JPH0576346A - Method for controlling concentration of carbon source in aerobic culture of microorganism and apparatus therefor - Google Patents

Method for controlling concentration of carbon source in aerobic culture of microorganism and apparatus therefor

Info

Publication number
JPH0576346A
JPH0576346A JP3277938A JP27793891A JPH0576346A JP H0576346 A JPH0576346 A JP H0576346A JP 3277938 A JP3277938 A JP 3277938A JP 27793891 A JP27793891 A JP 27793891A JP H0576346 A JPH0576346 A JP H0576346A
Authority
JP
Japan
Prior art keywords
culture
addition
feed
period
carbon source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3277938A
Other languages
Japanese (ja)
Other versions
JP2932791B2 (en
Inventor
Hisashi Nakamura
尚志 中村
Tatsuya Nakayama
達哉 仲山
Yosuke Koyama
洋介 小山
Takashi Shimazaki
敬士 島崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP27793891A priority Critical patent/JP2932791B2/en
Priority to FR9114851A priority patent/FR2669935B1/en
Priority to BR919105208A priority patent/BR9105208A/en
Priority to BE9101098A priority patent/BE1008008A3/en
Priority to MYPI91002222A priority patent/MY121534A/en
Priority to ITMI913198A priority patent/IT1256566B/en
Priority to FR9202315A priority patent/FR2676234B1/en
Priority to CN92101496A priority patent/CN1041534C/en
Publication of JPH0576346A publication Critical patent/JPH0576346A/en
Priority to CN97112748A priority patent/CN1117869C/en
Priority to US08/905,713 priority patent/US5912113A/en
Priority to US09/192,565 priority patent/US6025169A/en
Application granted granted Critical
Publication of JP2932791B2 publication Critical patent/JP2932791B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE:To control the carbon source concentration in a culture tank at a low level by measuring the increase of pH and dissolved oxygen concentration of the culture liquid in a tank during the period to stop the addition of a carbon source between an addition stage and the subsequent addition stage and determining the feeding rate of carbon source in the subsequent addition period based on the measured values. CONSTITUTION:The initial addition of a carbon source feeding liquid is carried out at a prescribed feeding rate for a prescribed period and the following addition is started by using the increase of pH and the dissolved oxygen concentration as an index. The feeding rate of the liquid is determined based on the length of the stop period and the feeding rate in the addition period before the stop period in such a manner as to be low when the stop period is long and to be high when the period is short. The addition is continued for a prescribed period.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、微生物好気培養におけ
る炭素源濃度の制御方法、更に詳しくは、炭素源フィー
ド液を断続的に培養槽に添加する微生物の好気的流加培
養、連続培養及び菌体再利用連続培養においてフィード
培養中培養槽内の基質炭素源をコンピュータを使用して
低濃度に自動制御する方法、及びそのような方法を実施
するのに好適な装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling a carbon source concentration in aerobic culture of microorganisms, more specifically, an aerobic fed-batch culture of microorganisms in which a carbon source feed solution is intermittently added to a culture tank. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for automatically controlling a substrate carbon source in a culture tank during feed culture to a low concentration using a computer in continuous culture for culturing cells and recycling, and an apparatus suitable for carrying out such a method.

【0002】[0002]

【従来の技術】微生物の使用による種々の物質の発酵生
産(例えば、各種アミノ酸、核酸関連物質の発酵)や微
生物菌体そのものの生産(例えば、酵母菌体の生産)な
どの目的で微生物が好気培養される。そして、微生物の
好気培養は工業的には、糖などの炭素源を主原料として
いわゆる流加培養、連続培養又は菌体再利用連続培養に
よって行なわれている。
2. Description of the Related Art Microorganisms are preferred for the purpose of fermentative production of various substances by using microorganisms (for example, fermentation of various amino acids and nucleic acid-related substances) and production of microbial cells themselves (for example, production of yeast cells). It is air-cultured. Aerobic culture of microorganisms is industrially performed by so-called fed-batch culture, continuous culture, or continuous reuse of bacterial cells, using a carbon source such as sugar as a main raw material.

