CAG TTT CGC ATC AAA GGA GGG CTC TTC GCC GAC ATC 336 Tyr Ser Gln Pro Gln Phe Arg Ile Lys Gly Gly Leu Phe Ala Asp Ile 100 105 110 GCC TCC CAC CCC TGG CAG GCT GCC ATC TTT GCT GAG CGG TTC CTG TGC 384 Ala Ser His Pro Trp Gln Ala Ala Ile Phe Ala Glu Arg Phe Leu Cys 115 120 125 GGG GGC ATA CTC ATC AGC TCC TGC TGG ATT CTC TCT GCC GCC CAC TGC 432 Gly Gly Ile Leu Ile Ser Ser Cys Trp Ile Leu Ser Ala Ala His Cys 130 135 140 TTC CAG GAG AGG TTT CCG CCC CAC CAC CTG ACG GTG ATC TTG GGC AGA 480 Phe Gln Glu Arg Phe Pro Pro His His Leu Thr Val Ile Leu Gly Arg 145 150 155 160 ACA TAC CGG GTG GTC CCT GGC GAG GAG GAG CAG AAA TTT GAA GTC GAA 528 Thr Tyr Arg Val Val Pro Gly Glu Glu Glu Gln Lys Phe Glu Val Glu 165 170 175 AAA TAC ATT GTC CAT AAG GAA TTC GAT GAT GAC ACT TAC GAC AAT GAC 576 Lys Tyr Ile Val His Lys Glu Phe Asp Asp Asp Thr Tyr Asp Asn Asp 180 185 190 ATT GCG CTG CTG CAG CTG AAA TCG GAT TCG TCC CGC TGT GCC CAG GAG 624 Ile Ala Leu Leu Gln Leu Lys Ser Asp Ser Ser Arg Cys Ala Gln Glu 195 200 205 AGC AGC GTG GTC CGC ACT GTG TGC CTT CCC CCG GAG GAC CTG CAG CTG 672 Ser Ser Val Val Arg Thr Val Cys Leu Pro Pro Glu Asp Leu Gln Leu 210 215 220 CCG GAC TGG ACG GAG TGT GAG CTC TCC GGC TAC GGC AAG CAT GAG GCC 720 Pro Asp Trp Thr Glu Cys Glu Leu Ser Gly Tyr Gly Lys His Glu Ala 225 230 235 240 TTG TCT CCT TTC TAT TCG GAG CGG CTG AAG GAG GCT CAT GTC AGA CTG 768 Leu Ser Pro Phe Tyr Ser Glu Arg Leu Lys Glu Ala His Val Arg Leu 245 250 255 TAC CCA TCC AGC CGC TGC ACA TCA CAA CAT TTA CTT AAC AGA ACA GTC 816 Tyr Pro Ser Ser Arg Cys Thr Ser Gln His Leu Leu Asn Arg Thr Val 260 265 270 ACC GAC AAC ATG CTG TGT GCT GGA GAC ACT CGG AGC GGC GGG CCC CAG 864 Thr Asp Asn Met Leu Cys Ala Gly Asp Thr Arg Ser Gly Gly Pro Gln 275 280 285 GCA AAC TTG CAC GAC GCC TGC CAG GGC GAT TCG GGA GGC CCC CTG GTG 912 Ala Asn Leu His Asp Ala Cys Gln Gly Asp Ser Gly Gly Pro Leu Val 290 295 300 TGT CTG AAC GAT GGC CGC ATG ACT TTG GTG GGC ATC ATC AGC TGG GGC 960 Cys Leu Asn Asp Gly Arg Met Thr Leu Val Gly Ile Ile Ser Trp Gly 305 310 315 320 CTG GGC TGT GGA CAG AAG GAT GTC CCG GGT GTG TAC ACC ACC AAG GTT ACC 1008 Leu Gly Cys Gly Gln Lys Asp Val Pro Gly Val Tyr Thr Lys Val Thr 325 330 335 AAC TAC CTA GAC TGG ATT CGT GAC AAC ATG CGA CCG TGA 1047 Asn Tyr Leu Asp Trp Ile Arg Asp Asn Met Arg Pro 340 345 348 SEQ ID NO: 12 Sequence length: 24 Sequence type: Nucleic acid Topology: Linear Sequence type: Other nucleic acid Synthetic DNA sequence GGGCGACTCTTCGTGCTTGGCAAA 24 SEQ ID NO: 13 Sequence length: 1068 Sequence type: Nucleic acid Number: Double-stranded Topology: Linear Sequence type: Other nucleic acids Modified SEQ ID NO: 7 Sequence features Location: Amino acid deletions from 1 to 173, amino acid substitutions at positions 298 and 299 Methods to determine features: P sequence ATG TCT GAG GGA AAC AGT GAC TGC TAC TTT GGG AAT GGG TCA GCC TAC 48 Met Ser Glu Gly Asn Ser Asp Cys Tyr Phe Gly Asn Gly Ser Ala Tyr 1 5 10 15 CGT GGC ACG CAC AGC CTC ACC GAG TCG GGT GCC TCC TGC CTC CCG TGG 96 Arg Gly Thr His Ser Leu Thr Glu Ser Gly Ala Ser Cys Leu Pro Trp 20 25 30 AAT TCC ATG ATC CTG ATA GGC AAG GTT TAC ACA GCA CAG AAC CCC AGT 144 Asn Ser Met Ile Leu Ile Gly Lys Val Tyr Thr Ala Gln Asn Pro Ser 35 40 45 GCC CAG GCA CTG GGC CTG GGC AAA CAT AAT TAC TGC CGG AAT CCT GAT 192 Ala Gln Ala Leu Gly Leu Gly Lys His Asn Tyr Cys Arg Asn Pro Asp 50 55 60 GGG GAT GCC AAG CCC TGG TGC CAC GTG CTG AAG AAC CGC AGG CTG ACG 240 Gly Asp Ala Lys Pro Trp Cys His Val Leu Lys Asn Arg Arg Leu Thr 65 70 75 80 TGG GAG TAC TGT GAT GTG CCC TCC TGC TCC ACC TGC GGC CTG AGA CAG 288 Trp Glu Tyr Cys Asp Val Pro Ser Cys Ser Thr Cys Gly Leu Arg Gln 85 90 95 TAC AGC CAG CCT CAG TTT CGC ATC AAA GGA GGG CTC TTC GCC GAC ATC 336 Tyr Ser Gln Pro Gln Phe Arg Ile Lys Gly Gly Leu Phe Ala Asp Ile 100 105 110 GCC TCC CAC CCC TGG CAG GCT GCC ATC TTT GCC AAG CAC GAA GAG TCG 384 Ala Ser His Pro Trp Gln Ala Ala Ile Phe Ala Ly s His Glu Glu Ser 115 120 125 CCC GGA GAG CGG TTC CTG TGC GGG GGC ATA CTC ATC AGC TCC TGC TGG 432 Pro Gly Glu Arg Phe Leu Cys Gly Gly Ile Leu Ile Ser Ser Cys Trp 130 135 140 ATT CTC TCT GCC GCC CAC TGC TTC CAG GAG AGG TTT CCG CCC CAC CAC 480 Ile Leu Ser Ala Ala His Cys Phe Gln Glu Arg Phe Pro Pro His His 145 150 155 160 CTG ACG GTG ATC TTG GGC AGA ACA TAC CGG GTG GTC CCT GGC GAG GAG 528 Leu Thr Val Ile Leu Gly Arg Thr Tyr Arg Val Val Pro Gly Glu Glu 165 170 175 GAG CAG AAA TTT GAA GTC GAA AAA TAC ATT GTC CAT AAG GAA TTC GAT 576 Glu Gln Lys Phe Glu Val Glu Lys Tyr Ile Val His Lys Glu Phe Asp 180 185 190 GAT GAC ACT TAC GAC AAT GAC ATT GCG CTG CTG CAG CTG AAA TCG GAT 624 Asp Asp Asp Thr Tyr Asp Asn Asp Ile Ala Leu Leu Gln Leu Lys Ser Asp 195 200 205 TCG TCC CGC TGT GCC CAG GAG AGC AGC GTG GTC CGC ACT GTG TGC CTT 672 Ser Ser Arg Cys Ala Gln Glu Ser Ser Val Val Arg Thr Val Cys Leu 210 215 220 CCC CCG GAG GAC CTG CAG CTG CCG GAC TGG ACG GAG TGT GAG CTC TCC 720 Pro Pro Glu Asp Leu Gln Leu Pro As p Trp Thr Glu Cys Glu Leu Ser 225 230 235 240 GGC TAC GGC AAG CAT GAG GCC TTG TCT CCT TTC TAT TCG GAG CGG CTG 768 Gly Tyr Gly Lys His Glu Ala Leu Ser Pro Phe Tyr Ser Glu Arg Leu 245 250 255 AAG GAG GCT CAT GTC AGA CTG TAC CCA TCC AGC CGC TGC ACA TCA CAA 816 Lys Glu Ala His Val Arg Leu Tyr Pro Ser Ser Arg Cys Thr Ser Gln 260 265 270 CAT TTA CTT AAC AGA ACA GTC ACC GAC AAC ATG CTG TGT GCT GGA GAC 864 His Leu Leu Asn Arg Thr Val Thr Asp Asn Met Leu Cys Ala Gly Asp 275 280 285 ACT CGG AGC GGC GGG CCC CAG GCA AAC TTG CAC GAC GCC TGC CAG GGC 912 Thr Arg Ser Gly Gly Pro Gln Ala Asn Leu His Asp Ala Cys Gln Gly 290 295 300 GAT TCG GGA GGC CCC CTG GTG TGT CTG AAC GAT GGC CGC ATG ACT TTG 960 Asp Ser Gly Gly Pro Leu Val Cys Leu Asn Asp Gly Arg Met Thr Leu 305 310 315 320 GTG GGC ATC ATC AGC TGG GGC CTG GGC TGT GGA CAG AAG GAT GTC CCG 1008 Val Gly Ile Ile Ser Trp Gly Leu Gly Cys Gly Gln Lys Asp Val Pro 325 330 335 GGT GTG TAC ACC AAG GTT ACC AAC TAC CTA GAC TGG ATT CGT GAC AAC 1056 Gly Val Tyr Thr Lys Val Thr Asn Tyr Leu Asp Trp Ile Arg Asp Asn 340 345 350 ATG CGA CCG TGA 1068 Met Arg Pro 355 SEQ ID NO: 14 Sequence Length: 24 Sequence Type: Nucleic Acid Topology: Linear Sequence Type: Other Nucleic acid Synthetic DNA sequence GCACAGGAAG TGATATCCGG GCGA 24 SEQ ID NO: 15 Sequence length: 24 Sequence type: Nucleic acid Topology: Linear Sequence type: Other nucleic acid Synthetic DNA sequence GCACAGGAAG TGATATGCAA AGAT 24 SEQ ID NO: 16 Sequence length : 1068 Sequence type: Nucleic acid Number of strands: Double strand Topology: Linear Sequence type: Other nucleic acid Modified SEQ ID NO: 7 Sequence features Location: Amino acid deletions from 1 to 173, amino acids 303 and 304 Method for determining substitution characteristics: P sequence ATG TCT GAG GGA AAC AGT GAC TGC TAC TTT GGG AAT GGG TCA GCC TAC 48 Met Ser Glu Gly Asn Ser Asp Cys Tyr Phe Gly Asn Gly Ser Ala Tyr 1 5 10 15 CGT GGC ACG CAC AGC CTC ACC GAG TCG GGT GCC TCC TGC CTC CCG TGG 96 Arg Gly Thr His Ser Leu Thr Glu Ser Gly Ala Ser Cys Leu Pro Trp 20 25 30 AAT TCC ATG ATC CTG ATA GGC AAG GTT TAC ACA GCA CAG AAC CCC AGT 144 Asn Ser Met Ile Leu Ile Gly Lys Val Tyr Thr Ala Gln Asn Pro Ser 35 40 45 GCC CAG GCA CTG GGC CTG GGC AAA CAT AAT TAC TGC CGG AAT CCT GAT 192 Ala Gln Ala Leu Gly Leu Gly Lys His Asn Tyr Cys Arg Asn Pro Asp 50 55 60 GGG GAT GCC AAG CCC TGG TGC CAC GTG CTG AAG AAC CGC AGG CTG ACG 240 Gly Asp Ala Lys Pro Trp Cys His Val Leu Lys Asn Arg Arg Leu Thr 65 70 75 80 TGG GAG TAC TGT GAT GTG CCC TCC TGC TCC ACC TGC GGC CTG AGA CAG 288 Trp Glu Tyr Cys Asp Val Pro Ser Cys Ser Thr Cys Gly Leu Arg Gln 85 90 95 TAC AGC CAG CCT CAG TTT CGC ATC AAA GGA GGG CTC TTC GCC GAC ATC 336 Tyr Ser Gln Pro Gln Phe Arg Ile Lys Gly Gly Leu Phe Ala Asp Ile 100 105 110 GCC TCC CAC CCC TGG CAG GCT GCC ATC TTT GCC AAG CAC AGG AGG TCG 384 Ala Ser His Pro Trp Gln Ala Ala Ile Phe Ala Lys His Arg Arg Ser 115 120 125 CCC GGA TAT CAC TTC CTG TGC GGG GGC ATA CTC ATC AGC TCC TGC TGG 432 Pro Gly Tyr His Phe Leu Cys Gly Gly Ile Leu Ile Ser Ser Cys Trp 130 135 140 ATT CTC TCT GCC GCC CAC TGC TTC CAG GAG AGG TTT CCG CCC CAC CAC 480 Ile Leu Ser Ala Ala His Cys Phe Gln Glu Arg Phe Pro Pro His His 145 150 155 160 CTG ACG GTG ATC TTG GGC AGA ACA TAC CGG GTG GTC CCT GGC GAG GAG 528 Leu Thr Val Ile Leu Gly Arg Thr Tyr Arg Val Val Pro Gly Glu Glu 165 170 175 GAG CAG AAA TTT GAA GTC GAA AAA TAC ATT GTC CAT AAG GAA TTC GAT 576 Glu Gln Lys Phe Glu Val Glu Lys Tyr Ile Val His Lys Glu Phe Asp 180 185 190 GAT GAC ACT TAC GAC AAT GAC ATT GCG CTG CTG CAG CTG AAA TCG GAT 624 Asp Asp Thr Tyr Asp Asn Asp Ile Ala Leu Leu Gln Leu Lys Ser Asp 195 200 205 TCG TCC CGC TGT GCC CAG GAG AGC AGC GTG GTC CGC ACT GTG TGC CTT 672 Ser Ser Arg Cys Ala Gln Glu Ser Ser Val Val Arg Thr Val Cys Leu 210 215 220 CCC CCG GAG GAC CTG CAG CTG CCG GAC TGG ACG GAG TGT GAG CTC TCC 720 Pro Pro Glu Asp Leu Gln Leu Pro Asp Trp Thr Glu Cys Glu Leu Ser 225 230 235 240 GGC TAC GGC AAG CAT GAG GCC TTG TCT CCT TTC TAT TCG GAG CGG CTG 768 Gly Tyr Gly Lys His Glu Ala Leu Ser Pro Phe Tyr Ser Glu Arg Leu 245 250 255 AAG GAG GCT CAT GTC AGA CTG TAC CCA TCC AGC CGC TGC ACA TCA CAA 816 Lys Glu Ala His Val Arg Leu Tyr Pro Ser Ser Arg Cys Thr Ser Gln 260 265 270 CAT TTA CTT AAC AGA ACA GTC ACC GAC AAC ATG CTG TGT GCT GGA GAC 864 His Leu Leu Asn Arg Thr Val Thr Asp Asn Met Leu Cys Ala Gly Asp 275 280 285 ACT CGG AGC GGC GGG CCC CAG GCA AAC TTG CAC GAC GCC TGC CAG GGC 912 Thr Arg Ser Gly Gly Pro Gln Ala Asn Leu His Asp Ala Cys Gln Gly 290 295 300 GAT TCG GGA GGC CCC CTG GTG TGT CTG AAC GAT GGC CGC ATG ACT TTG 960 Asp Ser Gly Gly Pro Leu Val Cys Leu Asn Asp Gly Arg Met Thr Leu 305 310 315 320 GTG GGC ATC ATC AGC TGG GGC CTG GGC TGT GGA CAG AAG GAT GTC CCG 1008 Val Gly Ile Ile Ser Trp Gly Leu Gly Cys Gly Gln Lys Asp Val Pro 325 330 335 GGT GTG TAC ACC AAG GTT ACC AAC TAC CTA GAC TGG ATT CGT GAC AAC 1056 Gly Val Tyr Thr Lys Val Thr Asn Tyr Leu Asp Trp Ile Arg Asp Asn 340 345 350 ATG CGA CCG TGA 1068 Met Arg Pro 355 SEQ ID NO: 17 Sequence Length: 1047 Sequence type: Nucleic acid Number of strands: Double strand Topology: Linear Sequence type: Other nucleic acid Sequence No. 7 is modified Sequence characteristics Location: Amino acid deletion from 1 to 173, Amino acid from 296 to 302 Deletion, amino acid substitutions at positions 303 and 304 Method for determining characteristics: P sequence ATG TCT GAG GGA AAC AGT GAC TGC TAC TTT GGG AAT GGG TCA GCC TAC 48 Met Ser Glu Gly Asn Ser Asp Cys Tyr Phe Gly Asn Gly Ser Ala Tyr 1 5 10 15 CGT GGC ACG CAC AGC CTC ACC GAG TCG GGT GCC TCC TGC CTC CCG TGG 96 Arg Gly Thr His Ser Leu Thr Glu Ser Gly Ala Ser Cys Leu Pro Trp 20 25 30 AAT TCC ATG ATC CTG ATA GGC AAG GTT TAC ACA GCA CAG AAC CCC AGT 144 Asn Ser Met Ile Leu Ile Gly Lys Val Tyr Thr Ala Gln Asn Pro Ser 35 40 45 GCC CAG GCA CTG GGC CTG GGC AAA CAT AAT TAC TGC CGG AAT CCT GAT 192 Ala Gln Ala Leu Gly Leu Gly Lys His Asn Tyr Cys Arg Asn Pro Asp 50 55 60 GGG GAT GCC AAG CCC TGG TGC CAC GTG CTG AAG AAC CGC AGG CTG ACG 240 Gly Asp Ala Lys Pro Trp Cys His Val L eu Lys Asn Arg Arg Leu Thr 65 70 75 80 TGG GAG TAC TGT GAT GTG CCC TCC TGC TCC ACC TGC GGC CTG AGA CAG 288 Trp Glu Tyr Cys Asp Val Pro Ser Cys Ser Thr Cys Gly Leu Arg Gln 85 90 95 TAC AGC CAG CCT CAG TTT CGC ATC AAA GGA GGG CTC TTC GCC GAC ATC 336 Tyr Ser Gln Pro Gln Phe Arg Ile Lys Gly Gly Leu Phe Ala Asp Ile 100 105 110 GCC TCC CAC CCC TGG CAG GCT GCC ATC TTT GCT TAT CAC TTC CTG TGC 384 Ala Ser His Pro Trp Gln Ala Ala Ile Phe Ala Tyr His Phe Leu Cys 115 120 125 GGG GGC ATA CTC ATC AGC TCC TGC TGG ATT CTC TCT GCC GCC CAC TGC 432 Gly Gly Ile Leu Ile Ser Ser Cys Trp Ile Leu Ser Ala Ala His Cys 130 135 140 TTC CAG GAG AGG TTT CCG CCC CAC CAC CTG ACG GTG ATC TTG GGC AGA 480 Phe Gln Glu Arg Phe Pro Pro His His Leu Thr Val Ile Leu Gly Arg 145 150 155 160 ACA TAC CGG GTG GTC CCT GGC GAG GAG GAG CAG AAA TTT GAA GTC GAA 528 Thr Tyr Arg Val Val Pro Gly Glu Glu Glu Gln Lys Phe Glu Val Glu 165 170 175 AAA TAC ATT GTC CAT AAG GAA TTC GAT GAT GAC ACT TAC GAC AAT GAC 576 Lys Tyr Ile Val His Lys Glu Phe Asp Asp Asp Thr Tyr Asp Asn Asp 180 185 190 ATT GCG CTG CTG CAG CTG AAA TCG GAT TCG TCC CGC TGT GCC CAG GAG 624 Ile Ala Leu Leu Gln Leu Lys Ser Asp Ser Ser Arg Cys Ala Gln Glu 195 200 205 AGC AGC GTG GTC CGC ACT GTG TGC CTT CCC CCG GAG GAC CTG CAG CTG 672 Ser Ser Val Val Arg Thr Val Cys Leu Pro Pro Glu Asp Leu Gln Leu 210 215 220 CCG GAC TGG ACG GAG TGT GAG CTC TCC GGC TAC GGC AAG CAT GAG GCC 720 Pro Asp Trp Thr Glu Cys Glu Leu Ser Gly Tyr Gly Lys His Glu Ala 225 230 235 240 TTG TCT CCT TTC TAT TCG GAG CGG CTG AAG GAG GCT CAT GTC AGA CTG 768 Leu Ser Pro Phe Tyr Ser Glu Arg Leu Lys Glu Ala His Val Arg Leu 245 250 255 TAC CCA TCC AGC CGC TGC ACA TCA CAA CAT TTA CTT AAC AGA ACA GTC 816 Tyr Pro Ser Ser Arg Cys Thr Ser Gln His Leu Leu Asn Arg Thr Val 260 265 270 ACC GAC AAC ATG CTG TGT GCT GGA GAC ACT CGG AGC GGC GGG CCC CAG 864 Thr Asp Asn Met Leu Cys Ala Gly Asp Thr Arg Ser Gly Gly Pro Gln 275 280 285 GCA AAC TTG CAC GAC GCC TGC CAG GGC GAT TCG GGA GGC CCC CTG GTG 912 Ala Asn Leu His Asp Ala Cys Gln Gly Asp Ser Gly Gly Pro Leu Val 290 295 300 TGT CTG AAC GAT GGC CGC ATG ACT TTG GTG GGC ATC ATC AGC TGG GGC 960 Cys Leu Asn Asp Gly Arg Met Thr Leu Val Gly Ile Ile Ser Trp Gly 305 310 315 320 CTG GGC TGT GGA CAG AAG GAT GTC CCG GGT GTG TAC ACC AAG GTT ACC 1008 Leu Gly Cys Gly Gln Lys Asp Val Pro Gly Val Tyr Thr Lys Val Thr 325 330 335 AAC TAC CTA GAC TGG ATT CGT GAC AAC ATG CGA CCG TGA 1047 Asn Tyr Leu Asp Trp Ile Arg Asp Asn Met Arg Pro 340 345 348.