【0003】ところで、このような培養方法において
は、原料炭素源による基質阻害効果を防止し、或いは原
料を有効に培養に利用して培養終了液内の糖などの残炭
素源を可及的低レベルに押えることにより原料炭素源の
ロスを少なくし、最終培養終了液からの生産物の分離を
容易にし、又生産物分離後の廃液中に含まれる残炭素源
による環境汚染を防止するなどの目的のために、フィー
ド培養中の培養槽内炭素源(基質)濃度を低レベルに抑
えることが必要で、特に連続培養及び菌体再利用連続培
養においては、フィード培養中にも連続的に排出される
培養液からの生産物の分離が行なわれるが、この分離工
程への糖などの炭素源の流出を最低限に抑え、分離工程
への炭素源の影響をほとんどゼロにすることが出来るこ
とが必要であるとともに原料のロスを防ぐことが必要で
ある。又、このような培養法において炭素源濃度の分析
作業を皆無にすることができ、全く人の監視無しで、安
定に炭素源濃度の自動制御が出来ることが強く望まれて
いる。
By the way, in such a culturing method, the substrate inhibiting effect of the raw carbon source is prevented, or the raw carbon is effectively utilized for the culturing to minimize the residual carbon source such as sugar in the culturing solution. By reducing the level to a low level, the loss of raw material carbon source can be reduced, the separation of the product from the final culturing solution can be facilitated, and the environmental pollution due to the residual carbon source contained in the waste liquid after the product separation can be prevented. For the purpose, it is necessary to keep the carbon source (substrate) concentration in the culture tank at a low level during the feed culture. Especially in continuous culture and continuous reuse of bacterial cells, it is continuously discharged during the feed culture. The product is separated from the culture broth to be used, but the outflow of sugar and other carbon sources to this separation process can be minimized, and the effect of the carbon source on the separation process can be made almost zero. Is needed It is necessary to prevent the raw materials of the loss to. Further, it is strongly desired that the carbon source concentration analysis work can be eliminated in such a culture method, and the stable automatic control of the carbon source concentration can be performed without any human supervision.

【0004】従来、糖などの炭素源をフィード培養中低
濃度に維持する方法としては、酸素消費量、排出炭酸ガ
ス量、 pH、副生成物の生成量、添加アンモニア量など
をそれぞれ単独の指標とし、それらに予め求めておいた
比例係数を掛けた量の糖などの炭素源を添加しながら、
炭素源濃度を制御する方法があるが、これらの方法で
は、培養中の微生物活性を精度良く推定することができ
ないため、活性が異常変化した場合などにうまく制御で
きない場合がある。そのため、培養中の炭素源濃度を低
く(例えば、3g/l以下に)制御することがうまくで
きない。
Conventionally, as a method of maintaining a low concentration of a carbon source such as sugar during feed culture, oxygen consumption, carbon dioxide emission, pH, amount of by-products produced, amount of added ammonia, etc. are used as independent indicators. Then, while adding a carbon source such as sugar in an amount obtained by multiplying them by a previously obtained proportionality coefficient,
Although there are methods of controlling the carbon source concentration, these methods cannot accurately estimate the microbial activity during culture, and thus may not be able to be successfully controlled when the activity changes abnormally. Therefore, it is not possible to control the carbon source concentration in the culture at a low level (for example, 3 g / l or less).

【0005】又、培養中の培養槽内炭素源の枯渇を溶存
酸素濃度のみで検出する方法があるが、この方法は、
(イ)センサーの信頼性が低い、(ロ)通気攪拌状態
(攪拌数、通気量)を変更すると溶存酸素濃度状態が大
きく変動し、炭素源の枯渇を誤検出する場合があり、や
はり培養槽内炭素源濃度をうまく制御することが出来な
くなる、などの理由により実用的ではない。
Further, there is a method of detecting depletion of carbon source in a culture tank during culturing only by the dissolved oxygen concentration.
(A) Sensor reliability is low, (b) When the aeration and agitation state (number of agitation, aeration amount) is changed, the dissolved oxygen concentration state may fluctuate significantly, and carbon source depletion may be erroneously detected. It is not practical because the internal carbon source concentration cannot be controlled well.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、微生
物の好気的流加培養、連続培養及び菌体再利用連続培養
において、フィード培養中の微生物の糖などの炭素源資
化速度を精度良く推定し、適切な炭素源フィード液のフ
ィード速度で培養槽内培養液の炭素源濃度を制御するこ
とができ、信頼性良く確実に炭素源の枯渇を検出するこ
とができ、しかも通気攪拌状態の影響を受けずに炭素源
の枯渇を検出することができ、及びその他のメリットも
有する方法、及びそのための装置を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to determine the rate of carbon source assimilation of sugars and the like of feed microorganisms in aerobic fed-batch culture, continuous culture and bacterial cell reuse continuous culture. It is possible to accurately estimate and control the carbon source concentration of the culture solution in the culture tank at an appropriate feed rate of the carbon source feed solution, and it is possible to reliably and reliably detect the depletion of the carbon source. It is an object of the present invention to provide a method capable of detecting depletion of a carbon source without being affected by conditions and having other advantages, and an apparatus therefor.

【0007】[0007]

【課題を解決するための手段】本発明者は、上記課題の
解決を目指して鋭意研究の結果、流加培養、連続培養又
は菌体再利用連続培養による微生物の好気培養におい
て、糖などの炭素源を断続的に培養槽に添加するとき、
ある添加期とその次の添加期との間の添加停止期に槽内
培養液中の炭素源が枯渇するときに生ずるpHの上昇及
び溶存酸素濃度の上昇を指標として、該その次の添加期
の炭素源フィード液のフィード速度を決めることにより
しかもこれをコンピュータを利用して行なうことにより
前記課題が解決されることを見出し、このような知見に
基いて本発明を完成した。
Means for Solving the Problems As a result of intensive research aimed at solving the above-mentioned problems, the present inventor has found that in the aerobic culture of microorganisms by fed-batch culture, continuous culture or bacterial cell reuse continuous culture, sugars, etc. When the carbon source is intermittently added to the culture tank,
Using the increase in pH and the increase in dissolved oxygen concentration, which occur when the carbon source in the tank culture medium is depleted, during the addition stop period between one addition phase and the next addition phase as an index, the subsequent addition phase It was found that the above-mentioned problems can be solved by determining the feed rate of the carbon source feed liquid and by using a computer, and based on such knowledge, the present invention was completed.

【0008】すなわち、本発明は、炭素源フィード液を
断続的に培養槽に添加する微生物の好気的流加培養、連
続培養又は菌体再利用連続培養において、フィード培養
におけるフィード液の初回添加は予め求めておいたフィ
ード速度でフィード液を一定時間添加することによって
行ない、第2回目以降の添加はある添加期に先行する添
加停止期において培養槽内炭素源(基質)が枯渇すると
きに生ずる pHの上昇又は溶存酸素濃度の上昇がコンピ
ュータで検出されるときに開始しかつ該添加停止期の時
間と該添加停止期に先行する添加期のフィード液のフィ
ード速度とから該添加停止期の時間が長ければより小さ
くそして短ければより大きくなるように該コンピュータ
で算出されるフィード速度で一定時間添加することによ
って行なうことを特徴とする微生物好気培養において培
養槽内基質濃度を常に自動的に低レベルに維持するよう
に制御する方法、及び(i) 槽内培養液の pH及び溶存酸
素濃度をそれぞれ検出するセンサー及び通気攪拌装置を
具備しフィード液を流量制御装置を介して受け入れるよ
うにした培養槽及び(ii)2個の信号変換機を具備するコ
ンピュータを含みかつ(a) pHセンサー及び溶存酸素濃
度センサーによる pH及び溶存酸素濃度の検出値がそれ
ぞれ一方の信号変換機を介してコンピュータに入力され
るようにセンサーが接続されており及び(b) コンピュー
タの算出したフィード液フィード速度設定値が他方の信
号変換機を介して流量制御装置に伝送されるように接続
されていることを特徴とする上記の方法を実施するため
の装置に関する。
That is, according to the present invention, in the aerobic fed-batch culture, continuous culture or microbial cell recycling continuous culture in which the carbon source feed solution is intermittently added to the culture tank, the feed solution is initially added in the feed culture. Is performed by adding the feed solution at a previously determined feed rate for a certain period of time. The second and subsequent additions are performed when the carbon source (substrate) in the culture tank is depleted during the addition stop period preceding a certain addition period. When the increase in pH or the increase in dissolved oxygen concentration that occurs is detected by a computer, the time of the addition stop period and the feed rate of the feed liquid in the addition phase preceding the addition stop period are used to determine the addition stop period. Do this by adding for a period of time at a computer-calculated feed rate such that the longer the time, the smaller the time and the shorter the time the larger. In the aerobic culture of microorganisms, the method is to control the substrate concentration in the culture tank so that it is always kept at a low level, and (i) a sensor and aeration for detecting the pH and dissolved oxygen concentration of the culture solution in the tank. A culture vessel equipped with a stirrer and adapted to receive a feed solution via a flow controller; and (ii) a computer equipped with two signal converters, and (a) a pH sensor and a pH sensor with a dissolved oxygen concentration sensor. A sensor is connected so that the detected value of the dissolved oxygen concentration is input to the computer via one of the signal converters, and (b) the feed liquid feed speed set value calculated by the computer is supplied to the other signal converter. A device for performing the above method, characterized in that it is communicatively connected via a flow control device.