【0096】配列番号:18 配列の長さ:21 配列の型:核酸 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 CCGCTCTCCT GGCGACCTCC T 21。SEQ ID NO: 18 Sequence Length: 21 Sequence Type: Nucleic Acid Topology: Linear Sequence Type: Other Nucleic Acid Synthetic DNA Sequence CCGCTCTCCT GGCGACCTCC T 21.

【0097】配列番号:19 配列の長さ:24 配列の型:核酸 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 TGGCGACTTC TTGTGCTTGG CAAA 24。SEQ ID NO: 19 Sequence length: 24 Sequence type: Nucleic acid Topology: Linear Sequence type: Other nucleic acid Synthetic DNA Sequence TGGCGACTTC TTGTGCTTGG CAAA 24.

【0098】配列番号:20 配列の長さ:1068 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:他の核酸 配列番号7を修飾 配列の特徴 存在位置:1〜173までのアミノ酸欠損、298,299位を
置換 特徴を決定した方法:P 配列 ATG TCT GAG GGA AAC AGT GAC TGC TAC TTT GGG AAT GGG TCA GCC TAC 48 Met Ser Glu Gly Asn Ser Asp Cys Tyr Phe Gly Asn Gly Ser Ala Tyr 1 5 10 15 CGT GGC ACG CAC AGC CTC ACC GAG TCG GGT GCC TCC TGC CTC CCG TGG 96 Arg Gly Thr His Ser Leu Thr Glu Ser Gly Ala Ser Cys Leu Pro Trp 20 25 30 AAT TCC ATG ATC CTG ATA GGC AAG GTT TAC ACA GCA CAG AAC CCC AGT 144 Asn Ser Met Ile Leu Ile Gly Lys Val Tyr Thr Ala Gln Asn Pro Ser 35 40 45 GCC CAG GCA CTG GGC CTG GGC AAA CAT AAT TAC TGC CGG AAT CCT GAT 192 Ala Gln Ala Leu Gly Leu Gly Lys His Asn Tyr Cys Arg Asn Pro Asp 50 55 60 GGG GAT GCC AAG CCC TGG TGC CAC GTG CTG AAG AAC CGC AGG CTG ACG 240 Gly Asp Ala Lys Pro Trp Cys His Val Leu Lys Asn Arg Arg Leu Thr 65 70 75 80 TGG GAG TAC TGT GAT GTG CCC TCC TGC TCC ACC TGC GGC CTG AGA CAG 288 Trp Glu Tyr Cys Asp Val Pro Ser Cys Ser Thr Cys Gly Leu Arg Gln 85 90 95 TAC AGC CAG CCT CAG TTT CGC ATC AAA GGA GGG CTC TTC GCC GAC ATC 336 Tyr Ser Gln Pro Gln Phe Arg Ile Lys Gly Gly Leu Phe Ala Asp Ile 100 105 110 GCC TCC CAC CCC TGG CAG GCT GCC ATC TTT GCC AAG CAC AAG AAG TCG 384 Ala Ser His Pro Trp Gln Ala Ala Ile Phe Ala Lys His Lys Lys Ser 115 120 125 CCC GGA GAG CGG TTC CTG TGC GGG GGC ATA CTC ATC AGC TCC TGC TGG 432 Pro Gly Glu Arg Phe Leu Cys Gly Gly Ile Leu Ile Ser Ser Cys Trp 130 135 140 ATT CTC TCT GCC GCC CAC TGC TTC CAG GAG AGG TTT CCG CCC CAC CAC 480 Ile Leu Ser Ala Ala His Cys Phe Gln Glu Arg Phe Pro Pro His His 145 150 155 160 CTG ACG GTG ATC TTG GGC AGA ACA TAC CGG GTG GTC CCT GGC GAG GAG 528 Leu Thr Val Ile Leu Gly Arg Thr Tyr Arg Val Val Pro Gly Glu Glu 165 170 175 GAG CAG AAA TTT GAA GTC GAA AAA TAC ATT GTC CAT AAG GAA TTC GAT 576 Glu Gln Lys Phe Glu Val Glu Lys Tyr Ile Val His Lys Glu Phe Asp 180 185 190 GAT GAC ACT TAC GAC AAT GAC ATT GCG CTG CTG CAG CTG AAA TCG GAT 624 Asp Asp Thr Tyr Asp Asn Asp Ile Ala Leu Leu Gln Leu Lys Ser Asp 195 200 205 TCG TCC CGC TGT GCC CAG GAG AGC AGC GTG GTC CGC ACT GTG TGC CTT 672 Ser Ser Arg Cys Ala Gln Glu Ser Ser Val Val Arg Thr Val Cys Leu 210 215 220 CCC CCG GAG GAC CTG CAG CTG CCG GAC TGG ACG GAG TGT GAG CTC TCC 720 Pro Pro Glu Asp Leu Gln Leu Pro Asp Trp Thr Glu Cys Glu Leu Ser 225 230 235 240 GGC TAC GGC AAG CAT GAG GCC TTG TCT CCT TTC TAT TCG GAG CGG CTG 768 Gly Tyr Gly Lys His Glu Ala Leu Ser Pro Phe Tyr Ser Glu Arg Leu 245 250 255 AAG GAG GCT CAT GTC AGA CTG TAC CCA TCC AGC CGC TGC ACA TCA CAA 816 Lys Glu Ala His Val Arg Leu Tyr Pro Ser Ser Arg Cys Thr Ser Gln 260 265 270 CAT TTA CTT AAC AGA ACA GTC ACC GAC AAC ATG CTG TGT GCT GGA GAC 864 His Leu Leu Asn Arg Thr Val Thr Asp Asn Met Leu Cys Ala Gly Asp 275 280 285 ACT CGG AGC GGC GGG CCC CAG GCA AAC TTG CAC GAC GCC TGC CAG GGC 912 Thr Arg Ser Gly Gly Pro Gln Ala Asn Leu His Asp Ala Cys Gln Gly 290 295 300 GAT TCG GGA GGC CCC CTG GTG TGT CTG AAC GAT GGC CGC ATG ACT TTG 960 Asp Ser Gly Gly Pro Leu Val Cys Leu Asn Asp Gly Arg Met Thr Leu 305 310 315 320 GTG GGC ATC ATC AGC TGG GGC CTG GGC TGT GGA CAG AAG GAT GTC CCG 1008 Val Gly Ile Ile Ser Trp Gly Leu Gly Cys Gly Gln Lys Asp Val Pro 325 330 335 GGT GTG TAC ACC AAG GTT ACC AAC TAC CTA GAC TGG ATT CGT GAC AAC 1056 Gly Val Tyr Thr Lys Val Thr Asn Tyr Leu Asp Trp Ile Arg Asp Asn 340 345 350 ATG CGA CCG TGA 1068 Met Arg Pro 355。
SEQ ID NO: 20 Sequence length: 1068 Sequence type: Nucleic acid Number of strands: Double strand Topology: Linear Sequence type: Other nucleic acid Modified SEQ ID NO: 7 Sequence features Location: 1 to Amino acid deletion up to 173, substitution at positions 298 and 299 Method for determining the characteristics: P sequence ATG TCT GAG GGA AAC AGT GAC TGC TAC TTT GGG AAT GGG TCA GCC TAC 48 Met Ser Glu Gly Asn Ser Asp Cys Tyr Phe Gly Asn Gly Ser Ala Tyr 1 5 10 15 CGT GGC ACG CAC AGC CTC ACC GAG TCG GGT GCC TCC TGC CTC CCG TGG 96 Arg Gly Thr His Ser Leu Thr Glu Ser Gly Ala Ser Cys Leu Pro Trp 20 25 30 AAT TCC ATG ATC CTG ATA GGC AAG GTT TAC ACA GCA CAG AAC CCC AGT 144 Asn Ser Met Ile Leu Ile Gly Lys Val Tyr Thr Ala Gln Asn Pro Ser 35 40 45 GCC CAG GCA CTG GGC CTG GGC AAA CAT AAT TAC TGC CGG AAT CCT GAT 192 Ala Gln Ala Leu Gly Leu Gly Lys His Asn Tyr Cys Arg Asn Pro Asp 50 55 60 GGG GAT GCC AAG CCC TGG TGC CAC GTG CTG AAG AAC CGC AGG CTG ACG 240 Gly Asp Ala Lys Pro Trp Cys His Val Leu Lys Asn Arg Arg Leu Thr 65 70 75 80 TGG GAG TAC TGT GAT GTG CCC TCC TGC TCC ACC TGC GGC CTG AGA CAG 288 Trp Glu Tyr Cys Asp Val Pro Ser Cys Ser Thr Cys Gly Leu Arg Gln 85 90 95 TAC AGC CAG CCT CAG TTT CGC ATC AAA GGA GGG CTC TTC GCC GAC ATC 336 Tyr Ser Gln Pro Gln Phe Arg Ile Lys Gly Gly Leu Phe Ala Asp Ile 100 105 110 GCC TCC CAC CCC TGG CAG GCT GCC ATC TTT GCC AAG CAC AAG AAG TCG 384 Ala Ser His Pro Trp Gln Ala Ala Ile Phe Ala Lys His Lys Lys Ser 115 120 125 CCC GGA GAG CGG TTC CTG TGC GGG GGC ATA CTC ATC AGC TCC TGC TGG 432 Pro Gly Glu Arg Phe Leu Cys Gly Gly Ile Leu Ile Ser Ser Cys Trp 130 135 140 ATT CTC TCT GCC GCC CAC TGC TTC CAG GAG AGG TTT CCG CCC CAC CAC 480 Ile Leu Ser Ala Ala His Cys Phe Gln Glu Arg Phe Pro Pro His His 145 150 155 160 CTG ACG GTG ATC TTG GGC AGA ACA TAC CGG GTG GTC CCT GGC GAG GAG 528 Leu Thr Val Ile Leu Gly Arg Thr Tyr Arg Val Val Pro Gly Glu Glu 165 170 175 GAG CAG AAA TTT GAA GTC GAA AAA TAC ATT GTC CAT AAG GAA TTC GAT 576 Glu Gln Lys Phe Glu Val Glu Lys Tyr Ile Va l His Lys Glu Phe Asp 180 185 190 GAT GAC ACT TAC GAC AAT GAC ATT GCG CTG CTG CAG CTG AAA TCG GAT 624 Asp Asp Thr Tyr Asp Asn Asp Ile Ala Leu Leu Gln Leu Lys Ser Asp 195 200 205 TCG TCC CGC TGT GCC CAG GAG AGC AGC GTG GTC CGC ACT GTG TGC CTT 672 Ser Ser Arg Cys Ala Gln Glu Ser Ser Val Val Arg Thr Val Cys Leu 210 215 220 CCC CCG GAG GAC CTG CAG CTG CCG GAC TGG ACG GAG TGT GAG CTC TCC 720 Pro Pro Glu Asp Leu Gln Leu Pro Asp Trp Thr Glu Cys Glu Leu Ser 225 230 235 240 GGC TAC GGC AAG CAT GAG GCC TTG TCT CCT TTC TAT TCG GAG CGG CTG 768 Gly Tyr Gly Lys His Glu Ala Leu Ser Pro Phe Tyr Ser Glu Arg Leu 245 250 255 AAG GAG GCT CAT GTC AGA CTG TAC CCA TCC AGC CGC TGC ACA TCA CAA 816 Lys Glu Ala His Val Arg Leu Tyr Pro Ser Ser Arg Cys Thr Ser Gln 260 265 270 CAT TTA CTT AAC AGA ACA GTC ACC GAC AAC ATG CTG TGT GCT GGA GAC 864 His Leu Leu Asn Arg Thr Val Thr Asp Asn Met Leu Cys Ala Gly Asp 275 280 285 ACT CGG AGC GGC GGG CCC CAG GCA AAC TTG CAC GAC GCC TGC CAG GGC 912 Thr Arg Ser Gly Gly Pro Gln Al a Asn Leu His Asp Ala Cys Gln Gly 290 295 300 GAT TCG GGA GGC CCC CTG GTG TGT CTG AAC GAT GGC CGC ATG ACT TTG 960 Asp Ser Gly Gly Pro Leu Val Cys Leu Asn Asp Gly Arg Met Thr Leu 305 310 315 320 GTG GGC ATC ATC AGC TGG GGC CTG GGC TGT GGA CAG AAG GAT GTC CCG 1008 Val Gly Ile Ile Ser Trp Gly Leu Gly Cys Gly Gln Lys Asp Val Pro 325 330 335 GGT GTG TAC ACC AAG GTT ACC AAC TAC CTA GAC TGG ATT CGT GAC AAC 1056 Gly Val Tyr Thr Lys Val Thr Asn Tyr Leu Asp Trp Ile Arg Asp Asn 340 345 350 ATG CGA CCG TGA 1068 Met Arg Pro 355.

【0099】配列番号:21 配列の長さ:24 配列の型:核酸 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 TGGCGATAGT AGGTGCTTGG CAA
A 24。
SEQ ID NO: 21 Sequence Length: 24 Sequence Type: Nucleic Acid Topology: Linear Sequence Type: Other Nucleic Acid Synthetic DNA Sequence TGGCGATAGT AGGTGCTTGG CAA
A 24.

【0100】配列番号:22 配列の長さ:1068 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:他の核酸 配列番号7を修飾 配列の特徴 存在位置:1〜173までのアミノ酸欠損、298,299位を
置換 特徴を決定した方法:P 配列 ATG TCT GAG GGA AAC AGT GAC TGC TAC TTT GGG AAT GGG TCA GCC TAC 48 Met Ser Glu Gly Asn Ser Asp Cys Tyr Phe Gly Asn Gly Ser Ala Tyr 1 5 10 15 CGT GGC ACG CAC AGC CTC ACC GAG TCG GGT GCC TCC TGC CTC CCG TGG 96 Arg Gly Thr His Ser Leu Thr Glu Ser Gly Ala Ser Cys Leu Pro Trp 20 25 30 AAT TCC ATG ATC CTG ATA GGC AAG GTT TAC ACA GCA CAG AAC CCC AGT 144 Asn Ser Met Ile Leu Ile Gly Lys Val Tyr Thr Ala Gln Asn Pro Ser 35 40 45 GCC CAG GCA CTG GGC CTG GGC AAA CAT AAT TAC TGC CGG AAT CCT GAT 192 Ala Gln Ala Leu Gly Leu Gly Lys His Asn Tyr Cys Arg Asn Pro Asp 50 55 60 GGG GAT GCC AAG CCC TGG TGC CAC GTG CTG AAG AAC CGC AGG CTG ACG 240 Gly Asp Ala Lys Pro Trp Cys His Val Leu Lys Asn Arg Arg Leu Thr 65 70 75 80 TGG GAG TAC TGT GAT GTG CCC TCC TGC TCC ACC TGC GGC CTG AGA CAG 288 Trp Glu Tyr Cys Asp Val Pro Ser Cys Ser Thr Cys Gly Leu Arg Gln 85 90 95 TAC AGC CAG CCT CAG TTT CGC ATC AAA GGA GGG CTC TTC GCC GAC ATC 336 Tyr Ser Gln Pro Gln Phe Arg Ile Lys Gly Gly Leu Phe Ala Asp Ile 100 105 110 GCC TCC CAC CCC TGG CAG GCT GCC ATC TTT GCC AAG CAC GAT GAT TCG 384 Ala Ser His Pro Trp Gln Ala Ala Ile Phe Ala Lys His Asp Asp Ser 115 120 125 CCC GGA GAG CGG TTC CTG TGC GGG GGC ATA CTC ATC AGC TCC TGC TGG 432 Pro Gly Glu Arg Phe Leu Cys Gly Gly Ile Leu Ile Ser Ser Cys Trp 130 135 140 ATT CTC TCT GCC GCC CAC TGC TTC CAG GAG AGG TTT CCG CCC CAC CAC 480 Ile Leu Ser Ala Ala His Cys Phe Gln Glu Arg Phe Pro Pro His His 145 150 155 160 CTG ACG GTG ATC TTG GGC AGA ACA TAC CGG GTG GTC CCT GGC GAG GAG 528 Leu Thr Val Ile Leu Gly Arg Thr Tyr Arg Val Val Pro Gly Glu Glu 165 170 175 GAG CAG AAA TTT GAA GTC GAA AAA TAC ATT GTC CAT AAG GAA TTC GAT 576 Glu Gln Lys Phe Glu Val Glu Lys Tyr Ile Val His Lys Glu Phe Asp 180 185 190 GAT GAC ACT TAC GAC AAT GAC ATT GCG CTG CTG CAG CTG AAA TCG GAT 624 Asp Asp Thr Tyr Asp Asn Asp Ile Ala Leu Leu Gln Leu Lys Ser Asp 195 200 205 TCG TCC CGC TGT GCC CAG GAG AGC AGC GTG GTC CGC ACT GTG TGC CTT 672 Ser Ser Arg Cys Ala Gln Glu Ser Ser Val Val Arg Thr Val Cys Leu 210 215 220 CCC CCG GAG GAC CTG CAG CTG CCG GAC TGG ACG GAG TGT GAG CTC TCC 720 Pro Pro Glu Asp Leu Gln Leu Pro Asp Trp Thr Glu Cys Glu Leu Ser 225 230 235 240 GGC TAC GGC AAG CAT GAG GCC TTG TCT CCT TTC TAT TCG GAG CGG CTG 768 Gly Tyr Gly Lys His Glu Ala Leu Ser Pro Phe Tyr Ser Glu Arg Leu 245 250 255 AAG GAG GCT CAT GTC AGA CTG TAC CCA TCC AGC CGC TGC ACA TCA CAA 816 Lys Glu Ala His Val Arg Leu Tyr Pro Ser Ser Arg Cys Thr Ser Gln 260 265 270 CAT TTA CTT AAC AGA ACA GTC ACC GAC AAC ATG CTG TGT GCT GGA GAC 864 His Leu Leu Asn Arg Thr Val Thr Asp Asn Met Leu Cys Ala Gly Asp 275 280 285 ACT CGG AGC GGC GGG CCC CAG GCA AAC TTG CAC GAC GCC TGC CAG GGC 912 Thr Arg Ser Gly Gly Pro Gln Ala Asn Leu His Asp Ala Cys Gln Gly 290 295 300 GAT TCG GGA GGC CCC CTG GTG TGT CTG AAC GAT GGC CGC ATG ACT TTG 960 Asp Ser Gly Gly Pro Leu Val Cys Leu Asn Asp Gly Arg Met Thr Leu 305 310 315 320 GTG GGC ATC ATC AGC TGG GGC CTG GGC TGT GGA CAG AAG GAT GTC CCG 1008 Val Gly Ile Ile Ser Trp Gly Leu Gly Cys Gly Gln Lys Asp Val Pro 325 330 335 GGT GTG TAC ACC AAG GTT ACC AAC TAC CTA GAC TGG ATT CGT GAC AAC 1056 Gly Val Tyr Thr Lys Val Thr Asn Tyr Leu Asp Trp Ile Arg Asp Asn 340 345 350 ATG CGA CCG TGA 1068 Met Arg Pro 355。
SEQ ID NO: 22 Sequence length: 1068 Sequence type: Nucleic acid Number of strands: Double strand Topology: Linear Sequence type: Other nucleic acid Modified SEQ ID NO: 7 Sequence features Location: 1 to Amino acid deletion up to 173, substitution at positions 298 and 299 Method for determining the characteristics: P sequence ATG TCT GAG GGA AAC AGT GAC TGC TAC TTT GGG AAT GGG TCA GCC TAC 48 Met Ser Glu Gly Asn Ser Asp Cys Tyr Phe Gly Asn Gly Ser Ala Tyr 1 5 10 15 CGT GGC ACG CAC AGC CTC ACC GAG TCG GGT GCC TCC TGC CTC CCG TGG 96 Arg Gly Thr His Ser Leu Thr Glu Ser Gly Ala Ser Cys Leu Pro Trp 20 25 30 AAT TCC ATG ATC CTG ATA GGC AAG GTT TAC ACA GCA CAG AAC CCC AGT 144 Asn Ser Met Ile Leu Ile Gly Lys Val Tyr Thr Ala Gln Asn Pro Ser 35 40 45 GCC CAG GCA CTG GGC CTG GGC AAA CAT AAT TAC TGC CGG AAT CCT GAT 192 Ala Gln Ala Leu Gly Leu Gly Lys His Asn Tyr Cys Arg Asn Pro Asp 50 55 60 GGG GAT GCC AAG CCC TGG TGC CAC GTG CTG AAG AAC CGC AGG CTG ACG 240 Gly Asp Ala Lys Pro Trp Cys His Val Leu Lys Asn Arg Arg Leu Thr 65 70 75 80 TGG GAG TAC TGT GAT GTG CCC TCC TGC TCC ACC TGC GGC CTG AGA CAG 288 Trp Glu Tyr Cys Asp Val Pro Ser Cys Ser Thr Cys Gly Leu Arg Gln 85 90 95 TAC AGC CAG CCT CAG TTT CGC ATC AAA GGA GGG CTC TTC GCC GAC ATC 336 Tyr Ser Gln Pro Gln Phe Arg Ile Lys Gly Gly Leu Phe Ala Asp Ile 100 105 110 GCC TCC CAC CCC TGG CAG GCT GCC ATC TTT GCC AAG CAC GAT GAT TCG 384 Ala Ser His Pro Trp Gln Ala Ala Ile Phe Ala Lys His Asp Asp Ser 115 120 125 CCC GGA GAG CGG TTC CTG TGC GGG GGC ATA CTC ATC AGC TCC TGC TGG 432 Pro Gly Glu Arg Phe Leu Cys Gly Gly Ile Leu Ile Ser Ser Cys Trp 130 135 140 ATT CTC TCT GCC GCC CAC TGC TTC CAG GAG AGG TTT CCG CCC CAC CAC 480 Ile Leu Ser Ala Ala His Cys Phe Gln Glu Arg Phe Pro Pro His His 145 150 155 160 CTG ACG GTG ATC TTG GGC AGA ACA TAC CGG GTG GTC CCT GGC GAG GAG 528 Leu Thr Val Ile Leu Gly Arg Thr Tyr Arg Val Val Pro Gly Glu Glu 165 170 175 GAG CAG AAA TTT GAA GTC GAA AAA TAC ATT GTC CAT AAG GAA TTC GAT 576 Glu Gln Lys Phe Glu Val Glu Lys Tyr Ile Va l His Lys Glu Phe Asp 180 185 190 GAT GAC ACT TAC GAC AAT GAC ATT GCG CTG CTG CAG CTG AAA TCG GAT 624 Asp Asp Thr Tyr Asp Asn Asp Ile Ala Leu Leu Gln Leu Lys Ser Asp 195 200 205 TCG TCC CGC TGT GCC CAG GAG AGC AGC GTG GTC CGC ACT GTG TGC CTT 672 Ser Ser Arg Cys Ala Gln Glu Ser Ser Val Val Arg Thr Val Cys Leu 210 215 220 CCC CCG GAG GAC CTG CAG CTG CCG GAC TGG ACG GAG TGT GAG CTC TCC 720 Pro Pro Glu Asp Leu Gln Leu Pro Asp Trp Thr Glu Cys Glu Leu Ser 225 230 235 240 GGC TAC GGC AAG CAT GAG GCC TTG TCT CCT TTC TAT TCG GAG CGG CTG 768 Gly Tyr Gly Lys His Glu Ala Leu Ser Pro Phe Tyr Ser Glu Arg Leu 245 250 255 AAG GAG GCT CAT GTC AGA CTG TAC CCA TCC AGC CGC TGC ACA TCA CAA 816 Lys Glu Ala His Val Arg Leu Tyr Pro Ser Ser Arg Cys Thr Ser Gln 260 265 270 CAT TTA CTT AAC AGA ACA GTC ACC GAC AAC ATG CTG TGT GCT GGA GAC 864 His Leu Leu Asn Arg Thr Val Thr Asp Asn Met Leu Cys Ala Gly Asp 275 280 285 ACT CGG AGC GGC GGG CCC CAG GCA AAC TTG CAC GAC GCC TGC CAG GGC 912 Thr Arg Ser Gly Gly Pro Gln Al a Asn Leu His Asp Ala Cys Gln Gly 290 295 300 GAT TCG GGA GGC CCC CTG GTG TGT CTG AAC GAT GGC CGC ATG ACT TTG 960 Asp Ser Gly Gly Pro Leu Val Cys Leu Asn Asp Gly Arg Met Thr Leu 305 310 315 320 GTG GGC ATC ATC AGC TGG GGC CTG GGC TGT GGA CAG AAG GAT GTC CCG 1008 Val Gly Ile Ile Ser Trp Gly Leu Gly Cys Gly Gln Lys Asp Val Pro 325 330 335 GGT GTG TAC ACC AAG GTT ACC AAC TAC CTA GAC TGG ATT CGT GAC AAC 1056 Gly Val Tyr Thr Lys Val Thr Asn Tyr Leu Asp Trp Ile Arg Asp Asn 340 345 350 ATG CGA CCG TGA 1068 Met Arg Pro 355.