【0009】以下、本発明を逐次説明する。The present invention will be sequentially described below.

【0010】(方法の説明)先ず、本発明に係わる方法
について説明する。
(Description of Method) First, the method according to the present invention will be described.

【0011】種々の物質の発酵生産や微生物菌体そのも
のの生産の目的で、糖などの基質炭素源を含有するフィ
ード液を連続的に(ここに、“連続的に”は広義のもの
で“断続的に”を含む)培養槽へ添加しつつ微生物を好
気的に流加培養、連続培養又は菌体再利用連続培養する
ことは周知である。本発明における流加培養、連続培養
及び菌体再利用連続培養も、後述するフィード培養期に
おけるフィード液の添加方法を除いては、周知の流加方
法、連続培養及び菌体再利用連続培養に準じて行なうこ
とができる。
For the purpose of fermentative production of various substances and production of microbial cells themselves, a feed liquid containing a substrate carbon source such as sugar is continuously (here, "continuously" is a broad sense). It is well known that microorganisms are aerobically fed-batch culture, continuous culture or continuous reuse of bacterial cells while being intermittently added to a culture tank containing ". Fed-batch culture, continuous culture and bacterial cell reuse continuous culture in the present invention are also well-known fed-batch methods, continuous culture and bacterial cell reuse continuous culture, except for the method of adding the feed solution in the feed culture period described below. It can be carried out according to.

【0012】フィード培養期における初回のフィード液
の添加は、フィード培養に先行するメイン培養における
培養液内の糖などの基質炭素源の濃度がある低いレベル
に達したときに開始されるのが通常である。予め求めて
おいたフィード液のフィード速度とは、予備実験を通し
て予め求めておいたもので、フィード培養開始時すなわ
ちフィード培養における初回フィード開始時のメイン培
養における基質の消費速度に等しくするのが通常であ
る。フィード液の添加における一定時間は、微生物の糖
などの炭素源消費活性が大きくは変らない時間の範囲
(通常は10分〜24時間の範囲)内において選ばれる任意
の時間である。
The first addition of the feed solution in the feed culture period is usually started when the concentration of the substrate carbon source such as sugar in the culture solution in the main culture preceding the feed culture reaches a certain low level. Is. The feed rate of the feed solution obtained in advance is obtained in advance through preliminary experiments, and it is usually the same as the consumption rate of the substrate in the main culture at the start of the feed culture, that is, at the start of the first feed in the feed culture. Is. The fixed time in the addition of the feed solution is an arbitrary time selected within the range of time (usually in the range of 10 minutes to 24 hours) in which the activity of consuming carbon sources such as sugars of microorganisms does not significantly change.

【0013】さて、初回添加終了後培養液の基質が枯渇
すると培養液の pH及び溶存酸素濃度が共に上昇する。
この上昇を培養槽の具備する pHセンサー及び溶存酸素
濃度センサーを介してコンピュータが検出すると、それ
を介して基質フィード液が培養槽に添加されるフィード
液の流量制御装置へコンピュータからフィード液添加の
指示が行き、フィード液の第2回目の添加が開始され
る。 pHの上昇と溶存酸素濃度の上昇とは常に同時に起
るとは限らない。両上昇に時間的に差のあるときは、い
ずれか早く検出された上昇のときに第2回目の添加が開
始される。 pHセンサーと溶存酸素濃度センサーはれぞ
れ頻繁に故障したり、キャリブレーションしたりしなけ
ればならない。そのため、それぞれのセンサーを単独で
使用するのではなく、同時に使用することによって、基
質の枯渇の検出信頼性を著しく向上させることができる
のである。
When the substrate of the culture solution is depleted after the completion of the initial addition, both the pH and the dissolved oxygen concentration of the culture solution increase.
When this increase is detected by the computer through the pH sensor and the dissolved oxygen concentration sensor provided in the culture tank, the substrate feed solution is added to the culture tank via the sensor. The instructions are given and the second addition of feed liquid is started. The increase in pH and the increase in dissolved oxygen concentration do not always occur simultaneously. When there is a time difference between the two increases, the second addition is started at the earlier detected increase. Each of the pH sensor and the dissolved oxygen concentration sensor must be frequently broken or calibrated. Therefore, the detection reliability of the depletion of the substrate can be remarkably improved by using the respective sensors at the same time instead of using them individually.

【0014】第2回目のフィード液の添加におけるフィ
ード速度は、初回添加と第2回目添加との間の添加停止
期の長さ(期間)及び初回添加のフィード速度から、該
添加停止期の期間が長ければより小さくそして短かけれ
ばより大きくなるように、換言すれば、基質のフィード
速度と基質の消費速度とを均衡させて培養槽内培養液の
基質濃度を所望の低レベルに維持できるように算出して
得られる速度である。この計算はコンピュータによって
行なうが、このような計算のプログラムは当業者であれ
ば容易に作成することができる。後記実施例1にそのよ
うなプログラムの1例を示す。
The feed rate in the second addition of the feed liquid is determined from the length (period) of the addition stop period between the first addition and the second addition and the feed rate of the first addition, and the period of the addition stop period. Is longer and smaller and shorter, in other words, the substrate feed rate and substrate consumption rate are balanced to maintain the desired low substrate substrate concentration in the fermentor. It is the speed obtained by calculating. This calculation is performed by a computer, but a program for such calculation can be easily created by those skilled in the art. An example of such a program is shown in Example 1 below.

【0015】第2回目の添加の行なわれる一定時間は、
初回添加の一定時間と同様にして定められる。初回添加
の期間と第2回添加期間とは、微生物の糖などの炭素源
(基質)消費活性が大きくは変らない時間の範囲内にお
いて選ばれる限り、同長の時間とする必要はない。各回
の添加期間は、微生物の基質消費活性が大きくは変わら
ず、かつ培養中の培養槽内基質濃度を低レベルに維持で
きるような時間から選ばれる。
The fixed time during which the second addition is carried out is
It is determined in the same manner as the fixed time of the first addition. The first addition period and the second addition period do not have to be the same length of time, as long as they are selected within a time range in which the activity of consuming a carbon source (substrate) such as sugar of a microorganism does not change significantly. The addition period of each time is selected from the time such that the substrate consuming activity of the microorganism is not largely changed and the substrate concentration in the culture tank during the culture can be maintained at a low level.

【0016】第3回目以降のフィード液添加の開始時
期、フィード速度及び添加期間は、第2回目添加のそれ
らと同様にして定める。
The start timing, feed rate and addition period of the third and subsequent feed liquid additions are determined in the same manner as those for the second addition.