【0101】配列番号:23 配列の長さ:24 配列の型:核酸 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 TGGCGACTGC TGGTGCTTGG CAAA 24。SEQ ID NO: 23 Sequence Length: 24 Sequence Type: Nucleic Acid Topology: Linear Sequence Type: Other Nucleic Acid Synthetic DNA Sequence TGGCGACTGC TGGTGCTTGG CAAA 24.

【0102】配列番号:24 配列の長さ:1068 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:他の核酸 配列番号7を修飾 配列の特徴 存在位置:1〜173までのアミノ酸欠損、298,299位を
置換 特徴を決定した方法:P 配列 ATG TCT GAG GGA AAC AGT GAC TGC TAC TTT GGG AAT GGG TCA GCC TAC 48 Met Ser Glu Gly Asn Ser Asp Cys Tyr Phe Gly Asn Gly Ser Ala Tyr 1 5 10 15 CGT GGC ACG CAC AGC CTC ACC GAG TCG GGT GCC TCC TGC CTC CCG TGG 96 Arg Gly Thr His Ser Leu Thr Glu Ser Gly Ala Ser Cys Leu Pro Trp 20 25 30 AAT TCC ATG ATC CTG ATA GGC AAG GTT TAC ACA GCA CAG AAC CCC AGT 144 Asn Ser Met Ile Leu Ile Gly Lys Val Tyr Thr Ala Gln Asn Pro Ser 35 40 45 GCC CAG GCA CTG GGC CTG GGC AAA CAT AAT TAC TGC CGG AAT CCT GAT 192 Ala Gln Ala Leu Gly Leu Gly Lys His Asn Tyr Cys Arg Asn Pro Asp 50 55 60 GGG GAT GCC AAG CCC TGG TGC CAC GTG CTG AAG AAC CGC AGG CTG ACG 240 Gly Asp Ala Lys Pro Trp Cys His Val Leu Lys Asn Arg Arg Leu Thr 65 70 75 80 TGG GAG TAC TGT GAT GTG CCC TCC TGC TCC ACC TGC GGC CTG AGA CAG 288 Trp Glu Tyr Cys Asp Val Pro Ser Cys Ser Thr Cys Gly Leu Arg Gln 85 90 95 TAC AGC CAG CCT CAG TTT CGC ATC AAA GGA GGG CTC TTC GCC GAC ATC 336 Tyr Ser Gln Pro Gln Phe Arg Ile Lys Gly Gly Leu Phe Ala Asp Ile 100 105 110 GCC TCC CAC CCC TGG CAG GCT GCC ATC TTT GCC AAG CAC CAG CAG TCG 384 Ala Ser His Pro Trp Gln Ala Ala Ile Phe Ala Lys His Gln Gln Ser 115 120 125 CCC GGA GAG CGG TTC CTG TGC GGG GGC ATA CTC ATC AGC TCC TGC TGG 432 Pro Gly Glu Arg Phe Leu Cys Gly Gly Ile Leu Ile Ser Ser Cys Trp 130 135 140 ATT CTC TCT GCC GCC CAC TGC TTC CAG GAG AGG TTT CCG CCC CAC CAC 480 Ile Leu Ser Ala Ala His Cys Phe Gln Glu Arg Phe Pro Pro His His 145 150 155 160 CTG ACG GTG ATC TTG GGC AGA ACA TAC CGG GTG GTC CCT GGC GAG GAG 528 Leu Thr Val Ile Leu Gly Arg Thr Tyr Arg Val Val Pro Gly Glu Glu 165 170 175 GAG CAG AAA TTT GAA GTC GAA AAA TAC ATT GTC CAT AAG GAA TTC GAT 576 Glu Gln Lys Phe Glu Val Glu Lys Tyr Ile Val His Lys Glu Phe Asp 180 185 190 GAT GAC ACT TAC GAC AAT GAC ATT GCG CTG CTG CAG CTG AAA TCG GAT 624 Asp Asp Thr Tyr Asp Asn Asp Ile Ala Leu Leu Gln Leu Lys Ser Asp 195 200 205 TCG TCC CGC TGT GCC CAG GAG AGC AGC GTG GTC CGC ACT GTG TGC CTT 672 Ser Ser Arg Cys Ala Gln Glu Ser Ser Val Val Arg Thr Val Cys Leu 210 215 220 CCC CCG GAG GAC CTG CAG CTG CCG GAC TGG ACG GAG TGT GAG CTC TCC 720 Pro Pro Glu Asp Leu Gln Leu Pro Asp Trp Thr Glu Cys Glu Leu Ser 225 230 235 240 GGC TAC GGC AAG CAT GAG GCC TTG TCT CCT TTC TAT TCG GAG CGG CTG 768 Gly Tyr Gly Lys His Glu Ala Leu Ser Pro Phe Tyr Ser Glu Arg Leu 245 250 255 AAG GAG GCT CAT GTC AGA CTG TAC CCA TCC AGC CGC TGC ACA TCA CAA 816 Lys Glu Ala His Val Arg Leu Tyr Pro Ser Ser Arg Cys Thr Ser Gln 260 265 270 CAT TTA CTT AAC AGA ACA GTC ACC GAC AAC ATG CTG TGT GCT GGA GAC 864 His Leu Leu Asn Arg Thr Val Thr Asp Asn Met Leu Cys Ala Gly Asp 275 280 285 ACT CGG AGC GGC GGG CCC CAG GCA AAC TTG CAC GAC GCC TGC CAG GGC 912 Thr Arg Ser Gly Gly Pro Gln Ala Asn Leu His Asp Ala Cys Gln Gly 290 295 300 GAT TCG GGA GGC CCC CTG GTG TGT CTG AAC GAT GGC CGC ATG ACT TTG 960 Asp Ser Gly Gly Pro Leu Val Cys Leu Asn Asp Gly Arg Met Thr Leu 305 310 315 320 GTG GGC ATC ATC AGC TGG GGC CTG GGC TGT GGA CAG AAG GAT GTC CCG 1008 Val Gly Ile Ile Ser Trp Gly Leu Gly Cys Gly Gln Lys Asp Val Pro 325 330 335 GGT GTG TAC ACC AAG GTT ACC AAC TAC CTA GAC TGG ATT CGT GAC AAC 1056 Gly Val Tyr Thr Lys Val Thr Asn Tyr Leu Asp Trp Ile Arg Asp Asn 340 345 350 ATG CGA CCG TGA 1068 Met Arg Pro 355。
SEQ ID NO: 24 Sequence length: 1068 Sequence type: Nucleic acid Number of strands: Double strand Topology: Linear Sequence type: Other nucleic acid Modified SEQ ID NO: 7 Sequence features Location: 1 to Amino acid deletion up to 173, substitution at positions 298 and 299 Method for determining the characteristics: P sequence ATG TCT GAG GGA AAC AGT GAC TGC TAC TTT GGG AAT GGG TCA GCC TAC 48 Met Ser Glu Gly Asn Ser Asp Cys Tyr Phe Gly Asn Gly Ser Ala Tyr 1 5 10 15 CGT GGC ACG CAC AGC CTC ACC GAG TCG GGT GCC TCC TGC CTC CCG TGG 96 Arg Gly Thr His Ser Leu Thr Glu Ser Gly Ala Ser Cys Leu Pro Trp 20 25 30 AAT TCC ATG ATC CTG ATA GGC AAG GTT TAC ACA GCA CAG AAC CCC AGT 144 Asn Ser Met Ile Leu Ile Gly Lys Val Tyr Thr Ala Gln Asn Pro Ser 35 40 45 GCC CAG GCA CTG GGC CTG GGC AAA CAT AAT TAC TGC CGG AAT CCT GAT 192 Ala Gln Ala Leu Gly Leu Gly Lys His Asn Tyr Cys Arg Asn Pro Asp 50 55 60 GGG GAT GCC AAG CCC TGG TGC CAC GTG CTG AAG AAC CGC AGG CTG ACG 240 Gly Asp Ala Lys Pro Trp Cys His Val Leu Lys Asn Arg Arg Leu Thr 65 70 75 80 TGG GAG TAC TGT GAT GTG CCC TCC TGC TCC ACC TGC GGC CTG AGA CAG 288 Trp Glu Tyr Cys Asp Val Pro Ser Cys Ser Thr Cys Gly Leu Arg Gln 85 90 95 TAC AGC CAG CCT CAG TTT CGC ATC AAA GGA GGG CTC TTC GCC GAC ATC 336 Tyr Ser Gln Pro Gln Phe Arg Ile Lys Gly Gly Leu Phe Ala Asp Ile 100 105 110 GCC TCC CAC CCC TGG CAG GCT GCC ATC TTT GCC AAG CAC CAG CAG TCG 384 Ala Ser His Pro Trp Gln Ala Ala Ile Phe Ala Lys His Gln Gln Ser 115 120 125 CCC GGA GAG CGG TTC CTG TGC GGG GGC ATA CTC ATC AGC TCC TGC TGG 432 Pro Gly Glu Arg Phe Leu Cys Gly Gly Ile Leu Ile Ser Ser Cys Trp 130 135 140 ATT CTC TCT GCC GCC CAC TGC TTC CAG GAG AGG TTT CCG CCC CAC CAC 480 Ile Leu Ser Ala Ala His Cys Phe Gln Glu Arg Phe Pro Pro His His 145 150 155 160 CTG ACG GTG ATC TTG GGC AGA ACA TAC CGG GTG GTC CCT GGC GAG GAG 528 Leu Thr Val Ile Leu Gly Arg Thr Tyr Arg Val Val Pro Gly Glu Glu 165 170 175 GAG CAG AAA TTT GAA GTC GAA AAA TAC ATT GTC CAT AAG GAA TTC GAT 576 Glu Gln Lys Phe Glu Val Glu Lys Tyr Ile Va l His Lys Glu Phe Asp 180 185 190 GAT GAC ACT TAC GAC AAT GAC ATT GCG CTG CTG CAG CTG AAA TCG GAT 624 Asp Asp Thr Tyr Asp Asn Asp Ile Ala Leu Leu Gln Leu Lys Ser Asp 195 200 205 TCG TCC CGC TGT GCC CAG GAG AGC AGC GTG GTC CGC ACT GTG TGC CTT 672 Ser Ser Arg Cys Ala Gln Glu Ser Ser Val Val Arg Thr Val Cys Leu 210 215 220 CCC CCG GAG GAC CTG CAG CTG CCG GAC TGG ACG GAG TGT GAG CTC TCC 720 Pro Pro Glu Asp Leu Gln Leu Pro Asp Trp Thr Glu Cys Glu Leu Ser 225 230 235 240 GGC TAC GGC AAG CAT GAG GCC TTG TCT CCT TTC TAT TCG GAG CGG CTG 768 Gly Tyr Gly Lys His Glu Ala Leu Ser Pro Phe Tyr Ser Glu Arg Leu 245 250 255 AAG GAG GCT CAT GTC AGA CTG TAC CCA TCC AGC CGC TGC ACA TCA CAA 816 Lys Glu Ala His Val Arg Leu Tyr Pro Ser Ser Arg Cys Thr Ser Gln 260 265 270 CAT TTA CTT AAC AGA ACA GTC ACC GAC AAC ATG CTG TGT GCT GGA GAC 864 His Leu Leu Asn Arg Thr Val Thr Asp Asn Met Leu Cys Ala Gly Asp 275 280 285 ACT CGG AGC GGC GGG CCC CAG GCA AAC TTG CAC GAC GCC TGC CAG GGC 912 Thr Arg Ser Gly Gly Pro Gln Al a Asn Leu His Asp Ala Cys Gln Gly 290 295 300 GAT TCG GGA GGC CCC CTG GTG TGT CTG AAC GAT GGC CGC ATG ACT TTG 960 Asp Ser Gly Gly Pro Leu Val Cys Leu Asn Asp Gly Arg Met Thr Leu 305 310 315 320 GTG GGC ATC ATC AGC TGG GGC CTG GGC TGT GGA CAG AAG GAT GTC CCG 1008 Val Gly Ile Ile Ser Trp Gly Leu Gly Cys Gly Gln Lys Asp Val Pro 325 330 335 GGT GTG TAC ACC AAG GTT ACC AAC TAC CTA GAC TGG ATT CGT GAC AAC 1056 Gly Val Tyr Thr Lys Val Thr Asn Tyr Leu Asp Trp Ile Arg Asp Asn 340 345 350 ATG CGA CCG TGA 1068 Met Arg Pro 355.

【0103】配列番号:25 配列の長さ:24 配列の型:核酸 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 TGGCGACGCT GCGTGCTTGG CAAA 24。SEQ ID NO: 25 Sequence Length: 24 Sequence Type: Nucleic Acid Topology: Linear Sequence Type: Other Nucleic Acid Synthetic DNA Sequence TGGCGACGCT GCGTGCTTGG CAAA 24.