【0017】かくして、第2回以降の添加はある添加期
に先行する添加停止期において培養槽内炭素源(基質)
が枯渇するときに生ずる pHの上昇又は溶存酸素濃度の
上昇がコンピュータで検出されるときに開始しかつ該添
加停止期の時間と該添加停止期に先行する添加期のフィ
ード液のフィード速度とから該添加停止期の時間が長け
ればより小さくそして短ければより大きくなるように該
コンピュータで算出されるフィード速度で一定時間添加
することによって行なわれる。
Thus, the second and subsequent additions are carried out at a carbon source (substrate) in the culture tank at the addition stop phase preceding a certain addition phase.
From the time of the addition stop period and the feed rate of the feed liquid in the addition phase preceding the addition stop period and when the increase in pH or the increase in dissolved oxygen concentration that occurs when the addition is depleted is detected by a computer. It is carried out by adding for a certain period of time at a feed rate calculated by the computer so that the period of the addition stop period is longer when the period is longer and shorter when the period is shorter.

【0018】このようにして、微生物の活性を逐次チェ
ックしながら糖などの基質炭素源のフィード液のフィー
ド速度その他の添加条件を設定することが可能となり、
培養槽内基質濃度を容易に5g/l以下更には3g/l
以下にも及ぶ低レベルに抑えることが可能となる。
In this way, it becomes possible to set the feed rate of the feed liquid of the substrate carbon source such as sugar and other addition conditions while sequentially checking the activity of the microorganisms,
The substrate concentration in the culture tank can easily be 5 g / l or less, and further 3 g / l
It is possible to keep the level as low as the following.

【0019】(装置の説明)次に、本発明に係わる装置
について説明する。
(Description of Apparatus) Next, the apparatus according to the present invention will be described.

【0020】本発明の装置は、換言すれば、培養槽に取
り付けられた pH電極などの pHセンサーと溶存酸素電
極などの溶存酸素センサーからコンピュータに伝送され
る信号を基に、コンピュータ内部にて糖などの基質炭素
源枯渇の検出と炭素源フィード液のフィード速度を計算
し、計算されたフィード速度値を培養槽の炭素源添加ラ
インに設置されたフィード液の流量制御装置に伝送する
機能を有する装置である。
In other words, the apparatus of the present invention uses a pH sensor such as a pH electrode attached to a culture tank and a dissolved oxygen sensor such as a dissolved oxygen electrode to transmit signals to the computer. It has a function to detect the depletion of the substrate carbon source and calculate the feed rate of the carbon source feed solution, and to transmit the calculated feed rate value to the flow rate controller of the feed solution installed in the carbon source addition line of the culture tank. It is a device.

【0021】周知のごとく、 pH計及び溶存酸素濃度計
は頻繁に故障しやすく、又頻繁にキャリブレーションし
たりしなければならない。本発明によれば、それぞれの
センサーを単独に使用するのではなく、併用することに
よって糖などの炭素源の枯渇の検出信頼性を著しく向上
させることができる。もちろん、各センサーを単独で用
いても信頼性は落ちるが効果は発揮される。
As is well known, pH meters and dissolved oxygen meters are subject to frequent failure and must be calibrated frequently. According to the present invention, the reliability of detection of depletion of a carbon source such as sugar can be significantly improved by using each sensor in combination, rather than using them individually. Of course, even if each sensor is used alone, the reliability is lowered but the effect is exhibited.

【0022】[0022]

【実施例】以下、実施例により本発明を更に説明する。EXAMPLES The present invention will be further described below with reference to examples.

【0023】なお、各実施例において使用した装置は第
2図に示すもので、これは第1図に示す装置において、
培養槽を小型硝子製培養槽とし、この培養槽における p
Hセンサーを pH電極としてそして溶存酸素濃度センサ
ーを溶存酸素電極とし、コンピュータをパーソナルコン
ピュータとし、このコンピュータにおける信号変換機
(1) をA/Dコンバータとしてそして信号変換機(2) を
D/Aコンバータとし、及び流量制御装置をフィードポ
ンプとしたものである。
The apparatus used in each example is shown in FIG. 2, which is the same as the apparatus shown in FIG.
The culture tank shall be a small glass culture tank.
The H sensor is used as a pH electrode, the dissolved oxygen concentration sensor is used as a dissolved oxygen electrode, and the computer is used as a personal computer.
(1) is an A / D converter, the signal converter (2) is a D / A converter, and the flow control device is a feed pump.