【0104】配列番号:26 配列の長さ:1068 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:他の核酸 配列番号7を修飾 配列の特徴 存在位置:1〜173までのアミノ酸欠損、298,299位を
置換 特徴を決定した方法:P 配列 ATG TCT GAG GGA AAC AGT GAC TGC TAC TTT GGG AAT GGG TCA GCC TAC 48 Met Ser Glu Gly Asn Ser Asp Cys Tyr Phe Gly Asn Gly Ser Ala Tyr 1 5 10 15 CGT GGC ACG CAC AGC CTC ACC GAG TCG GGT GCC TCC TGC CTC CCG TGG 96 Arg Gly Thr His Ser Leu Thr Glu Ser Gly Ala Ser Cys Leu Pro Trp 20 25 30 AAT TCC ATG ATC CTG ATA GGC AAG GTT TAC ACA GCA CAG AAC CCC AGT 144 Asn Ser Met Ile Leu Ile Gly Lys Val Tyr Thr Ala Gln Asn Pro Ser 35 40 45 GCC CAG GCA CTG GGC CTG GGC AAA CAT AAT TAC TGC CGG AAT CCT GAT 192 Ala Gln Ala Leu Gly Leu Gly Lys His Asn Tyr Cys Arg Asn Pro Asp 50 55 60 GGG GAT GCC AAG CCC TGG TGC CAC GTG CTG AAG AAC CGC AGG CTG ACG 240 Gly Asp Ala Lys Pro Trp Cys His Val Leu Lys Asn Arg Arg Leu Thr 65 70 75 80 TGG GAG TAC TGT GAT GTG CCC TCC TGC TCC ACC TGC GGC CTG AGA CAG 288 Trp Glu Tyr Cys Asp Val Pro Ser Cys Ser Thr Cys Gly Leu Arg Gln 85 90 95 TAC AGC CAG CCT CAG TTT CGC ATC AAA GGA GGG CTC TTC GCC GAC ATC 336 Tyr Ser Gln Pro Gln Phe Arg Ile Lys Gly Gly Leu Phe Ala Asp Ile 100 105 110 GCC TCC CAC CCC TGG CAG GCT GCC ATC TTT GCC AAG CAC GCA GCG TCG 384 Ala Ser His Pro Trp Gln Ala Ala Ile Phe Ala Lys His Ala Ala Ser 115 120 125 CCC GGA GAG CGG TTC CTG TGC GGG GGC ATA CTC ATC AGC TCC TGC TGG 432 Pro Gly Glu Arg Phe Leu Cys Gly Gly Ile Leu Ile Ser Ser Cys Trp 130 135 140 ATT CTC TCT GCC GCC CAC TGC TTC CAG GAG AGG TTT CCG CCC CAC CAC 480 Ile Leu Ser Ala Ala His Cys Phe Gln Glu Arg Phe Pro Pro His His 145 150 155 160 CTG ACG GTG ATC TTG GGC AGA ACA TAC CGG GTG GTC CCT GGC GAG GAG 528 Leu Thr Val Ile Leu Gly Arg Thr Tyr Arg Val Val Pro Gly Glu Glu 165 170 175 GAG CAG AAA TTT GAA GTC GAA AAA TAC ATT GTC CAT AAG GAA TTC GAT 576 Glu Gln Lys Phe Glu Val Glu Lys Tyr Ile Val His Lys Glu Phe Asp 180 185 190 GAT GAC ACT TAC GAC AAT GAC ATT GCG CTG CTG CAG CTG AAA TCG GAT 624 Asp Asp Thr Tyr Asp Asn Asp Ile Ala Leu Leu Gln Leu Lys Ser Asp 195 200 205 TCG TCC CGC TGT GCC CAG GAG AGC AGC GTG GTC CGC ACT GTG TGC CTT 672 Ser Ser Arg Cys Ala Gln Glu Ser Ser Val Val Arg Thr Val Cys Leu 210 215 220 CCC CCG GAG GAC CTG CAG CTG CCG GAC TGG ACG GAG TGT GAG CTC TCC 720 Pro Pro Glu Asp Leu Gln Leu Pro Asp Trp Thr Glu Cys Glu Leu Ser 225 230 235 240 GGC TAC GGC AAG CAT GAG GCC TTG TCT CCT TTC TAT TCG GAG CGG CTG 768 Gly Tyr Gly Lys His Glu Ala Leu Ser Pro Phe Tyr Ser Glu Arg Leu 245 250 255 AAG GAG GCT CAT GTC AGA CTG TAC CCA TCC AGC CGC TGC ACA TCA CAA 816 Lys Glu Ala His Val Arg Leu Tyr Pro Ser Ser Arg Cys Thr Ser Gln 260 265 270 CAT TTA CTT AAC AGA ACA GTC ACC GAC AAC ATG CTG TGT GCT GGA GAC 864 His Leu Leu Asn Arg Thr Val Thr Asp Asn Met Leu Cys Ala Gly Asp 275 280 285 ACT CGG AGC GGC GGG CCC CAG GCA AAC TTG CAC GAC GCC TGC CAG GGC 912 Thr Arg Ser Gly Gly Pro Gln Ala Asn Leu His Asp Ala Cys Gln Gly 290 295 300 GAT TCG GGA GGC CCC CTG GTG TGT CTG AAC GAT GGC CGC ATG ACT TTG 960 Asp Ser Gly Gly Pro Leu Val Cys Leu Asn Asp Gly Arg Met Thr Leu 305 310 315 320 GTG GGC ATC ATC AGC TGG GGC CTG GGC TGT GGA CAG AAG GAT GTC CCG 1008 Val Gly Ile Ile Ser Trp Gly Leu Gly Cys Gly Gln Lys Asp Val Pro 325 330 335 GGT GTG TAC ACC AAG GTT ACC AAC TAC CTA GAC TGG ATT CGT GAC AAC 1056 Gly Val Tyr Thr Lys Val Thr Asn Tyr Leu Asp Trp Ile Arg Asp Asn 340 345 350 ATG CGA CCG TGA 1068 Met Arg Pro 355。
SEQ ID NO: 26 Sequence length: 1068 Sequence type: Nucleic acid Number of strands: Double-strand Topology: Linear Sequence type: Other nucleic acid Modified SEQ ID NO: 7 Sequence features Location: 1 to Amino acid deletion up to 173, substitution at positions 298 and 299 Method for determining the characteristics: P sequence ATG TCT GAG GGA AAC AGT GAC TGC TAC TTT GGG AAT GGG TCA GCC TAC 48 Met Ser Glu Gly Asn Ser Asp Cys Tyr Phe Gly Asn Gly Ser Ala Tyr 1 5 10 15 CGT GGC ACG CAC AGC CTC ACC GAG TCG GGT GCC TCC TGC CTC CCG TGG 96 Arg Gly Thr His Ser Leu Thr Glu Ser Gly Ala Ser Cys Leu Pro Trp 20 25 30 AAT TCC ATG ATC CTG ATA GGC AAG GTT TAC ACA GCA CAG AAC CCC AGT 144 Asn Ser Met Ile Leu Ile Gly Lys Val Tyr Thr Ala Gln Asn Pro Ser 35 40 45 GCC CAG GCA CTG GGC CTG GGC AAA CAT AAT TAC TGC CGG AAT CCT GAT 192 Ala Gln Ala Leu Gly Leu Gly Lys His Asn Tyr Cys Arg Asn Pro Asp 50 55 60 GGG GAT GCC AAG CCC TGG TGC CAC GTG CTG AAG AAC CGC AGG CTG ACG 240 Gly Asp Ala Lys Pro Trp Cys His Val Leu Lys Asn Arg Arg Leu Thr 65 70 75 80 TGG GAG TAC TGT GAT GTG CCC TCC TGC TCC ACC TGC GGC CTG AGA CAG 288 Trp Glu Tyr Cys Asp Val Pro Ser Cys Ser Thr Cys Gly Leu Arg Gln 85 90 95 TAC AGC CAG CCT CAG TTT CGC ATC AAA GGA GGG CTC TTC GCC GAC ATC 336 Tyr Ser Gln Pro Gln Phe Arg Ile Lys Gly Gly Leu Phe Ala Asp Ile 100 105 110 GCC TCC CAC CCC TGG CAG GCT GCC ATC TTT GCC AAG CAC GCA GCG TCG 384 Ala Ser His Pro Trp Gln Ala Ala Ile Phe Ala Lys His Ala Ala Ser 115 120 125 CCC GGA GAG CGG TTC CTG TGC GGG GGC ATA CTC ATC AGC TCC TGC TGG 432 Pro Gly Glu Arg Phe Leu Cys Gly Gly Ile Leu Ile Ser Ser Cys Trp 130 135 140 ATT CTC TCT GCC GCC CAC TGC TTC CAG GAG AGG TTT CCG CCC CAC CAC 480 Ile Leu Ser Ala Ala His Cys Phe Gln Glu Arg Phe Pro Pro His His 145 150 155 160 CTG ACG GTG ATC TTG GGC AGA ACA TAC CGG GTG GTC CCT GGC GAG GAG 528 Leu Thr Val Ile Leu Gly Arg Thr Tyr Arg Val Val Pro Gly Glu Glu 165 170 175 GAG CAG AAA TTT GAA GTC GAA AAA TAC ATT GTC CAT AAG GAA TTC GAT 576 Glu Gln Lys Phe Glu Val Glu Lys Tyr Ile Va l His Lys Glu Phe Asp 180 185 190 GAT GAC ACT TAC GAC AAT GAC ATT GCG CTG CTG CAG CTG AAA TCG GAT 624 Asp Asp Thr Tyr Asp Asn Asp Ile Ala Leu Leu Gln Leu Lys Ser Asp 195 200 205 TCG TCC CGC TGT GCC CAG GAG AGC AGC GTG GTC CGC ACT GTG TGC CTT 672 Ser Ser Arg Cys Ala Gln Glu Ser Ser Val Val Arg Thr Val Cys Leu 210 215 220 CCC CCG GAG GAC CTG CAG CTG CCG GAC TGG ACG GAG TGT GAG CTC TCC 720 Pro Pro Glu Asp Leu Gln Leu Pro Asp Trp Thr Glu Cys Glu Leu Ser 225 230 235 240 GGC TAC GGC AAG CAT GAG GCC TTG TCT CCT TTC TAT TCG GAG CGG CTG 768 Gly Tyr Gly Lys His Glu Ala Leu Ser Pro Phe Tyr Ser Glu Arg Leu 245 250 255 AAG GAG GCT CAT GTC AGA CTG TAC CCA TCC AGC CGC TGC ACA TCA CAA 816 Lys Glu Ala His Val Arg Leu Tyr Pro Ser Ser Arg Cys Thr Ser Gln 260 265 270 CAT TTA CTT AAC AGA ACA GTC ACC GAC AAC ATG CTG TGT GCT GGA GAC 864 His Leu Leu Asn Arg Thr Val Thr Asp Asn Met Leu Cys Ala Gly Asp 275 280 285 ACT CGG AGC GGC GGG CCC CAG GCA AAC TTG CAC GAC GCC TGC CAG GGC 912 Thr Arg Ser Gly Gly Pro Gln Al a Asn Leu His Asp Ala Cys Gln Gly 290 295 300 GAT TCG GGA GGC CCC CTG GTG TGT CTG AAC GAT GGC CGC ATG ACT TTG 960 Asp Ser Gly Gly Pro Leu Val Cys Leu Asn Asp Gly Arg Met Thr Leu 305 310 315 320 GTG GGC ATC ATC AGC TGG GGC CTG GGC TGT GGA CAG AAG GAT GTC CCG 1008 Val Gly Ile Ile Ser Trp Gly Leu Gly Cys Gly Gln Lys Asp Val Pro 325 330 335 GGT GTG TAC ACC AAG GTT ACC AAC TAC CTA GAC TGG ATT CGT GAC AAC 1056 Gly Val Tyr Thr Lys Val Thr Asn Tyr Leu Asp Trp Ile Arg Asp Asn 340 345 350 ATG CGA CCG TGA 1068 Met Arg Pro 355.

【0105】配列番号:27 配列の長さ:24 配列の型:核酸 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 TGGCGACCTA TCGTGCTTGG CAAA 24。SEQ ID NO: 27 Sequence Length: 24 Sequence Type: Nucleic Acid Topology: Linear Sequence Type: Other Nucleic Acid Synthetic DNA Sequence TGGCGACCTA TCGTGCTTGG CAAA 24.

【0106】配列番号:28 配列の長さ:1068 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:他の核酸 配列番号7を修飾 配列の特徴 存在位置:1〜173までのアミノ酸欠損、298位を置換 特徴を決定した方法:P 配列 ATG TCT GAG GGA AAC AGT GAC TGC TAC TTT GGG AAT GGG TCA GCC TAC 48 Met Ser Glu Gly Asn Ser Asp Cys Tyr Phe Gly Asn Gly Ser Ala Tyr 1 5 10 15 CGT GGC ACG CAC AGC CTC ACC GAG TCG GGT GCC TCC TGC CTC CCG TGG 96 Arg Gly Thr His Ser Leu Thr Glu Ser Gly Ala Ser Cys Leu Pro Trp 20 25 30 AAT TCC ATG ATC CTG ATA GGC AAG GTT TAC ACA GCA CAG AAC CCC AGT 144 Asn Ser Met Ile Leu Ile Gly Lys Val Tyr Thr Ala Gln Asn Pro Ser 35 40 45 GCC CAG GCA CTG GGC CTG GGC AAA CAT AAT TAC TGC CGG AAT CCT GAT 192 Ala Gln Ala Leu Gly Leu Gly Lys His Asn Tyr Cys Arg Asn Pro Asp 50 55 60 GGG GAT GCC AAG CCC TGG TGC CAC GTG CTG AAG AAC CGC AGG CTG ACG 240 Gly Asp Ala Lys Pro Trp Cys His Val Leu Lys Asn Arg Arg Leu Thr 65 70 75 80 TGG GAG TAC TGT GAT GTG CCC TCC TGC TCC ACC TGC GGC CTG AGA CAG 288 Trp Glu Tyr Cys Asp Val Pro Ser Cys Ser Thr Cys Gly Leu Arg Gln 85 90 95 TAC AGC CAG CCT CAG TTT CGC ATC AAA GGA GGG CTC TTC GCC GAC ATC 336 Tyr Ser Gln Pro Gln Phe Arg Ile Lys Gly Gly Leu Phe Ala Asp Ile 100 105 110 GCC TCC CAC CCC TGG CAG GCT GCC ATC TTT GCC AAG CAC GAT AGG TCG 384 Ala Ser His Pro Trp Gln Ala Ala Ile Phe Ala Lys His Asp Arg Ser 115 120 125 CCC GGA GAG CGG TTC CTG TGC GGG GGC ATA CTC ATC AGC TCC TGC TGG 432 Pro Gly Glu Arg Phe Leu Cys Gly Gly Ile Leu Ile Ser Ser Cys Trp 130 135 140 ATT CTC TCT GCC GCC CAC TGC TTC CAG GAG AGG TTT CCG CCC CAC CAC 480 Ile Leu Ser Ala Ala His Cys Phe Gln Glu Arg Phe Pro Pro His His 145 150 155 160 CTG ACG GTG ATC TTG GGC AGA ACA TAC CGG GTG GTC CCT GGC GAG GAG 528 Leu Thr Val Ile Leu Gly Arg Thr Tyr Arg Val Val Pro Gly Glu Glu 165 170 175 GAG CAG AAA TTT GAA GTC GAA AAA TAC ATT GTC CAT AAG GAA TTC GAT 576 Glu Gln Lys Phe Glu Val Glu Lys Tyr Ile Val His Lys Glu Phe Asp 180 185 190 GAT GAC ACT TAC GAC AAT GAC ATT GCG CTG CTG CAG CTG AAA TCG GAT 624 Asp Asp Thr Tyr Asp Asn Asp Ile Ala Leu Leu Gln Leu Lys Ser Asp 195 200 205 TCG TCC CGC TGT GCC CAG GAG AGC AGC GTG GTC CGC ACT GTG TGC CTT 672 Ser Ser Arg Cys Ala Gln Glu Ser Ser Val Val Arg Thr Val Cys Leu 210 215 220 CCC CCG GAG GAC CTG CAG CTG CCG GAC TGG ACG GAG TGT GAG CTC TCC 720 Pro Pro Glu Asp Leu Gln Leu Pro Asp Trp Thr Glu Cys Glu Leu Ser 225 230 235 240 GGC TAC GGC AAG CAT GAG GCC TTG TCT CCT TTC TAT TCG GAG CGG CTG 768 Gly Tyr Gly Lys His Glu Ala Leu Ser Pro Phe Tyr Ser Glu Arg Leu 245 250 255 AAG GAG GCT CAT GTC AGA CTG TAC CCA TCC AGC CGC TGC ACA TCA CAA 816 Lys Glu Ala His Val Arg Leu Tyr Pro Ser Ser Arg Cys Thr Ser Gln 260 265 270 CAT TTA CTT AAC AGA ACA GTC ACC GAC AAC ATG CTG TGT GCT GGA GAC 864 His Leu Leu Asn Arg Thr Val Thr Asp Asn Met Leu Cys Ala Gly Asp 275 280 285 ACT CGG AGC GGC GGG CCC CAG GCA AAC TTG CAC GAC GCC TGC CAG GGC 912 Thr Arg Ser Gly Gly Pro Gln Ala Asn Leu His Asp Ala Cys Gln Gly 290 295 300 GAT TCG GGA GGC CCC CTG GTG TGT CTG AAC GAT GGC CGC ATG ACT TTG 960 Asp Ser Gly Gly Pro Leu Val Cys Leu Asn Asp Gly Arg Met Thr Leu 305 310 315 320 GTG GGC ATC ATC AGC TGG GGC CTG GGC TGT GGA CAG AAG GAT GTC CCG 1008 Val Gly Ile Ile Ser Trp Gly Leu Gly Cys Gly Gln Lys Asp Val Pro 325 330 335 GGT GTG TAC ACC AAG GTT ACC AAC TAC CTA GAC TGG ATT CGT GAC AAC 1056 Gly Val Tyr Thr Lys Val Thr Asn Tyr Leu Asp Trp Ile Arg Asp Asn 340 345 350 ATG CGA CCG TGA 1068 Met Arg Pro 355。SEQ ID NO: 28 Sequence length: 1068 Sequence type: Nucleic acid Number of strands: Double strand Topology: Linear Sequence type: Other nucleic acid Modified SEQ ID NO: 7 Sequence features Location: 1 to Amino acid deletion up to 173, substitution at position 298 Method to determine characteristics: P sequence ATG TCT GAG GGA AAC AGT GAC TGC TAC TTT GGG AAT GGG TCA GCC TAC 48 Met Ser Glu Gly Asn Ser Asp Cys Tyr Phe Gly Asn Gly Ser Ala Tyr 1 5 10 15 CGT GGC ACG CAC AGC CTC ACC GAG TCG GGT GCC TCC TGC CTC CCG TGG 96 Arg Gly Thr His Ser Leu Thr Glu Ser Gly Ala Ser Cys Leu Pro Trp 20 25 30 AAT TCC ATG ATC CTG ATA GGC AAG GTT TAC ACA GCA CAG AAC CCC AGT 144 Asn Ser Met Ile Leu Ile Gly Lys Val Tyr Thr Ala Gln Asn Pro Ser 35 40 45 GCC CAG GCA CTG GGC CTG GGC AAA CAT AAT TAC TGC CGG AAT CCT GAT 192 Ala Gln Ala Leu Gly Leu Gly Lys His Asn Tyr Cys Arg Asn Pro Asp 50 55 60 GGG GAT GCC AAG CCC TGG TGC CAC GTG CTG AAG AAC CGC AGG CTG ACG 240 Gly Asp Ala Lys Pro Trp Cys His Val Leu Lys Asn Arg Arg Lg Lg eu Thr 65 70 75 80 TGG GAG TAC TGT GAT GTG CCC TCC TGC TCC ACC TGC GGC CTG AGA CAG 288 Trp Glu Tyr Cys Asp Val Pro Ser Cys Ser Thr Cys Gly Leu Arg Gln 85 90 95 TAC AGC CAG CCT CAG TTT CGC ATC AAA GGA GGG CTC TTC GCC GAC ATC 336 Tyr Ser Gln Pro Gln Phe Arg Ile Lys Gly Gly Leu Phe Ala Asp Ile 100 105 110 GCC TCC CAC CCC TGG CAG GCT GCC ATC TTT GCC AAG CAC GAT AGG TCG 384 Ala Ser His Pro Trp Gln Ala Ala Ile Phe Ala Lys His Asp Arg Ser 115 120 125 CCC GGA GAG CGG TTC CTG TGC GGG GGC ATA CTC ATC AGC TCC TGC TGG 432 Pro Gly Glu Arg Phe Leu Cys Gly Gly Ile Leu Ile Ser Ser Cys Trp 130 135 140 ATT CTC TCT GCC GCC CAC TGC TTC CAG GAG AGG TTT CCG CCC CAC CAC 480 Ile Leu Ser Ala Ala His Cys Phe Gln Glu Arg Phe Pro Pro His His 145 150 155 160 CTG ACG GTG ATC TTG GGC AGA ACA TAC CGG GTG GTC CCT GGC GAG GAG 528 Leu Thr Val Ile Leu Gly Arg Thr Tyr Arg Val Val Pro Gly Glu Glu 165 170 175 GAG CAG AAA TTT GAA GTC GAA AAA TAC ATT GTC CAT AAG GAA TTC GAT 576 Glu Gln Lys Phe Glu Val Glu Lys Tyr Ile Val His Lys Glu Phe Asp 180 185 190 GAT GAC ACT TAC GAC AAT GAC ATT GCG CTG CTG CAG CTG AAA TCG GAT 624 Asp Asp Thr Tyr Asp Asn Asp Ile Ala Leu Leu Gln Leu Lys Ser Asp 195 200 205 TCG TCC CGC TGT GCC CAG GAG AGC AGC GTG GTC CGC ACT GTG TGC CTT 672 Ser Ser Arg Cys Ala Gln Glu Ser Ser Val Val Arg Thr Val Cys Leu 210 215 220 CCC CCG GAG GAC CTG CAG CTG CCG GAC TGG ACG GAG TGT GAG CTC TCC 720 Pro Pro Glu Asp Leu Gln Leu Pro Asp Trp Thr Glu Cys Glu Leu Ser 225 230 235 240 GGC TAC GGC AAG CAT GAG GCC TTG TCT CCT TTC TAT TCG GAG CGG CTG 768 Gly Tyr Gly Lys His Glu Ala Leu Ser Pro Phe Tyr Ser Glu Arg Leu 245 250 255 AAG GAG GCT CAT GTC AGA CTG TAC CCA TCC AGC CGC TGC ACA TCA CAA 816 Lys Glu Ala His Val Arg Leu Tyr Pro Ser Ser Arg Cys Thr Ser Gln 260 265 270 CAT TTA CTT AAC AGA ACA GTC ACC GAC AAC ATG CTG TGT GCT GGA GAC 864 His Leu Leu Asn Arg Thr Val Thr Asp Asn Met Leu Cys Ala Gly Asp 275 280 285 ACT CGG AGC GGC GGG CCC CAG GCA AAC TTG CAC GAC GCC TGC CAG GGC 912 Thr Arg Ser Gly Gly Pro Gln Ala AsnLeu His Asp Ala Cys Gln Gly 290 295 300 GAT TCG GGA GGC CCC CTG GTG TGT CTG AAC GAT GGC CGC ATG ACT TTG 960 Asp Ser Gly Gly Pro Leu Val Cys Leu Asn Asp Gly Arg Met Thr Leu 305 310 315 320 GTG GGC ATC ATC AGC TGG GGC CTG GGC TGT GGA CAG AAG GAT GTC CCG 1008 Val Gly Ile Ile Ser Trp Gly Leu Gly Cys Gly Gln Lys Asp Val Pro 325 330 335 GGT GTG TAC ACC AAG GTT ACC AAC TAC CTA GAC TGG ATT CGT GAC AAC 1056 Gly Val Tyr Thr Lys Val Thr Asn Tyr Leu Asp Trp Ile Arg Asp Asn 340 345 350 ATG CGA CCG TGA 1068 Met Arg Pro 355.