【0024】実施例1(菌体再利用連続培養によるL−
グルタミン酸の発酵生産) グルコース30g/l、KH2 PO4 1g/l、MgSO
4 ・7aq 0.4g/l、尿素4g/l、FeSO4 ・7
aq20mg/l、MnSO4 ・4aq20mg/l、大豆蛋白
酸加水分解物5ml/l、ビオチン 300μg/lを含む水
性培地30mlを 500ml容振盪フラスコに入れ、 115℃で10
分間加熱滅菌した。これを室温まで冷やし、ブレビバク
テリウム・ラクトフェルメンタム(Brevibacterium lact
ofermentum)ATCC 13869を接種して30℃にて24時間
種培養した。
Example 1 (L-by continuous culturing for reuse of bacterial cells
Fermentation production of glutamic acid) glucose 30 g / l, KH 2 PO 4 1 g / l, MgSO 4.
4 · 7aq 0.4g / l, urea 4g / l, FeSO 4 · 7
30 ml of an aqueous medium containing 20 mg / l of aq, 20 mg / l of MnSO 4 .4 aq, 5 ml / l of soybean protein acid hydrolyzate, and 300 μg / l of biotin was placed in a 500 ml shake flask at 10 ° C at 115 ° C.
Heat sterilized for 1 minute. This is cooled to room temperature, and Brevibacterium lactfermentum (Brevibacterium lact
ofermentum) ATCC 13869 was inoculated and seed-cultured at 30 ° C. for 24 hours.

【0025】この種培養液30mlと甘蔗糖密を糖として80
g/l、KH2 PO4 を1g/l、大豆蛋白酸加水分解
物を10ml/lを含む水性主培養培地 270mlを予め滅菌し
た1l容小型硝子製培養槽に入れ、30℃に保温し、除菌
空気を毎分 300ml通気し、 pHをNH3 ガスにて 7.5に
保ちつつ攪拌を開始した(主培養開始)。
[0025] 30 ml of this seed culture and 80% sugar cane sugar as sugar
270 ml of an aqueous main culture medium containing g / l, KH 2 PO 4 at 1 g / l and soybean protein acid hydrolyzate at 10 ml / l was placed in a pre-sterilized 1 liter small glass culture tank and kept at 30 ° C., 300 ml / min of sterilized air was aerated, and stirring was started while maintaining pH at 7.5 with NH 3 gas (main culture start).

【0026】小型硝子製培養槽は、第2図に示すように
16ビットパーソナルコンピュータに接続した。培養槽に
挿入された pH電極及び溶存酸素電極で検出された pH
および溶存酸素濃度のアナログ信号は、パーソナルコン
ピュータに内蔵のA/Dコンバータを介してパーソナル
コンピュータに取り込まれる。パーソナルコンピュータ
で設定計算された後の水性フィード培地(フィード液)
のフィード速度は、パーソナルコンピュータ内蔵のD/
Aコンバータを介してアナログ信号としてフィードポン
プへ送られる。
As shown in FIG. 2, the small glass culture tank is
Connected to a 16-bit personal computer. PH detected by pH electrode and dissolved oxygen electrode inserted in the culture tank
And the analog signal of the dissolved oxygen concentration is taken into the personal computer through the A / D converter incorporated in the personal computer. Aqueous feed medium (feed liquid) after being set and calculated on a personal computer
The feed speed of D /
It is sent to the feed pump as an analog signal via the A converter.

【0027】主培養開始と同時にパーソナルコンピュー
タに初回(第1回目)のフィード液のフィード速度30ml
/h 、 pHの上昇による糖基質枯渇検出値 7.7、溶存酸
素濃度の上昇による糖基質枯渇検出値20%(溶存酸素濃
度の通常値は1〜10%)、フィード液フィード時間3時
間を条件設定した。
Simultaneously with the start of the main culture, the feed rate of the first (first) feed solution to the personal computer is 30 ml.
/ H, detection value of sugar substrate depletion due to increase of pH 7.7, detection value of sugar substrate depletion due to increase of dissolved oxygen concentration 20% (normal value of dissolved oxygen concentration is 1 to 10%), feed liquid feed time 3 hours did.