【0107】配列番号:29 配列の長さ:24 配列の型:核酸 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 TGGCGAGTCC CTGTGCTTGG CAAA 24。SEQ ID NO: 29 Sequence Length: 24 Sequence Type: Nucleic Acid Topology: Linear Sequence Type: Other Nucleic Acid Synthetic DNA Sequence TGGCGAGTCC CTGTGCTTGG CAAA 24.

【0108】配列番号:30 配列の長さ:1068 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:他の核酸 配列番号7を修飾 配列の特徴 存在位置:1〜173までのアミノ酸欠損、299位を置換 特徴を決定した方法:P 配列 ATG TCT GAG GGA AAC AGT GAC TGC TAC TTT GGG AAT GGG TCA GCC TAC 48 Met Ser Glu Gly Asn Ser Asp Cys Tyr Phe Gly Asn Gly Ser Ala Tyr 1 5 10 15 CGT GGC ACG CAC AGC CTC ACC GAG TCG GGT GCC TCC TGC CTC CCG TGG 96 Arg Gly Thr His Ser Leu Thr Glu Ser Gly Ala Ser Cys Leu Pro Trp 20 25 30 AAT TCC ATG ATC CTG ATA GGC AAG GTT TAC ACA GCA CAG AAC CCC AGT 144 Asn Ser Met Ile Leu Ile Gly Lys Val Tyr Thr Ala Gln Asn Pro Ser 35 40 45 GCC CAG GCA CTG GGC CTG GGC AAA CAT AAT TAC TGC CGG AAT CCT GAT 192 Ala Gln Ala Leu Gly Leu Gly Lys His Asn Tyr Cys Arg Asn Pro Asp 50 55 60 GGG GAT GCC AAG CCC TGG TGC CAC GTG CTG AAG AAC CGC AGG CTG ACG 240 Gly Asp Ala Lys Pro Trp Cys His Val Leu Lys Asn Arg Arg Leu Thr 65 70 75 80 TGG GAG TAC TGT GAT GTG CCC TCC TGC TCC ACC TGC GGC CTG AGA CAG 288 Trp Glu Tyr Cys Asp Val Pro Ser Cys Ser Thr Cys Gly Leu Arg Gln 85 90 95 TAC AGC CAG CCT CAG TTT CGC ATC AAA GGA GGG CTC TTC GCC GAC ATC 336 Tyr Ser Gln Pro Gln Phe Arg Ile Lys Gly Gly Leu Phe Ala Asp Ile 100 105 110 GCC TCC CAC CCC TGG CAG GCT GCC ATC TTT GCC AAG CAC AGG GAC TCG 384 Ala Ser His Pro Trp Gln Ala Ala Ile Phe Ala Lys His Arg Asp Ser 115 120 125 CCC GGA GAG CGG TTC CTG TGC GGG GGC ATA CTC ATC AGC TCC TGC TGG 432 Pro Gly Glu Arg Phe Leu Cys Gly Gly Ile Leu Ile Ser Ser Cys Trp 130 135 140 ATT CTC TCT GCC GCC CAC TGC TTC CAG GAG AGG TTT CCG CCC CAC CAC 480 Ile Leu Ser Ala Ala His Cys Phe Gln Glu Arg Phe Pro Pro His His 145 150 155 160 CTG ACG GTG ATC TTG GGC AGA ACA TAC CGG GTG GTC CCT GGC GAG GAG 528 Leu Thr Val Ile Leu Gly Arg Thr Tyr Arg Val Val Pro Gly Glu Glu 165 170 175 GAG CAG AAA TTT GAA GTC GAA AAA TAC ATT GTC CAT AAG GAA TTC GAT 576 Glu Gln Lys Phe Glu Val Glu Lys Tyr Ile Val His Lys Glu Phe Asp 180 185 190 GAT GAC ACT TAC GAC AAT GAC ATT GCG CTG CTG CAG CTG AAA TCG GAT 624 Asp Asp Thr Tyr Asp Asn Asp Ile Ala Leu Leu Gln Leu Lys Ser Asp 195 200 205 TCG TCC CGC TGT GCC CAG GAG AGC AGC GTG GTC CGC ACT GTG TGC CTT 672 Ser Ser Arg Cys Ala Gln Glu Ser Ser Val Val Arg Thr Val Cys Leu 210 215 220 CCC CCG GAG GAC CTG CAG CTG CCG GAC TGG ACG GAG TGT GAG CTC TCC 720 Pro Pro Glu Asp Leu Gln Leu Pro Asp Trp Thr Glu Cys Glu Leu Ser 225 230 235 240 GGC TAC GGC AAG CAT GAG GCC TTG TCT CCT TTC TAT TCG GAG CGG CTG 768 Gly Tyr Gly Lys His Glu Ala Leu Ser Pro Phe Tyr Ser Glu Arg Leu 245 250 255 AAG GAG GCT CAT GTC AGA CTG TAC CCA TCC AGC CGC TGC ACA TCA CAA 816 Lys Glu Ala His Val Arg Leu Tyr Pro Ser Ser Arg Cys Thr Ser Gln 260 265 270 CAT TTA CTT AAC AGA ACA GTC ACC GAC AAC ATG CTG TGT GCT GGA GAC 864 His Leu Leu Asn Arg Thr Val Thr Asp Asn Met Leu Cys Ala Gly Asp 275 280 285 ACT CGG AGC GGC GGG CCC CAG GCA AAC TTG CAC GAC GCC TGC CAG GGC 912 Thr Arg Ser Gly Gly Pro Gln Ala Asn Leu His Asp Ala Cys Gln Gly 290 295 300 GAT TCG GGA GGC CCC CTG GTG TGT CTG AAC GAT GGC CGC ATG ACT TTG 960 Asp Ser Gly Gly Pro Leu Val Cys Leu Asn Asp Gly Arg Met Thr Leu 305 310 315 320 GTG GGC ATC ATC AGC TGG GGC CTG GGC TGT GGA CAG AAG GAT GTC CCG 1008 Val Gly Ile Ile Ser Trp Gly Leu Gly Cys Gly Gln Lys Asp Val Pro 325 330 335 GGT GTG TAC ACC AAG GTT ACC AAC TAC CTA GAC TGG ATT CGT GAC AAC 1056 Gly Val Tyr Thr Lys Val Thr Asn Tyr Leu Asp Trp Ile Arg Asp Asn 340 345 350 ATG CGA CCG TGA 1068 Met Arg Pro 355。SEQ ID NO: 30 Sequence length: 1068 Sequence type: Nucleic acid Number of strands: Double stranded Topology: Linear Sequence type: Other nucleic acid Modified SEQ ID NO: 7 Sequence features Location: 1 to Amino acid deletion up to 173, substitution at position 299 Method to determine the characteristics: P sequence ATG TCT GAG GGA AAC AGT GAC TGC TAC TTT GGG AAT GGG TCA GCC TAC 48 Met Ser Glu Gly Asn Ser Asp Cys Tyr Phe Gly Asn Gly Ser Ala Tyr 1 5 10 15 CGT GGC ACG CAC AGC CTC ACC GAG TCG GGT GCC TCC TGC CTC CCG TGG 96 Arg Gly Thr His Ser Leu Thr Glu Ser Gly Ala Ser Cys Leu Pro Trp 20 25 30 AAT TCC ATG ATC CTG ATA GGC AAG GTT TAC ACA GCA CAG AAC CCC AGT 144 Asn Ser Met Ile Leu Ile Gly Lys Val Tyr Thr Ala Gln Asn Pro Ser 35 40 45 GCC CAG GCA CTG GGC CTG GGC AAA CAT AAT TAC TGC CGG AAT CCT GAT 192 Ala Gln Ala Leu Gly Leu Gly Lys His Asn Tyr Cys Arg Asn Pro Asp 50 55 60 GGG GAT GCC AAG CCC TGG TGC CAC GTG CTG AAG AAC CGC AGG CTG ACG 240 Gly Asp Ala Lys Pro Trp Cys His Val Leu Lys Asn Arg Arg Lg Lg eu Thr 65 70 75 80 TGG GAG TAC TGT GAT GTG CCC TCC TGC TCC ACC TGC GGC CTG AGA CAG 288 Trp Glu Tyr Cys Asp Val Pro Ser Cys Ser Thr Cys Gly Leu Arg Gln 85 90 95 TAC AGC CAG CCT CAG TTT CGC ATC AAA GGA GGG CTC TTC GCC GAC ATC 336 Tyr Ser Gln Pro Gln Phe Arg Ile Lys Gly Gly Leu Phe Ala Asp Ile 100 105 110 GCC TCC CAC CCC TGG CAG GCT GCC ATC TTT GCC AAG CAC AGG GAC TCG 384 Ala Ser His Pro Trp Gln Ala Ala Ile Phe Ala Lys His Arg Asp Ser 115 120 125 CCC GGA GAG CGG TTC CTG TGC GGG GGC ATA CTC ATC AGC TCC TGC TGG 432 Pro Gly Glu Arg Phe Leu Cys Gly Gly Ile Leu Ile Ser Ser Cys Trp 130 135 140 ATT CTC TCT GCC GCC CAC TGC TTC CAG GAG AGG TTT CCG CCC CAC CAC 480 Ile Leu Ser Ala Ala His Cys Phe Gln Glu Arg Phe Pro Pro His His 145 150 155 160 CTG ACG GTG ATC TTG GGC AGA ACA TAC CGG GTG GTC CCT GGC GAG GAG 528 Leu Thr Val Ile Leu Gly Arg Thr Tyr Arg Val Val Pro Gly Glu Glu 165 170 175 GAG CAG AAA TTT GAA GTC GAA AAA TAC ATT GTC CAT AAG GAA TTC GAT 576 Glu Gln Lys Phe Glu Val Glu Lys Tyr Ile Val His Lys Glu Phe Asp 180 185 190 GAT GAC ACT TAC GAC AAT GAC ATT GCG CTG CTG CAG CTG AAA TCG GAT 624 Asp Asp Thr Tyr Asp Asn Asp Ile Ala Leu Leu Gln Leu Lys Ser Asp 195 200 205 TCG TCC CGC TGT GCC CAG GAG AGC AGC GTG GTC CGC ACT GTG TGC CTT 672 Ser Ser Arg Cys Ala Gln Glu Ser Ser Val Val Arg Thr Val Cys Leu 210 215 220 CCC CCG GAG GAC CTG CAG CTG CCG GAC TGG ACG GAG TGT GAG CTC TCC 720 Pro Pro Glu Asp Leu Gln Leu Pro Asp Trp Thr Glu Cys Glu Leu Ser 225 230 235 240 GGC TAC GGC AAG CAT GAG GCC TTG TCT CCT TTC TAT TCG GAG CGG CTG 768 Gly Tyr Gly Lys His Glu Ala Leu Ser Pro Phe Tyr Ser Glu Arg Leu 245 250 255 AAG GAG GCT CAT GTC AGA CTG TAC CCA TCC AGC CGC TGC ACA TCA CAA 816 Lys Glu Ala His Val Arg Leu Tyr Pro Ser Ser Arg Cys Thr Ser Gln 260 265 270 CAT TTA CTT AAC AGA ACA GTC ACC GAC AAC ATG CTG TGT GCT GGA GAC 864 His Leu Leu Asn Arg Thr Val Thr Asp Asn Met Leu Cys Ala Gly Asp 275 280 285 ACT CGG AGC GGC GGG CCC CAG GCA AAC TTG CAC GAC GCC TGC CAG GGC 912 Thr Arg Ser Gly Gly Pro Gln Ala AsnLeu His Asp Ala Cys Gln Gly 290 295 300 GAT TCG GGA GGC CCC CTG GTG TGT CTG AAC GAT GGC CGC ATG ACT TTG 960 Asp Ser Gly Gly Pro Leu Val Cys Leu Asn Asp Gly Arg Met Thr Leu 305 310 315 320 GTG GGC ATC ATC AGC TGG GGC CTG GGC TGT GGA CAG AAG GAT GTC CCG 1008 Val Gly Ile Ile Ser Trp Gly Leu Gly Cys Gly Gln Lys Asp Val Pro 325 330 335 GGT GTG TAC ACC AAG GTT ACC AAC TAC CTA GAC TGG ATT CGT GAC AAC 1056 Gly Val Tyr Thr Lys Val Thr Asn Tyr Leu Asp Trp Ile Arg Asp Asn 340 345 350 ATG CGA CCG TGA 1068 Met Arg Pro 355.

【0109】配列番号:31 配列の長さ:24 配列の型:核酸 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 TGGCGACTTC TCGTGCTTGG CAAA 24。SEQ ID NO: 31 Sequence Length: 24 Sequence Type: Nucleic Acid Topology: Linear Sequence Type: Other Nucleic Acid Synthetic DNA Sequence TGGCGACTTC TCGTGCTTGG CAAA 24.

【0110】配列番号:32 配列の長さ:1068 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:他の核酸 配列番号7を修飾 配列の特徴 存在位置:1〜173までのアミノ酸欠損、298,299位を
置換 特徴を決定した方法:P 配列 ATG TCT GAG GGA AAC AGT GAC TGC TAC TTT GGG AAT GGG TCA GCC TAC 48 Met Ser Glu Gly Asn Ser Asp Cys Tyr Phe Gly Asn Gly Ser Ala Tyr 1 5 10 15 CGT GGC ACG CAC AGC CTC ACC GAG TCG GGT GCC TCC TGC CTC CCG TGG 96 Arg Gly Thr His Ser Leu Thr Glu Ser Gly Ala Ser Cys Leu Pro Trp 20 25 30 AAT TCC ATG ATC CTG ATA GGC AAG GTT TAC ACA GCA CAG AAC CCC AGT 144 Asn Ser Met Ile Leu Ile Gly Lys Val Tyr Thr Ala Gln Asn Pro Ser 35 40 45 GCC CAG GCA CTG GGC CTG GGC AAA CAT AAT TAC TGC CGG AAT CCT GAT 192 Ala Gln Ala Leu Gly Leu Gly Lys His Asn Tyr Cys Arg Asn Pro Asp 50 55 60 GGG GAT GCC AAG CCC TGG TGC CAC GTG CTG AAG AAC CGC AGG CTG ACG 240 Gly Asp Ala Lys Pro Trp Cys His Val Leu Lys Asn Arg Arg Leu Thr 65 70 75 80 TGG GAG TAC TGT GAT GTG CCC TCC TGC TCC ACC TGC GGC CTG AGA CAG 288 Trp Glu Tyr Cys Asp Val Pro Ser Cys Ser Thr Cys Gly Leu Arg Gln 85 90 95 TAC AGC CAG CCT CAG TTT CGC ATC AAA GGA GGG CTC TTC GCC GAC ATC 336 Tyr Ser Gln Pro Gln Phe Arg Ile Lys Gly Gly Leu Phe Ala Asp Ile 100 105 110 GCC TCC CAC CCC TGG CAG GCT GCC ATC TTT GCC AAG CAC GAG AAG TCG 384 Ala Ser His Pro Trp Gln Ala Ala Ile Phe Ala Lys His Glu Lys Ser 115 120 125 CCC GGA GAG CGG TTC CTG TGC GGG GGC ATA CTC ATC AGC TCC TGC TGG 432 Pro Gly Glu Arg Phe Leu Cys Gly Gly Ile Leu Ile Ser Ser Cys Trp 130 135 140 ATT CTC TCT GCC GCC CAC TGC TTC CAG GAG AGG TTT CCG CCC CAC CAC 480 Ile Leu Ser Ala Ala His Cys Phe Gln Glu Arg Phe Pro Pro His His 145 150 155 160 CTG ACG GTG ATC TTG GGC AGA ACA TAC CGG GTG GTC CCT GGC GAG GAG 528 Leu Thr Val Ile Leu Gly Arg Thr Tyr Arg Val Val Pro Gly Glu Glu 165 170 175 GAG CAG AAA TTT GAA GTC GAA AAA TAC ATT GTC CAT AAG GAA TTC GAT 576 Glu Gln Lys Phe Glu Val Glu Lys Tyr Ile Val His Lys Glu Phe Asp 180 185 190 GAT GAC ACT TAC GAC AAT GAC ATT GCG CTG CTG CAG CTG AAA TCG GAT 624 Asp Asp Thr Tyr Asp Asn Asp Ile Ala Leu Leu Gln Leu Lys Ser Asp 195 200 205 TCG TCC CGC TGT GCC CAG GAG AGC AGC GTG GTC CGC ACT GTG TGC CTT 672 Ser Ser Arg Cys Ala Gln Glu Ser Ser Val Val Arg Thr Val Cys Leu 210 215 220 CCC CCG GAG GAC CTG CAG CTG CCG GAC TGG ACG GAG TGT GAG CTC TCC 720 Pro Pro Glu Asp Leu Gln Leu Pro Asp Trp Thr Glu Cys Glu Leu Ser 225 230 235 240 GGC TAC GGC AAG CAT GAG GCC TTG TCT CCT TTC TAT TCG GAG CGG CTG 768 Gly Tyr Gly Lys His Glu Ala Leu Ser Pro Phe Tyr Ser Glu Arg Leu 245 250 255 AAG GAG GCT CAT GTC AGA CTG TAC CCA TCC AGC CGC TGC ACA TCA CAA 816 Lys Glu Ala His Val Arg Leu Tyr Pro Ser Ser Arg Cys Thr Ser Gln 260 265 270 CAT TTA CTT AAC AGA ACA GTC ACC GAC AAC ATG CTG TGT GCT GGA GAC 864 His Leu Leu Asn Arg Thr Val Thr Asp Asn Met Leu Cys Ala Gly Asp 275 280 285 ACT CGG AGC GGC GGG CCC CAG GCA AAC TTG CAC GAC GCC TGC CAG GGC 912 Thr Arg Ser Gly Gly Pro Gln Ala Asn Leu His Asp Ala Cys Gln Gly 290 295 300 GAT TCG GGA GGC CCC CTG GTG TGT CTG AAC GAT GGC CGC ATG ACT TTG 960 Asp Ser Gly Gly Pro Leu Val Cys Leu Asn Asp Gly Arg Met Thr Leu 305 310 315 320 GTG GGC ATC ATC AGC TGG GGC CTG GGC TGT GGA CAG AAG GAT GTC CCG 1008 Val Gly Ile Ile Ser Trp Gly Leu Gly Cys Gly Gln Lys Asp Val Pro 325 330 335 GGT GTG TAC ACC AAG GTT ACC AAC TAC CTA GAC TGG ATT CGT GAC AAC 1056 Gly Val Tyr Thr Lys Val Thr Asn Tyr Leu Asp Trp Ile Arg Asp Asn 340 345 350 ATG CGA CCG TGA 1068 Met Arg Pro 355。
SEQ ID NO: 32 Sequence length: 1068 Sequence type: Nucleic acid Number of strands: Double-strand Topology: Linear Sequence type: Other nucleic acid Modify SEQ ID NO: 7 Sequence features Location: 1 to Amino acid deletion up to 173, substitution at positions 298 and 299 Method for determining the characteristics: P sequence ATG TCT GAG GGA AAC AGT GAC TGC TAC TTT GGG AAT GGG TCA GCC TAC 48 Met Ser Glu Gly Asn Ser Asp Cys Tyr Phe Gly Asn Gly Ser Ala Tyr 1 5 10 15 CGT GGC ACG CAC AGC CTC ACC GAG TCG GGT GCC TCC TGC CTC CCG TGG 96 Arg Gly Thr His Ser Leu Thr Glu Ser Gly Ala Ser Cys Leu Pro Trp 20 25 30 AAT TCC ATG ATC CTG ATA GGC AAG GTT TAC ACA GCA CAG AAC CCC AGT 144 Asn Ser Met Ile Leu Ile Gly Lys Val Tyr Thr Ala Gln Asn Pro Ser 35 40 45 GCC CAG GCA CTG GGC CTG GGC AAA CAT AAT TAC TGC CGG AAT CCT GAT 192 Ala Gln Ala Leu Gly Leu Gly Lys His Asn Tyr Cys Arg Asn Pro Asp 50 55 60 GGG GAT GCC AAG CCC TGG TGC CAC GTG CTG AAG AAC CGC AGG CTG ACG 240 Gly Asp Ala Lys Pro Trp Cys His Val Leu Lys Asn Arg Arg Leu Thr 65 70 75 80 TGG GAG TAC TGT GAT GTG CCC TCC TGC TCC ACC TGC GGC CTG AGA CAG 288 Trp Glu Tyr Cys Asp Val Pro Ser Cys Ser Thr Cys Gly Leu Arg Gln 85 90 95 TAC AGC CAG CCT CAG TTT CGC ATC AAA GGA GGG CTC TTC GCC GAC ATC 336 Tyr Ser Gln Pro Gln Phe Arg Ile Lys Gly Gly Leu Phe Ala Asp Ile 100 105 110 GCC TCC CAC CCC TGG CAG GCT GCC ATC TTT GCC AAG CAC GAG AAG TCG 384 Ala Ser His Pro Trp Gln Ala Ala Ile Phe Ala Lys His Glu Lys Ser 115 120 125 CCC GGA GAG CGG TTC CTG TGC GGG GGC ATA CTC ATC AGC TCC TGC TGG 432 Pro Gly Glu Arg Phe Leu Cys Gly Gly Ile Leu Ile Ser Ser Cys Trp 130 135 140 ATT CTC TCT GCC GCC CAC TGC TTC CAG GAG AGG TTT CCG CCC CAC CAC 480 Ile Leu Ser Ala Ala His Cys Phe Gln Glu Arg Phe Pro Pro His His 145 150 155 160 CTG ACG GTG ATC TTG GGC AGA ACA TAC CGG GTG GTC CCT GGC GAG GAG 528 Leu Thr Val Ile Leu Gly Arg Thr Tyr Arg Val Val Pro Gly Glu Glu 165 170 175 GAG CAG AAA TTT GAA GTC GAA AAA TAC ATT GTC CAT AAG GAA TTC GAT 576 Glu Gln Lys Phe Glu Val Glu Lys Tyr Ile Va l His Lys Glu Phe Asp 180 185 190 GAT GAC ACT TAC GAC AAT GAC ATT GCG CTG CTG CAG CTG AAA TCG GAT 624 Asp Asp Thr Tyr Asp Asn Asp Ile Ala Leu Leu Gln Leu Lys Ser Asp 195 200 205 TCG TCC CGC TGT GCC CAG GAG AGC AGC GTG GTC CGC ACT GTG TGC CTT 672 Ser Ser Arg Cys Ala Gln Glu Ser Ser Val Val Arg Thr Val Cys Leu 210 215 220 CCC CCG GAG GAC CTG CAG CTG CCG GAC TGG ACG GAG TGT GAG CTC TCC 720 Pro Pro Glu Asp Leu Gln Leu Pro Asp Trp Thr Glu Cys Glu Leu Ser 225 230 235 240 GGC TAC GGC AAG CAT GAG GCC TTG TCT CCT TTC TAT TCG GAG CGG CTG 768 Gly Tyr Gly Lys His Glu Ala Leu Ser Pro Phe Tyr Ser Glu Arg Leu 245 250 255 AAG GAG GCT CAT GTC AGA CTG TAC CCA TCC AGC CGC TGC ACA TCA CAA 816 Lys Glu Ala His Val Arg Leu Tyr Pro Ser Ser Arg Cys Thr Ser Gln 260 265 270 CAT TTA CTT AAC AGA ACA GTC ACC GAC AAC ATG CTG TGT GCT GGA GAC 864 His Leu Leu Asn Arg Thr Val Thr Asp Asn Met Leu Cys Ala Gly Asp 275 280 285 ACT CGG AGC GGC GGG CCC CAG GCA AAC TTG CAC GAC GCC TGC CAG GGC 912 Thr Arg Ser Gly Gly Pro Gln Al a Asn Leu His Asp Ala Cys Gln Gly 290 295 300 GAT TCG GGA GGC CCC CTG GTG TGT CTG AAC GAT GGC CGC ATG ACT TTG 960 Asp Ser Gly Gly Pro Leu Val Cys Leu Asn Asp Gly Arg Met Thr Leu 305 310 315 320 GTG GGC ATC ATC AGC TGG GGC CTG GGC TGT GGA CAG AAG GAT GTC CCG 1008 Val Gly Ile Ile Ser Trp Gly Leu Gly Cys Gly Gln Lys Asp Val Pro 325 330 335 GGT GTG TAC ACC AAG GTT ACC AAC TAC CTA GAC TGG ATT CGT GAC AAC 1056 Gly Val Tyr Thr Lys Val Thr Asn Tyr Leu Asp Trp Ile Arg Asp Asn 340 345 350 ATG CGA CCG TGA 1068 Met Arg Pro 355.

【0111】配列番号:33 配列の長さ:24 配列の型:核酸 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 TGGCGACTCC TTGTGCTTGG CAAA 24。SEQ ID NO: 33 Sequence Length: 24 Sequence Type: Nucleic Acid Topology: Linear Sequence Type: Other Nucleic Acid Synthetic DNA Sequence TGGCGACTCC TTGTGCTTGG CAAA 24.

【0112】配列番号:34 配列の長さ:1068 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:他の核酸 配列番号7を修飾 配列の特徴 存在位置:1〜173までのアミノ酸欠損、298,299位を
置換 特徴を決定した方法:P 配列 ATG TCT GAG GGA AAC AGT GAC TGC TAC TTT GGG AAT GGG TCA GCC TAC 48 Met Ser Glu Gly Asn Ser Asp Cys Tyr Phe Gly Asn Gly Ser Ala Tyr 1 5 10 15 CGT GGC ACG CAC AGC CTC ACC GAG TCG GGT GCC TCC TGC CTC CCG TGG 96 Arg Gly Thr His Ser Leu Thr Glu Ser Gly Ala Ser Cys Leu Pro Trp 20 25 30 AAT TCC ATG ATC CTG ATA GGC AAG GTT TAC ACA GCA CAG AAC CCC AGT 144 Asn Ser Met Ile Leu Ile Gly Lys Val Tyr Thr Ala Gln Asn Pro Ser 35 40 45 GCC CAG GCA CTG GGC CTG GGC AAA CAT AAT TAC TGC CGG AAT CCT GAT 192 Ala Gln Ala Leu Gly Leu Gly Lys His Asn Tyr Cys Arg Asn Pro Asp 50 55 60 GGG GAT GCC AAG CCC TGG TGC CAC GTG CTG AAG AAC CGC AGG CTG ACG 240 Gly Asp Ala Lys Pro Trp Cys His Val Leu Lys Asn Arg Arg Leu Thr 65 70 75 80 TGG GAG TAC TGT GAT GTG CCC TCC TGC TCC ACC TGC GGC CTG AGA CAG 288 Trp Glu Tyr Cys Asp Val Pro Ser Cys Ser Thr Cys Gly Leu Arg Gln 85 90 95 TAC AGC CAG CCT CAG TTT CGC ATC AAA GGA GGG CTC TTC GCC GAC ATC 336 Tyr Ser Gln Pro Gln Phe Arg Ile Lys Gly Gly Leu Phe Ala Asp Ile 100 105 110 GCC TCC CAC CCC TGG CAG GCT GCC ATC TTT GCC AAG CAC AAG GAG TCG 384 Ala Ser His Pro Trp Gln Ala Ala Ile Phe Ala Lys His Lys Glu Ser 115 120 125 CCC GGA GAG CGG TTC CTG TGC GGG GGC ATA CTC ATC AGC TCC TGC TGG 432 Pro Gly Glu Arg Phe Leu Cys Gly Gly Ile Leu Ile Ser Ser Cys Trp 130 135 140 ATT CTC TCT GCC GCC CAC TGC TTC CAG GAG AGG TTT CCG CCC CAC CAC 480 Ile Leu Ser Ala Ala His Cys Phe Gln Glu Arg Phe Pro Pro His His 145 150 155 160 CTG ACG GTG ATC TTG GGC AGA ACA TAC CGG GTG GTC CCT GGC GAG GAG 528 Leu Thr Val Ile Leu Gly Arg Thr Tyr Arg Val Val Pro Gly Glu Glu 165 170 175 GAG CAG AAA TTT GAA GTC GAA AAA TAC ATT GTC CAT AAG GAA TTC GAT 576 Glu Gln Lys Phe Glu Val Glu Lys Tyr Ile Val His Lys Glu Phe Asp 180 185 190 GAT GAC ACT TAC GAC AAT GAC ATT GCG CTG CTG CAG CTG AAA TCG GAT 624 Asp Asp Thr Tyr Asp Asn Asp Ile Ala Leu Leu Gln Leu Lys Ser Asp 195 200 205 TCG TCC CGC TGT GCC CAG GAG AGC AGC GTG GTC CGC ACT GTG TGC CTT 672 Ser Ser Arg Cys Ala Gln Glu Ser Ser Val Val Arg Thr Val Cys Leu 210 215 220 CCC CCG GAG GAC CTG CAG CTG CCG GAC TGG ACG GAG TGT GAG CTC TCC 720 Pro Pro Glu Asp Leu Gln Leu Pro Asp Trp Thr Glu Cys Glu Leu Ser 225 230 235 240 GGC TAC GGC AAG CAT GAG GCC TTG TCT CCT TTC TAT TCG GAG CGG CTG 768 Gly Tyr Gly Lys His Glu Ala Leu Ser Pro Phe Tyr Ser Glu Arg Leu 245 250 255 AAG GAG GCT CAT GTC AGA CTG TAC CCA TCC AGC CGC TGC ACA TCA CAA 816 Lys Glu Ala His Val Arg Leu Tyr Pro Ser Ser Arg Cys Thr Ser Gln 260 265 270 CAT TTA CTT AAC AGA ACA GTC ACC GAC AAC ATG CTG TGT GCT GGA GAC 864 His Leu Leu Asn Arg Thr Val Thr Asp Asn Met Leu Cys Ala Gly Asp 275 280 285 ACT CGG AGC GGC GGG CCC CAG GCA AAC TTG CAC GAC GCC TGC CAG GGC 912 Thr Arg Ser Gly Gly Pro Gln Ala Asn Leu His Asp Ala Cys Gln Gly 290 295 300 GAT TCG GGA GGC CCC CTG GTG TGT CTG AAC GAT GGC CGC ATG ACT TTG 960 Asp Ser Gly Gly Pro Leu Val Cys Leu Asn Asp Gly Arg Met Thr Leu 305 310 315 320 GTG GGC ATC ATC AGC TGG GGC CTG GGC TGT GGA CAG AAG GAT GTC CCG 1008 Val Gly Ile Ile Ser Trp Gly Leu Gly Cys Gly Gln Lys Asp Val Pro 325 330 335 GGT GTG TAC ACC AAG GTT ACC AAC TAC CTA GAC TGG ATT CGT GAC AAC 1056 Gly Val Tyr Thr Lys Val Thr Asn Tyr Leu Asp Trp Ile Arg Asp Asn 340 345 350 ATG CGA CCG TGA 1068 Met Arg Pro 355。
SEQ ID NO: 34 Sequence length: 1068 Sequence type: Nucleic acid Number of strands: Double stranded Topology: Linear Sequence type: Other nucleic acid Modified SEQ ID NO: 7 Sequence features Location: 1 to Amino acid deletion up to 173, substitution at positions 298 and 299 Method for determining the characteristics: P sequence ATG TCT GAG GGA AAC AGT GAC TGC TAC TTT GGG AAT GGG TCA GCC TAC 48 Met Ser Glu Gly Asn Ser Asp Cys Tyr Phe Gly Asn Gly Ser Ala Tyr 1 5 10 15 CGT GGC ACG CAC AGC CTC ACC GAG TCG GGT GCC TCC TGC CTC CCG TGG 96 Arg Gly Thr His Ser Leu Thr Glu Ser Gly Ala Ser Cys Leu Pro Trp 20 25 30 AAT TCC ATG ATC CTG ATA GGC AAG GTT TAC ACA GCA CAG AAC CCC AGT 144 Asn Ser Met Ile Leu Ile Gly Lys Val Tyr Thr Ala Gln Asn Pro Ser 35 40 45 GCC CAG GCA CTG GGC CTG GGC AAA CAT AAT TAC TGC CGG AAT CCT GAT 192 Ala Gln Ala Leu Gly Leu Gly Lys His Asn Tyr Cys Arg Asn Pro Asp 50 55 60 GGG GAT GCC AAG CCC TGG TGC CAC GTG CTG AAG AAC CGC AGG CTG ACG 240 Gly Asp Ala Lys Pro Trp Cys His Val Leu Lys Asn Arg Arg Leu Thr 65 70 75 80 TGG GAG TAC TGT GAT GTG CCC TCC TGC TCC ACC TGC GGC CTG AGA CAG 288 Trp Glu Tyr Cys Asp Val Pro Ser Cys Ser Thr Cys Gly Leu Arg Gln 85 90 95 TAC AGC CAG CCT CAG TTT CGC ATC AAA GGA GGG CTC TTC GCC GAC ATC 336 Tyr Ser Gln Pro Gln Phe Arg Ile Lys Gly Gly Leu Phe Ala Asp Ile 100 105 110 GCC TCC CAC CCC TGG CAG GCT GCC ATC TTT GCC AAG CAC AAG GAG TCG 384 Ala Ser His Pro Trp Gln Ala Ala Ile Phe Ala Lys His Lys Glu Ser 115 120 125 CCC GGA GAG CGG TTC CTG TGC GGG GGC ATA CTC ATC AGC TCC TGC TGG 432 Pro Gly Glu Arg Phe Leu Cys Gly Gly Ile Leu Ile Ser Ser Cys Trp 130 135 140 ATT CTC TCT GCC GCC CAC TGC TTC CAG GAG AGG TTT CCG CCC CAC CAC 480 Ile Leu Ser Ala Ala His Cys Phe Gln Glu Arg Phe Pro Pro His His 145 150 155 160 CTG ACG GTG ATC TTG GGC AGA ACA TAC CGG GTG GTC CCT GGC GAG GAG 528 Leu Thr Val Ile Leu Gly Arg Thr Tyr Arg Val Val Pro Gly Glu Glu 165 170 175 GAG CAG AAA TTT GAA GTC GAA AAA TAC ATT GTC CAT AAG GAA TTC GAT 576 Glu Gln Lys Phe Glu Val Glu Lys Tyr Ile Va l His Lys Glu Phe Asp 180 185 190 GAT GAC ACT TAC GAC AAT GAC ATT GCG CTG CTG CAG CTG AAA TCG GAT 624 Asp Asp Thr Tyr Asp Asn Asp Ile Ala Leu Leu Gln Leu Lys Ser Asp 195 200 205 TCG TCC CGC TGT GCC CAG GAG AGC AGC GTG GTC CGC ACT GTG TGC CTT 672 Ser Ser Arg Cys Ala Gln Glu Ser Ser Val Val Arg Thr Val Cys Leu 210 215 220 CCC CCG GAG GAC CTG CAG CTG CCG GAC TGG ACG GAG TGT GAG CTC TCC 720 Pro Pro Glu Asp Leu Gln Leu Pro Asp Trp Thr Glu Cys Glu Leu Ser 225 230 235 240 GGC TAC GGC AAG CAT GAG GCC TTG TCT CCT TTC TAT TCG GAG CGG CTG 768 Gly Tyr Gly Lys His Glu Ala Leu Ser Pro Phe Tyr Ser Glu Arg Leu 245 250 255 AAG GAG GCT CAT GTC AGA CTG TAC CCA TCC AGC CGC TGC ACA TCA CAA 816 Lys Glu Ala His Val Arg Leu Tyr Pro Ser Ser Arg Cys Thr Ser Gln 260 265 270 CAT TTA CTT AAC AGA ACA GTC ACC GAC AAC ATG CTG TGT GCT GGA GAC 864 His Leu Leu Asn Arg Thr Val Thr Asp Asn Met Leu Cys Ala Gly Asp 275 280 285 ACT CGG AGC GGC GGG CCC CAG GCA AAC TTG CAC GAC GCC TGC CAG GGC 912 Thr Arg Ser Gly Gly Pro Gln Al a Asn Leu His Asp Ala Cys Gln Gly 290 295 300 GAT TCG GGA GGC CCC CTG GTG TGT CTG AAC GAT GGC CGC ATG ACT TTG 960 Asp Ser Gly Gly Pro Leu Val Cys Leu Asn Asp Gly Arg Met Thr Leu 305 310 315 320 GTG GGC ATC ATC AGC TGG GGC CTG GGC TGT GGA CAG AAG GAT GTC CCG 1008 Val Gly Ile Ile Ser Trp Gly Leu Gly Cys Gly Gln Lys Asp Val Pro 325 330 335 GGT GTG TAC ACC AAG GTT ACC AAC TAC CTA GAC TGG ATT CGT GAC AAC 1056 Gly Val Tyr Thr Lys Val Thr Asn Tyr Leu Asp Trp Ile Arg Asp Asn 340 345 350 ATG CGA CCG TGA 1068 Met Arg Pro 355.

【0113】配列番号:35 配列の長さ:21 配列の型:核酸 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 GCACAGGAAC TCCTCTCCTG G 21。SEQ ID NO: 35 Sequence Length: 21 Sequence Type: Nucleic Acid Topology: Linear Sequence Type: Other Nucleic Acid Synthetic DNA Sequence GCACAGGAAC TCCTCTCCTG G 21.

【0114】配列番号:36 配列の長さ:1068 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:他の核酸 配列番号7を修飾 配列の特徴 存在位置:1〜173までのアミノ酸欠損、304位を置換 特徴を決定した方法:P 配列 ATG TCT GAG GGA AAC AGT GAC TGC TAC TTT GGG AAT GGG TCA GCC TAC 48 Met Ser Glu Gly Asn Ser Asp Cys Tyr Phe Gly Asn Gly Ser Ala Tyr 1 5 10 15 CGT GGC ACG CAC AGC CTC ACC GAG TCG GGT GCC TCC TGC CTC CCG TGG 96 Arg Gly Thr His Ser Leu Thr Glu Ser Gly Ala Ser Cys Leu Pro Trp 20 25 30 AAT TCC ATG ATC CTG ATA GGC AAG GTT TAC ACA GCA CAG AAC CCC AGT 144 Asn Ser Met Ile Leu Ile Gly Lys Val Tyr Thr Ala Gln Asn Pro Ser 35 40 45 GCC CAG GCA CTG GGC CTG GGC AAA CAT AAT TAC TGC CGG AAT CCT GAT 192 Ala Gln Ala Leu Gly Leu Gly Lys His Asn Tyr Cys Arg Asn Pro Asp 50 55 60 GGG GAT GCC AAG CCC TGG TGC CAC GTG CTG AAG AAC CGC AGG CTG ACG 240 Gly Asp Ala Lys Pro Trp Cys His Val Leu Lys Asn Arg Arg Leu Thr 65 70 75 80 TGG GAG TAC TGT GAT GTG CCC TCC TGC TCC ACC TGC GGC CTG AGA CAG 288 Trp Glu Tyr Cys Asp Val Pro Ser Cys Ser Thr Cys Gly Leu Arg Gln 85 90 95 TAC AGC CAG CCT CAG TTT CGC ATC AAA GGA GGG CTC TTC GCC GAC ATC 336 Tyr Ser Gln Pro Gln Phe Arg Ile Lys Gly Gly Leu Phe Ala Asp Ile 100 105 110 GCC TCC CAC CCC TGG CAG GCT GCC ATC TTT GCC AAG CAC AGG AGG TCG 384 Ala Ser His Pro Trp Gln Ala Ala Ile Phe Ala Lys His Arg Arg Ser 115 120 125 CCC GGA GAG GAG TTC CTG TGC GGG GGC ATA CTC ATC AGC TCC TGC TGG 432 Pro Gly Glu Glu Phe Leu Cys Gly Gly Ile Leu Ile Ser Ser Cys Trp 130 135 140 ATT CTC TCT GCC GCC CAC TGC TTC CAG GAG AGG TTT CCG CCC CAC CAC 480 Ile Leu Ser Ala Ala His Cys Phe Gln Glu Arg Phe Pro Pro His His 145 150 155 160 CTG ACG GTG ATC TTG GGC AGA ACA TAC CGG GTG GTC CCT GGC GAG GAG 528 Leu Thr Val Ile Leu Gly Arg Thr Tyr Arg Val Val Pro Gly Glu Glu 165 170 175 GAG CAG AAA TTT GAA GTC GAA AAA TAC ATT GTC CAT AAG GAA TTC GAT 576 Glu Gln Lys Phe Glu Val Glu Lys Tyr Ile Val His Lys Glu Phe Asp 180 185 190 GAT GAC ACT TAC GAC AAT GAC ATT GCG CTG CTG CAG CTG AAA TCG GAT 624 Asp Asp Thr Tyr Asp Asn Asp Ile Ala Leu Leu Gln Leu Lys Ser Asp 195 200 205 TCG TCC CGC TGT GCC CAG GAG AGC AGC GTG GTC CGC ACT GTG TGC CTT 672 Ser Ser Arg Cys Ala Gln Glu Ser Ser Val Val Arg Thr Val Cys Leu 210 215 220 CCC CCG GAG GAC CTG CAG CTG CCG GAC TGG ACG GAG TGT GAG CTC TCC 720 Pro Pro Glu Asp Leu Gln Leu Pro Asp Trp Thr Glu Cys Glu Leu Ser 225 230 235 240 GGC TAC GGC AAG CAT GAG GCC TTG TCT CCT TTC TAT TCG GAG CGG CTG 768 Gly Tyr Gly Lys His Glu Ala Leu Ser Pro Phe Tyr Ser Glu Arg Leu 245 250 255 AAG GAG GCT CAT GTC AGA CTG TAC CCA TCC AGC CGC TGC ACA TCA CAA 816 Lys Glu Ala His Val Arg Leu Tyr Pro Ser Ser Arg Cys Thr Ser Gln 260 265 270 CAT TTA CTT AAC AGA ACA GTC ACC GAC AAC ATG CTG TGT GCT GGA GAC 864 His Leu Leu Asn Arg Thr Val Thr Asp Asn Met Leu Cys Ala Gly Asp 275 280 285 ACT CGG AGC GGC GGG CCC CAG GCA AAC TTG CAC GAC GCC TGC CAG GGC 912 Thr Arg Ser Gly Gly Pro Gln Ala Asn Leu His Asp Ala Cys Gln Gly 290 295 300 GAT TCG GGA GGC CCC CTG GTG TGT CTG AAC GAT GGC CGC ATG ACT TTG 960 Asp Ser Gly Gly Pro Leu Val Cys Leu Asn Asp Gly Arg Met Thr Leu 305 310 315 320 GTG GGC ATC ATC AGC TGG GGC CTG GGC TGT GGA CAG AAG GAT GTC CCG 1008 Val Gly Ile Ile Ser Trp Gly Leu Gly Cys Gly Gln Lys Asp Val Pro 325 330 335 GGT GTG TAC ACC AAG GTT ACC AAC TAC CTA GAC TGG ATT CGT GAC AAC 1056 Gly Val Tyr Thr Lys Val Thr Asn Tyr Leu Asp Trp Ile Arg Asp Asn 340 345 350 ATG CGA CCG TGA 1068 Met Arg Pro 355。SEQ ID NO: 36 Sequence length: 1068 Sequence type: Nucleic acid Number of strands: Double-strand Topology: Linear Sequence type: Other nucleic acid Modified SEQ ID NO: 7 Sequence features Location: 1 to Amino acid deletion up to 173, substitution at position 304 Method to determine characteristics: P sequence ATG TCT GAG GGA AAC AGT GAC TGC TAC TTT GGG AAT GGG TCA GCC TAC 48 Met Ser Glu Gly Asn Ser Asp Cys Tyr Phe Gly Asn Gly Ser Ala Tyr 1 5 10 15 CGT GGC ACG CAC AGC CTC ACC GAG TCG GGT GCC TCC TGC CTC CCG TGG 96 Arg Gly Thr His Ser Leu Thr Glu Ser Gly Ala Ser Cys Leu Pro Trp 20 25 30 AAT TCC ATG ATC CTG ATA GGC AAG GTT TAC ACA GCA CAG AAC CCC AGT 144 Asn Ser Met Ile Leu Ile Gly Lys Val Tyr Thr Ala Gln Asn Pro Ser 35 40 45 GCC CAG GCA CTG GGC CTG GGC AAA CAT AAT TAC TGC CGG AAT CCT GAT 192 Ala Gln Ala Leu Gly Leu Gly Lys His Asn Tyr Cys Arg Asn Pro Asp 50 55 60 GGG GAT GCC AAG CCC TGG TGC CAC GTG CTG AAG AAC CGC AGG CTG ACG 240 Gly Asp Ala Lys Pro Trp Cys His Val Leu Lys Asn Arg Arg Lg Lg eu Thr 65 70 75 80 TGG GAG TAC TGT GAT GTG CCC TCC TGC TCC ACC TGC GGC CTG AGA CAG 288 Trp Glu Tyr Cys Asp Val Pro Ser Cys Ser Thr Cys Gly Leu Arg Gln 85 90 95 TAC AGC CAG CCT CAG TTT CGC ATC AAA GGA GGG CTC TTC GCC GAC ATC 336 Tyr Ser Gln Pro Gln Phe Arg Ile Lys Gly Gly Leu Phe Ala Asp Ile 100 105 110 GCC TCC CAC CCC TGG CAG GCT GCC ATC TTT GCC AAG CAC AGG AGG TCG 384 Ala Ser His Pro Trp Gln Ala Ala Ile Phe Ala Lys His Arg Arg Ser 115 120 125 CCC GGA GAG GAG TTC CTG TGC GGG GGC ATA CTC ATC AGC TCC TGC TGG 432 Pro Gly Glu Glu Phe Leu Cys Gly Gly Ile Leu Ile Ser Ser Cys Trp 130 135 140 ATT CTC TCT GCC GCC CAC TGC TTC CAG GAG AGG TTT CCG CCC CAC CAC 480 Ile Leu Ser Ala Ala His Cys Phe Gln Glu Arg Phe Pro Pro His His 145 150 155 160 CTG ACG GTG ATC TTG GGC AGA ACA TAC CGG GTG GTC CCT GGC GAG GAG 528 Leu Thr Val Ile Leu Gly Arg Thr Tyr Arg Val Val Pro Gly Glu Glu 165 170 175 GAG CAG AAA TTT GAA GTC GAA AAA TAC ATT GTC CAT AAG GAA TTC GAT 576 Glu Gln Lys Phe Glu Val Glu Lys Tyr Ile Val His Lys Glu Phe Asp 180 185 190 GAT GAC ACT TAC GAC AAT GAC ATT GCG CTG CTG CAG CTG AAA TCG GAT 624 Asp Asp Thr Tyr Asp Asn Asp Ile Ala Leu Leu Gln Leu Lys Ser Asp 195 200 205 TCG TCC CGC TGT GCC CAG GAG AGC AGC GTG GTC CGC ACT GTG TGC CTT 672 Ser Ser Arg Cys Ala Gln Glu Ser Ser Val Val Arg Thr Val Cys Leu 210 215 220 CCC CCG GAG GAC CTG CAG CTG CCG GAC TGG ACG GAG TGT GAG CTC TCC 720 Pro Pro Glu Asp Leu Gln Leu Pro Asp Trp Thr Glu Cys Glu Leu Ser 225 230 235 240 GGC TAC GGC AAG CAT GAG GCC TTG TCT CCT TTC TAT TCG GAG CGG CTG 768 Gly Tyr Gly Lys His Glu Ala Leu Ser Pro Phe Tyr Ser Glu Arg Leu 245 250 255 AAG GAG GCT CAT GTC AGA CTG TAC CCA TCC AGC CGC TGC ACA TCA CAA 816 Lys Glu Ala His Val Arg Leu Tyr Pro Ser Ser Arg Cys Thr Ser Gln 260 265 270 CAT TTA CTT AAC AGA ACA GTC ACC GAC AAC ATG CTG TGT GCT GGA GAC 864 His Leu Leu Asn Arg Thr Val Thr Asp Asn Met Leu Cys Ala Gly Asp 275 280 285 ACT CGG AGC GGC GGG CCC CAG GCA AAC TTG CAC GAC GCC TGC CAG GGC 912 Thr Arg Ser Gly Gly Pro Gln Ala AsnLeu His Asp Ala Cys Gln Gly 290 295 300 GAT TCG GGA GGC CCC CTG GTG TGT CTG AAC GAT GGC CGC ATG ACT TTG 960 Asp Ser Gly Gly Pro Leu Val Cys Leu Asn Asp Gly Arg Met Thr Leu 305 310 315 320 GTG GGC ATC ATC AGC TGG GGC CTG GGC TGT GGA CAG AAG GAT GTC CCG 1008 Val Gly Ile Ile Ser Trp Gly Leu Gly Cys Gly Gln Lys Asp Val Pro 325 330 335 GGT GTG TAC ACC AAG GTT ACC AAC TAC CTA GAC TGG ATT CGT GAC AAC 1056 Gly Val Tyr Thr Lys Val Thr Asn Tyr Leu Asp Trp Ile Arg Asp Asn 340 345 350 ATG CGA CCG TGA 1068 Met Arg Pro 355.

【0115】配列番号:37 配列の長さ:24 配列の型:核酸 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 TGGCGACTCT TCGTGCTTGG CAAA 24。SEQ ID NO: 37 Sequence Length: 24 Sequence Type: Nucleic Acid Topology: Linear Sequence Type: Other Nucleic Acid Synthetic DNA Sequence TGGCGACTCT TCGTGCTTGG CAAA 24.

【0116】配列番号:38 配列の長さ:1068 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:他の核酸 配列番号7を修飾 配列の特徴 存在位置:1〜173までのアミノ酸欠損、298,299,304
位を置換 特徴を決定した方法:P 配列 ATG TCT GAG GGA AAC AGT GAC TGC TAC TTT GGG AAT GGG TCA GCC TAC 48 Met Ser Glu Gly Asn Ser Asp Cys Tyr Phe Gly Asn Gly Ser Ala Tyr 1 5 10 15 CGT GGC ACG CAC AGC CTC ACC GAG TCG GGT GCC TCC TGC CTC CCG TGG 96 Arg Gly Thr His Ser Leu Thr Glu Ser Gly Ala Ser Cys Leu Pro Trp 20 25 30 AAT TCC ATG ATC CTG ATA GGC AAG GTT TAC ACA GCA CAG AAC CCC AGT 144 Asn Ser Met Ile Leu Ile Gly Lys Val Tyr Thr Ala Gln Asn Pro Ser 35 40 45 GCC CAG GCA CTG GGC CTG GGC AAA CAT AAT TAC TGC CGG AAT CCT GAT 192 Ala Gln Ala Leu Gly Leu Gly Lys His Asn Tyr Cys Arg Asn Pro Asp 50 55 60 GGG GAT GCC AAG CCC TGG TGC CAC GTG CTG AAG AAC CGC AGG CTG ACG 240 Gly Asp Ala Lys Pro Trp Cys His Val Leu Lys Asn Arg Arg Leu Thr 65 70 75 80 TGG GAG TAC TGT GAT GTG CCC TCC TGC TCC ACC TGC GGC CTG AGA CAG 288 Trp Glu Tyr Cys Asp Val Pro Ser Cys Ser Thr Cys Gly Leu Arg Gln 85 90 95 TAC AGC CAG CCT CAG TTT CGC ATC AAA GGA GGG CTC TTC GCC GAC ATC 336 Tyr Ser Gln Pro Gln Phe Arg Ile Lys Gly Gly Leu Phe Ala Asp Ile 100 105 110 GCC TCC CAC CCC TGG CAG GCT GCC ATC TTT GCC AAG CAC GAA GAA TCG 384 Ala Ser His Pro Trp Gln Ala Ala Ile Phe Ala Lys His Glu Glu Ser 115 120 125 CCC GGA GAG GAG TTC CTG TGC GGG GGC ATA CTC ATC AGC TCC TGC TGG 432 Pro Gly Glu Glu Phe Leu Cys Gly Gly Ile Leu Ile Ser Ser Cys Trp 130 135 140 ATT CTC TCT GCC GCC CAC TGC TTC CAG GAG AGG TTT CCG CCC CAC CAC 480 Ile Leu Ser Ala Ala His Cys Phe Gln Glu Arg Phe Pro Pro His His 145 150 155 160 CTG ACG GTG ATC TTG GGC AGA ACA TAC CGG GTG GTC CCT GGC GAG GAG 528 Leu Thr Val Ile Leu Gly Arg Thr Tyr Arg Val Val Pro Gly Glu Glu 165 170 175 GAG CAG AAA TTT GAA GTC GAA AAA TAC ATT GTC CAT AAG GAA TTC GAT 576 Glu Gln Lys Phe Glu Val Glu Lys Tyr Ile Val His Lys Glu Phe Asp 180 185 190 GAT GAC ACT TAC GAC AAT GAC ATT GCG CTG CTG CAG CTG AAA TCG GAT 624 Asp Asp Thr Tyr Asp Asn Asp Ile Ala Leu Leu Gln Leu Lys Ser Asp 195 200 205 TCG TCC CGC TGT GCC CAG GAG AGC AGC GTG GTC CGC ACT GTG TGC CTT 672 Ser Ser Arg Cys Ala Gln Glu Ser Ser Val Val Arg Thr Val Cys Leu 210 215 220 CCC CCG GAG GAC CTG CAG CTG CCG GAC TGG ACG GAG TGT GAG CTC TCC 720 Pro Pro Glu Asp Leu Gln Leu Pro Asp Trp Thr Glu Cys Glu Leu Ser 225 230 235 240 GGC TAC GGC AAG CAT GAG GCC TTG TCT CCT TTC TAT TCG GAG CGG CTG 768 Gly Tyr Gly Lys His Glu Ala Leu Ser Pro Phe Tyr Ser Glu Arg Leu 245 250 255 AAG GAG GCT CAT GTC AGA CTG TAC CCA TCC AGC CGC TGC ACA TCA CAA 816 Lys Glu Ala His Val Arg Leu Tyr Pro Ser Ser Arg Cys Thr Ser Gln 260 265 270 CAT TTA CTT AAC AGA ACA GTC ACC GAC AAC ATG CTG TGT GCT GGA GAC 864 His Leu Leu Asn Arg Thr Val Thr Asp Asn Met Leu Cys Ala Gly Asp 275 280 285 ACT CGG AGC GGC GGG CCC CAG GCA AAC TTG CAC GAC GCC TGC CAG GGC 912 Thr Arg Ser Gly Gly Pro Gln Ala Asn Leu His Asp Ala Cys Gln Gly 290 295 300 GAT TCG GGA GGC CCC CTG GTG TGT CTG AAC GAT GGC CGC ATG ACT TTG 960 Asp Ser Gly Gly Pro Leu Val Cys Leu Asn Asp Gly Arg Met Thr Leu 305 310 315 320 GTG GGC ATC ATC AGC TGG GGC CTG GGC TGT GGA CAG AAG GAT GTC CCG 1008 Val Gly Ile Ile Ser Trp Gly Leu Gly Cys Gly Gln Lys Asp Val Pro 325 330 335 GGT GTG TAC ACC AAG GTT ACC AAC TAC CTA GAC TGG ATT CGT GAC AAC 1056 Gly Val Tyr Thr Lys Val Thr Asn Tyr Leu Asp Trp Ile Arg Asp Asn 340 345 350 ATG CGA CCG TGA 1068 Met Arg Pro 355。
SEQ ID NO: 38 Sequence length: 1068 Sequence type: Nucleic acid Number of strands: Double stranded Topology: Linear Sequence type: Other nucleic acid Modified SEQ ID NO: 7 Sequence features Location: 1 to Amino acid deletion up to 173, 298, 299, 304
Substitution at position Method for determining features: P sequence ATG TCT GAG GGA AAC AGT GAC TGC TAC TTT GGG AAT GGG TCA GCC TAC 48 Met Ser Glu Gly Asn Ser Asp Cys Tyr Phe Gly Asn Gly Ser Ala Tyr 1 5 10 15 CGT GGC ACG CAC AGC CTC ACC GAG TCG GGT GCC TCC TGC CTC CCG TGG 96 Arg Gly Thr His Ser Leu Thr Glu Ser Gly Ala Ser Cys Leu Pro Trp 20 25 30 AAT TCC ATG ATC CTG ATA GGC AAG GTT TAC ACA GCA CAG AAC CCC AGT 144 Asn Ser Met Ile Leu Ile Gly Lys Val Tyr Thr Ala Gln Asn Pro Ser 35 40 45 GCC CAG GCA CTG GGC CTG GGC AAA CAT AAT TAC TGC CGG AAT CCT GAT 192 Ala Gln Ala Leu Gly Leu Gly Lys His Asn Tyr Cys Arg Asn Pro Asp 50 55 60 GGG GAT GCC AAG CCC TGG TGC CAC GTG CTG AAG AAC CGC AGG CTG ACG 240 Gly Asp Ala Lys Pro Trp Cys His Val Leu Lys Asn Arg Arg Leu Thr 65 70 75 80 TGG GAG TAC TGT GAT GTG CCC TCC TGC TCC ACC TGC GGC CTG AGA CAG 288 Trp Glu Tyr Cys Asp Val Pro Ser Cys Ser Thr Cys Gly Leu Arg Gln 85 90 95 TAC AGC CAG CCT CAG TTT CGC ATC AAA GGA GGG CTC TTC GCC GAC ATC 336 Tyr Ser Gln Pro Gln Phe Arg Ile Lys Gly Gly Leu Phe Ala Asp Ile 100 105 110 GCC TCC CAC CCC TGG CAG GCT GCC ATC TTT GCC AAG CAC GAA GAA TCG 384 Ala Ser His Pro Trp Gln Ala Ala Ile Phe Ala Lys His Glu Glu Ser 115 120 125 CCC GGA GAG GAG TTC CTG TGC GGG GGC ATA CTC ATC AGC TCC TGC TGG 432 Pro Gly Glu Glu Phe Leu Cys Gly Gly Ile Leu Ile Ser Ser Cys Trp 130 135 140 ATT CTC TCT GCC GCC CAC TGC TTC CAG GAG AGG TTT CCG CCC CAC CAC 480 Ile Leu Ser Ala Ala His Cys Phe Gln Glu Arg Phe Pro Pro His His 145 150 155 160 CTG ACG GTG ATC TTG GGC AGA ACA TAC CGG GTG GTC CCT GGC GAG GAG 528 Leu Thr Val Ile Leu Gly Arg Thr Tyr Arg Val Val Pro Gly Glu Glu 165 170 175 GAG CAG AAA TTT GAA GTC GAA AAA TAC ATT GTC CAT AAG GAA TTC GAT 576 Glu Gln Lys Phe Glu Val Glu Lys Tyr Ile Val His Lys Glu Phe Asp 180 185 190 GAT GAC ACT TAC GAC AAT GAC ATT GCG CTG CTG CAG CTG AAA TCG GAT 624 Asp Asp Thr Tyr Asp Asn Asp Ile Ala Leu Leu Gln Leu Lys Ser Asp 195 200 205 TCG TCC CGC TGT GCC CAG GAG AGC AGC GTG GTC CGC ACT GTG TGC CTT 672 Ser Ser Arg Cys Ala Gln Glu Ser Ser Val Val Arg Thr Val Cys Leu 210 215 220 CCC CCG GAG GAC CTG CAG CTG CCG GAC TGG ACG GAG TGT GAG CTC TCC 720 Pro Pro Glu Asp Leu Gln Leu Pro Asp Trp Thr Glu Cys Glu Leu Ser 225 230 235 240 GGC TAC GGC AAG CAT GAG GCC TTG TCT CCT TTC TAT TCG GAG CGG CTG 768 Gly Tyr Gly Lys His Glu Ala Leu Ser Pro Phe Tyr Ser Glu Arg Leu 245 250 255 AAG GAG GCT CAT GTC AGA CTG TAC CCA TCC AGC CGC TGC ACA TCA CAA 816 Lys Glu Ala His Val Arg Leu Tyr Pro Ser Ser Arg Cys Thr Ser Gln 260 265 270 CAT TTA CTT AAC AGA ACA GTC ACC GAC AAC ATG CTG TGT GCT GGA GAC 864 His Leu Leu Asn Arg Thr Val Thr Asp Asn Met Leu Cys Ala Gly Asp 275 280 285 ACT CGG AGC GGC GGG CCC CAG GCA AAC TTG CAC GAC GCC TGC CAG GGC 912 Thr Arg Ser Gly Gly Pro Gln Ala Asn Leu His Asp Ala Cys Gln Gly 290 295 300 GAT TCG GGA GGC CCC CTG GTG TGT CTG AAC GAT GGC CGC ATG ACT TTG 960 Asp Ser Gly Gly Pro Leu Val Cys Leu Asn Asp Gly Arg Met Thr Leu 305 310 315 320 GTG GGC ATC ATC AGC TGG GGC CTG GGC TGT GGA CAG AAG GAT GTC CCG 1008 Val Gly Ile Ile Ser Trp Gly Leu Gly Cys Gly Gln Lys Asp Val Pro 325 330 335 GGT GTG TAC ACC AAG GTT ACC AAC TAC CTA GAC TGG ATT CGT GAC AAC 1056 Gly Val Tyr Thr Lys Val Thr Asn Tyr Leu Asp Trp Ile Arg Asp Asn 340 345 350 ATG CGA CCG TGA 1068 Met Arg Pro 355.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1で得られたヒトtPA cDNAの塩
基配列およびそれから推定されるアミノ酸配列である。
FIG. 1 shows the nucleotide sequence of the human tPA cDNA obtained in Example 1 and the amino acid sequence deduced therefrom.

【図2】プラスミドpTB920の構築図である。FIG. 2 is a construction diagram of plasmid pTB920.

【図3】プラスミドpTB927の構築図である。FIG. 3 is a construction diagram of plasmid pTB927.

【図4】ヒトtPAムテインtPA−1およびヒトtP
AムテインtPA−2を得るに当って行われた特定部位
変異の模式図である。
FIG. 4. Human tPA mutein tPA-1 and human tP.
It is a schematic diagram of the specific site mutation performed in obtaining A mutein tPA-2.

【図5】ヒトtPAムテインtPA−1の塩基配列およ
びそれから推定されるアミノ酸配列である。
FIG. 5 shows the nucleotide sequence of human tPA mutein tPA-1 and the amino acid sequence deduced therefrom.

【図6】ヒトtPAムテインtPA−2の塩基配列およ
びそれから推定されるアミノ酸配列である。
FIG. 6 shows the nucleotide sequence of human tPA mutein tPA-2 and the amino acid sequence deduced therefrom.

【図7】プラスミドpTB1128,1132,113
3および1134の構築図である。
FIG. 7: Plasmids pTB1128,1132,113
3 is a construction drawing of 3 and 1134. FIG.

【図8】tPAの酵素活性のための至適pHをみたグラ
フである。
FIG. 8 is a graph showing the optimum pH for the enzymatic activity of tPA.

【図9】還元型グルタチオンと酸化型グルタチオンの至
適濃度をみたグラフである。
FIG. 9 is a graph showing optimum concentrations of reduced glutathione and oxidized glutathione.

【図10】賦活化における保温時間とtPA−1酵素活
性との関係をみたグラフである。
FIG. 10 is a graph showing the relationship between heat retention time and tPA-1 enzyme activity during activation.

【図11】tPA−1,tPA−2の電気泳動図であ
る。
FIG. 11 is an electrophoretogram of tPA-1 and tPA-2.

【図12】tPA−1およびtPA−2に対するPAI
−1の阻害作用をみたグラフである。
FIG. 12: PAI for tPA-1 and tPA-2
It is a graph which looked at the inhibitory action of -1.

【図13】プラスミドpTB1038および1277の
構築図である。
FIG. 13 is a construction diagram of plasmids pTB1038 and 1277.

【図14】ヒトtPAムテインtPA−6の塩基配列お
よびそれから推定されるアミノ酸配列である。
FIG. 14 shows the nucleotide sequence of human tPA mutein tPA-6 and the amino acid sequence deduced therefrom.

【図15】プラスミドpTB1158および1160の
構築図である。
FIG. 15 is a construction diagram of plasmids pTB1158 and 1160.

【図16】ヒトtPAムテインtPA−7の塩基配列お
よびそれから推定されるアミノ酸配列である。
FIG. 16 shows the nucleotide sequence of human tPA mutein tPA-7 and the amino acid sequence deduced therefrom.

【図17】ヒトtPAムテインtPA−8の塩基配列お
よびそれから推定されるアミノ酸配列である。
FIG. 17 shows the nucleotide sequence of human tPA mutein tPA-8 and the amino acid sequence deduced therefrom.

【図18】tPA−6’の電気泳動図である。FIG. 18 is an electrophoretogram of tPA-6 '.

【図19】tPA−7の電気泳動図である。FIG. 19 is an electrophoretogram of tPA-7.

【図20】tPA−8の電気泳動図である。FIG. 20 is an electrophoretogram of tPA-8.

【図21】ヒトtPAムテインtPA−11を得るに当
って行われた特定部位変異の模式図である。
FIG. 21 is a schematic diagram of specific site mutation performed in obtaining human tPA mutein tPA-11.

【図22】ヒトtPAムテインtPA−11の塩基配列
およびそれから推定されるアミノ酸配列である。
FIG. 22 shows the nucleotide sequence of human tPA mutein tPA-11 and the amino acid sequence deduced therefrom.

【図23】プラスミドpTB1334および1335の
構築図である。
FIG. 23 is a construction diagram of plasmids pTB1334 and 1335.

【図24】ヒトtPAムテインtPA−12を得るに当
って行われた特定部位変異の模式図である。
FIG. 24 is a schematic diagram of specific site mutation performed in obtaining human tPA mutein tPA-12.

【図25】ヒトtPAムテインtPA−12の塩基配列
およびそれから推定されるアミノ酸配列である。
FIG. 25 shows the nucleotide sequence of human tPA mutein tPA-12 and the amino acid sequence deduced therefrom.

【図26】プラスミドpTB1353および1354の
構築図である。
FIG. 26 is a construction diagram of plasmids pTB1353 and 1354.

【図27】ヒトtPAムテインtPA−13を得るに当
って行われた特定部位変異の模式図である。
FIG. 27 is a schematic diagram of specific site mutation performed in obtaining human tPA mutein tPA-13.

【図28】ヒトtPAムテインtPA−13の塩基配列
およびそれから推定されるアミノ酸配列である。
FIG. 28 shows the nucleotide sequence of human tPA mutein tPA-13 and the amino acid sequence deduced therefrom.

【図29】プラスミドpTB1356および1357の
構築図である。
FIG. 29 is a construction diagram of plasmids pTB1356 and 1357.

【図30】ヒトtPAムテインtPA−14を得るに当
って行われた特定部位変異の模式図である。
FIG. 30 is a schematic diagram of specific site mutation performed in obtaining human tPA mutein tPA-14.

【図31】ヒトtPAムテインtPA−14の塩基配列
およびそれから推定されるアミノ酸配列である。
FIG. 31 shows the nucleotide sequence of human tPA mutein tPA-14 and the amino acid sequence deduced therefrom.

【図32】プラスミドpTB1359および1360の
構築図である。
FIG. 32 is a construction diagram of plasmids pTB1359 and 1360.

【図33】ヒトtPAムテインtPA−15を得るに当
って行われた特定部位変異の模式図である。
FIG. 33 is a schematic diagram of specific site mutation performed in obtaining human tPA mutein tPA-15.

【図34】ヒトtPAムテインtPA−15の塩基配列
およびそれから推定されるアミノ酸配列である。
FIG. 34 shows the nucleotide sequence of human tPA mutein tPA-15 and the amino acid sequence deduced therefrom.

【図35】プラスミドpTB1362および1363の
構築図である。
FIG. 35 is a construction diagram of plasmids pTB1362 and 1363.

【図36】ヒトtPAムテインtPA−16を得るに当
って行われた特定部位変異の模式図である。
FIG. 36 is a schematic diagram of specific site mutation performed in obtaining human tPA mutein tPA-16.

【図37】ヒトtPAムテインtPA−16の塩基配列
およびそれから推定されるアミノ酸配列である。
FIG. 37 shows the nucleotide sequence of human tPA mutein tPA-16 and the amino acid sequence deduced therefrom.

【図38】プラスミドpTB1345および1346の
構築図である。
FIG. 38 is a construction diagram of plasmids pTB1345 and 1346.

【図39】ヒトtPAムテインtPA−17を得るに当
って行われた特定部位変異の模式図である。
FIG. 39 is a schematic diagram of specific site mutation performed in obtaining human tPA mutein tPA-17.

【図40】ヒトtPAムテインtPA−17の塩基配列
およびそれから推定されるアミノ酸配列である。
FIG. 40 shows the nucleotide sequence of human tPA mutein tPA-17 and the amino acid sequence deduced therefrom.

【図41】プラスミドpTB1365および1366の
構築図である。
FIG. 41 is a construction diagram of plasmids pTB1365 and 1366.

【図42】ヒトtPAムテインtPA−18を得るに当
って行われた特定部位変異の模式図である。
FIG. 42 is a schematic diagram of specific site mutation performed in obtaining human tPA mutein tPA-18.

【図43】ヒトtPAムテインtPA−18の塩基配列
およびそれから推定されるアミノ酸配列である。
FIG. 43 shows the nucleotide sequence of human tPA mutein tPA-18 and the amino acid sequence deduced therefrom.

【図44】プラスミドpTB1368および1369の
構築図である。
FIG. 44 is a construction diagram of plasmids pTB1368 and 1369.

【図45】ヒトtPAムテインtPA−5を得るに当っ
て行われた特定部位変異の模式図である。
FIG. 45 is a schematic diagram of specific site mutation performed in obtaining human tPA mutein tPA-5.

【図46】ヒトtPAムテインtPA−5の塩基配列お
よびそれから推定されるアミノ酸配列である。
FIG. 46 shows the nucleotide sequence of human tPA mutein tPA-5 and the amino acid sequence deduced therefrom.

【図47】プラスミドpTB1271および1272の
構築図である。
FIG. 47 is a construction diagram of plasmids pTB1271 and 1272.

【図48】ヒトtPAムテインtPA−6を得るに当っ
て行われた特定部位変異の模式図である。
FIG. 48 is a schematic diagram of specific site mutation performed in obtaining human tPA mutein tPA-6.

【図49】ヒトtPAムテインtPA−6の塩基配列お
よびそれから推定されるアミノ酸配列である。
FIG. 49 shows the nucleotide sequence of human tPA mutein tPA-6 and the amino acid sequence deduced therefrom.

【図50】プラスミドpTB1325および1326の
構築図である。
FIG. 50 is a construction diagram of plasmids pTB1325 and 1326.

【図51】tPA−2の血中半減期の延長を示すグラフ
である。
FIG. 51 is a graph showing an increase in blood half-life of tPA-2.

【図52】tPA−6’の血栓溶解活性に関するグラフ
である。
FIG. 52 is a graph showing the thrombolytic activity of tPA-6 ′.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成3年5月23日[Submission date] May 23, 1991

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0031[Correction target item name] 0031

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0031】以下の実施例で得られた各形質転換体の財
団法人発酵研究所(IFO)および通商産業省工業技術
院微生物工業技術研究所(FRI)への寄託番号および寄
託日は以下に示すとおりである。 微生物名 IFO寄託番号 FRI寄託番号 Escherichia coli MM294(DE3)/pLysS,pTB1133 IFO 15031 FERM BP-2882 平成2年4月17日 平成2年5月1日 Escherichia coli MM294(DE3)/pLysS,pTB1134 IFO 15032 FERM BP-2883 平成2年4月17日 平成2年5月1日 Escherichia coli MM294(DE3)/pLysS,pTB1277 IFO 15116 FERM BP-3199 平成2年12月6日 平成2年12月13日 Escherichia coli MM294(DE3)/pLysS,pTB1159 IFO 15117 FERM BP-3200 平成2年12月6日 平成2年12月13日 Escherichia coli MM294(DE3)/pLysS,pTB1161 IFO 15118 FERM BP-3201 平成2年12月6日 平成2年12月13日 Escherichia coli MM294(DE3)/pLysS,pTG1360 IFO 15166 FERM BP-3365 平成3年4月10日 平成3年4月17日 Esherichia coli MM294(DE3)/pLysS,pTG1363 IFO 15167 FERM BP-3366 平成3年4月10日 平成3年4月17日 Esherichia coli MM294(DE3)/pLysS,pTG1346 IFO 15168 FERM BP-3367 平成3年4月10日 平成3年4月17日 Esherichia coli MM294(DE3)/pLysS,pTG1366 IFO 15169 FERM BP-3368 平成3年4月10日 平成3年4月17日 Esherichia coli MM294(DE3)/pLysS,pTG1369 IFO 15170 FERM BP-3369 平成3年4月10日 平成3年4月17日 Esherichia coli MM294(DE3)/pLysS,pTB1272 IFO 15172 FERM P-12243 平成3年5月6日 平成3年5月13日 Esherichia coli MM294(DE3)/pLysS,pTB1326 IFO 15173 FERM P-12244 平成3年5月6日 平成3年5月13日 Esherichia coli MM294(DE3)/pLysS,pTB1335 IFO 15174 FERM P-12246 平成3年5月6日 平成3年5月13日 Esherichia coli MM294(DE3)/pLysS,pTB1354 IFO 15175 FERM P-12245 平成3年5月6日 平成3年5月13日 Esherichia coli MM294(DE3)/pLysS,pTB1357 IFO 15176 FERM P-12247 平成3年5月6日 平成3年5月13日
The deposit numbers and deposit dates of the respective transformants obtained in the following Examples to the Institute for Fermentation Research (IFO) and the Institute of Microbial Technology (FRI) of the Ministry of International Trade and Industry are shown below. It is as follows. Microorganism name IFO deposit number FRI deposit number Escherichia coli MM294 (DE3) / pLysS, pTB1133 IFO 15031 FERM BP-2882 April 17, 1990 May 1, 1990 Escherichia coli MM294 (DE3) / pLysS, pTB1134 IFO 15032 FERM BP-2883 April 17, 1990 May 1, 1990 Escherichia coli MM294 (DE3) / pLysS, pTB1277 IFO 15116 FERM BP-3199 December 6, 1990 December 13, 1990 Escherichia coli MM294 (DE3) / pLysS, pTB1159 IFO 15117 FERM BP-3200 December 6, 1990 December 13, 1990 Escherichia coli MM294 (DE3) / pLysS, pTB1161 IFO 15118 FERM BP-3201 December 6, 1990 Date December 13, 1990 Escherichia coli MM294 (DE3) / pLysS, pTG1360 IFO 15166 FERM BP-3365 April 10, 1991 April 17, 1991 Esherichia coli MM294 (DE3) / pLysS, pTG1363 IFO 15167 FERM BP-3366 April 10, 1991 April 17, 1991 Esherichia coli MM294 (DE3) / pLysS, pTG1346 IFO 15168 FERM BP-3367 April 10, 1991 April 17, 1991 Esherichia coli MM294 (DE3) / pLysS, pTG1366 IFO 15169 FERM BP-3368 April 10, 1991 April, 1991 17th Esherichia coli MM294 (DE3) / pLysS, pTG1369 IFO 15170 FERM BP-3369 April 10, 1991 April 17, 1991 Esherichia coli MM294 (DE3) / pLysS, pTB1272 IFO 15172 FERM P-12243 Heisei 3 May 6, 1991 May 13, 1991 Esherichia coli MM294 (DE3) / pLysS, pTB1326 IFO 15173 FERM P-12244 May 6 , 1991 May 13, 1991 Esherichia coli MM294 (DE3) / pLysS , pTB1335 IFO 15174 FERM P-12246, 1991 May 6, 1991 May 13, Esherichia coli MM294 (DE3) / pLysS , pTB1354 IFO 15175 FERM P-12245 , 1991 May 6, 1993 May 3 years 13th Esherichia coli MM294 (DE3) / pLysS, pTB1357 IFO 15176 FERM P-12247 May 6, 1991 May 13, 1991

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 //(C12N 9/64 C12R 1:19) (C12N 1/21 C12R 1:19) ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display area // (C12N 9/64 C12R 1:19) (C12N 1/21 C12R 1:19)

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】フィンガー(F)ドメイン、成長因子
(E)ドメインおよびクリングル(K)1ドメインを欠
失してなることを特徴とする組織プラスミノーゲンアク
チベーター(tPA)ムテイン。
1. A tissue plasminogen activator (tPA) mutein characterized by deletion of a finger (F) domain, a growth factor (E) domain and a kringle (K) 1 domain.
【請求項2】アミノ酸残基番号296から302の領域の一部
または全部を欠失してなる請求項1記載のtPAムテイ
ン。
2. The tPA mutein according to claim 1, wherein a part or all of the region of amino acid residue numbers 296 to 302 is deleted.
【請求項3】アミノ酸残基番号296から304の間のアミノ
酸残基の一部または全部を別のアミノ酸残基に置換して
なる請求項1記載のtPAムテイン。
3. The tPA mutein according to claim 1, wherein some or all of the amino acid residues between amino acid residue numbers 296 to 304 are replaced with another amino acid residue.
【請求項4】アミノ酸残基番号296から302の領域の一部
または全部を欠失させ、かつアミノ酸残基番号296から3
04の領域の一部のアミノ酸残基を別のアミノ酸残基に置
換してなる請求項1記載のtPAムテイン。
4. A part or all of the region of amino acid residue numbers 296 to 302 is deleted, and amino acid residue numbers 296 to 3 are deleted.
The tPA mutein according to claim 1, which is obtained by substituting a part of amino acid residues in region 04 with another amino acid residue.
【請求項5】別のアミノ酸残基が酸性アミノ酸である請
求項3または4記載のtPAムテイン。
5. The tPA mutein according to claim 3 or 4, wherein the another amino acid residue is an acidic amino acid.
【請求項6】請求項1、2、3、4または5記載のムテ
インをコードする塩基配列を有する組換えDNA。
6. A recombinant DNA having a nucleotide sequence encoding the mutein according to claim 1, 2, 3, 4 or 5.
【請求項7】請求項6記載の組換えDNAを含むベクタ
ーで形質転換された形質転換体。
7. A transformant transformed with the vector containing the recombinant DNA according to claim 6.
【請求項8】大腸菌、酵母、枯草菌および哺乳動物細胞
を形質転換して得られた請求項7記載の形質転換体。
8. The transformant according to claim 7, which is obtained by transforming Escherichia coli, yeast, Bacillus subtilis and mammalian cells.
【請求項9】請求項7または8記載の形質転換体を培地
に培養し、培養物中に請求項1記載のムテインを生成蓄
積せしめ、これを採取することを特徴とする該ムテイン
の製造法。
9. A method for producing the mutein, which comprises culturing the transformant according to claim 7 or 8 in a medium, allowing the mutein according to claim 1 to be produced and accumulated in the culture, and collecting the mutein. .
【請求項10】大腸菌を形質転換して得られた請求項8
記載の形質転換体を培地に培養し、大腸菌菌体に請求項
1記載のムテインを生成蓄積せしめ、これを分離精製す
ることを特徴とする該ムテインの製造法。
10. A method obtained by transforming Escherichia coli.
A method for producing the mutein, which comprises culturing the transformant according to claim 1 in a medium, allowing the mutein according to claim 1 to be produced and accumulated in E. coli cells, and separating and purifying the mutein.
【請求項11】請求項1記載のムテインを不溶性の封入
体として大腸菌菌体内に生成蓄積せしめ、これを分離精
製することを特徴とする請求項10記載の該ムテインの製
造法。
11. The method for producing the mutein according to claim 10, wherein the mutein according to claim 1 is produced and accumulated in an E. coli cell as an insoluble inclusion body, and the mutein is separated and purified.
【請求項12】請求項1記載のムテインを不溶性の封入
体として菌体に生成蓄積させた大腸菌菌体を(a)分離
沈澱させ、(b)菌体を溶解し、(c)不溶性の封入体
を沈澱させて集め、(d)変性剤を含む緩衝液にて可溶
化し、(e)レドックス緩衝液で希釈したのち保温して
該ムテインを賦活化し、(f)アフィニティークロマト
グラフィーを含む数段階のクロマトグラフィーで精製す
ることを特徴とする請求項11記載の該ムテインの製造
法。
12. Escherichia coli cells in which the mutein according to claim 1 is produced and accumulated in the cells as an insoluble inclusion body (a) are separated and precipitated, (b) the cells are dissolved, and (c) the insoluble inclusion body. The body is collected by precipitation, (d) solubilized in a buffer containing a denaturant, (e) diluted with a redox buffer and then kept warm to activate the mutein, and (f) a number including affinity chromatography. 12. The method for producing the mutein according to claim 11, wherein the mutein is purified by step chromatography.
JP10568991A 1990-05-10 1991-05-10 Tissue plasminogen activator mutein Withdrawn JPH0576361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10568991A JPH0576361A (en) 1990-05-10 1991-05-10 Tissue plasminogen activator mutein

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP11871090 1990-05-10
JP40584890 1990-12-25
JP2-405848 1990-12-25
JP2-118710 1990-12-25
JP10568991A JPH0576361A (en) 1990-05-10 1991-05-10 Tissue plasminogen activator mutein

Publications (1)

Publication Number Publication Date
JPH0576361A true JPH0576361A (en) 1993-03-30

Family

ID=27310558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10568991A Withdrawn JPH0576361A (en) 1990-05-10 1991-05-10 Tissue plasminogen activator mutein

Country Status (1)

Country Link
JP (1) JPH0576361A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001511341A (en) * 1997-07-23 2001-08-14 ロシュ ダイアグノスティックス ゲーエムベーハー Production of human mutant proteins by homologous recombination in human cells
KR100701265B1 (en) * 2006-01-16 2007-04-02 대한민국 Method for generating transgenic pig secreting human tissue-plasminogen activator in its urine
JP2008192771A (en) * 2007-02-02 2008-08-21 Matsushita Electric Ind Co Ltd Solid-state imaging element and manufacturing method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001511341A (en) * 1997-07-23 2001-08-14 ロシュ ダイアグノスティックス ゲーエムベーハー Production of human mutant proteins by homologous recombination in human cells
KR100701265B1 (en) * 2006-01-16 2007-04-02 대한민국 Method for generating transgenic pig secreting human tissue-plasminogen activator in its urine
JP2008192771A (en) * 2007-02-02 2008-08-21 Matsushita Electric Ind Co Ltd Solid-state imaging element and manufacturing method therefor

Similar Documents

Publication Publication Date Title
Le Grice et al. Rapid purification of homodimer and heterodimer HIV‐1 reverse transcriptase by metal chelate affinity chromatography
KR0148575B1 (en) Tissue plasminogen activator having zymogenic or fibrin specific properties
EP0335243B1 (en) Mutant human angiogenin (angiogenesis factor with superior angiogenin activity) genes therefor and methods of expression
US8143027B2 (en) Method of making a plasminogen activator polypeptide with clot-specific streptokinase activity
JP3385040B2 (en) Glial activator and method for producing the same
EP0237966A2 (en) Human basic fibroblast growth factor
JPH04281790A (en) Dna and its use
US5223483A (en) Cysteine-modified acidic fibroblast growth factor
JP3303211B2 (en) bFGF mutein and method for producing the same
WO1992007935A1 (en) Glycosaminoglycan-targeted fusion proteins, their design, construction and compositions
JPH0866194A (en) Gene carrying code for human tumor necrosis factor mutein
JPS6394991A (en) Cloning and development of acidic fibroblast growth factor
US5750371A (en) Water-soluble mutein of FGF receptor, DNA and production thereof
EP0319052B1 (en) Mutant acidic fibroblast growth factor
JPH0576361A (en) Tissue plasminogen activator mutein
EP0420222A1 (en) Mutein of acidic FGF, and its production
PL209955B1 (en) Muteins of placental growth factor type 1, preparation method and application thereof
US5312911A (en) Cysteine-modified acidic fibroblast growth factor
EP0529076B1 (en) Proteins with fibroblast growth factor receptor activity
HUT64593A (en) Method for producing human fgf muteine
JPH04164096A (en) Afgf mutein, dna and use thereof
JPH0343088A (en) Preparation of afgf protein
JPH03505276A (en) Rearranged tissue plasminogen activator and its production method
JP3366358B2 (en) DNA encoding human calcineurin Aα isoform protein and use thereof
US5679550A (en) Hst-2 muteins, pharmaceutical compositions and kits comprising same, and preparation of same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980806