【0028】主培養開始後5時間目に菌の増殖を阻害し
てグルタミン酸を産出させる目的でポリオキシエチレン
ソルビタンモノパルミテートを 0.2重量%の濃度になる
ように添加し、さらに5時間主培養を続けた後パーソナ
ルコンピュータを制御可能状態(自動運転状態)にし、
初回のフィード液の添加を予め設定したフィード速度30
ml/h にて開始した。培養槽へ添加したフィード液は甘
蔗糖密を糖として 180g/l、大豆蛋白酸加水分解物 5
ml/l、ポリオキシエチレンソルビタンモノパルミテー
トを 0.2重量%を含む。
Five hours after the start of the main culture, polyoxyethylene sorbitan monopalmitate was added at a concentration of 0.2% by weight for the purpose of inhibiting the growth of the bacteria and producing glutamic acid, and the main culture was continued for another 5 hours. After that, make the personal computer controllable (automatic operation),
Pre-set feed rate of 30 for initial feed addition
Started at ml / h. The feed solution added to the culture tank was 180 g / l of sugar cane sugar as sugar and soy protein hydrolyzate 5
ml / l, containing 0.2% by weight of polyoxyethylene sorbitan monopalmitate.

【0029】同時に培養液を毎時(フィード液フィード
速度+20)mlずつ、予め加熱殺菌した平膜ミクロフィル
ターに通して菌体含有液20mlと濾液に分別した。菌体含
有液は培養槽に戻した。菌体を含まない濾液より晶析法
によりL−グルタミン酸を得た。
At the same time, the culture solution was passed through a flat membrane microfilter preliminarily sterilized by heating at a rate of (feed solution feed rate + 20) ml per hour to separate 20 ml of the cell-containing solution and the filtrate. The cell-containing liquid was returned to the culture tank. L-glutamic acid was obtained from the filtrate containing no cells by the crystallization method.

【0030】初回のフィード液の添加を開始した後、コ
ンピュータは自動運転状態に入り、予め設定したフィー
ド液添加時間(3時間)を経過したところで一度フィー
ド液の添加を設定条件に従い自動的に中断した。添加の
中断とともに培養槽内の糖濃度は第4図のA部のごとく
減少し、ほぼ0g/lになったところでpHの上昇と溶
存酸素濃度の上昇とがほぼ同時に起る。
After starting the addition of the feed liquid for the first time, the computer enters the automatic operation state, and once the preset feed liquid addition time (3 hours) has passed, the addition of the feed liquid is automatically interrupted once according to the set conditions. did. With the suspension of the addition, the sugar concentration in the culture tank decreases as shown in part A of FIG. 4, and when it reaches almost 0 g / l, the increase in pH and the increase in dissolved oxygen concentration occur almost at the same time.

【0031】コンピュータは pH又は溶存酸素濃度のい
ずれかが先に基質枯渇検出値に達した時点で直ちに第2
回目添加のフィード液のフィード速度設定値を計算し、
その設定値をフィードポンプへ出力し、再びその設定速
度で3時間フィード液の添加が実施される。以後、この
動作を繰り返すことによって培養槽内糖濃度が0〜2g
/lに精度良く制御された。
The computer immediately sets the second value when either the pH or the dissolved oxygen concentration reaches the substrate depletion detection value first.
Calculate the feed rate setting value of the feed liquid of the second addition,
The set value is output to the feed pump, and the feed liquid is added again at the set speed for 3 hours. After that, by repeating this operation, the sugar concentration in the culture tank is 0 to 2 g.
/ L was controlled accurately.

【0032】第2回目添加以降のフィード液フィード速
度設定値は、フィード液の添加が停止していた時間
(τ)とフィード液の添加が停止する直前のフィード速
度設定値(υ)から以下のルールによって設定した。
The feed liquid feed speed set value after the second addition is calculated from the time (τ) at which the feed liquid addition is stopped and the feed speed set value (υ) immediately before the feed liquid addition is stopped as follows. Set by rules.

【0033】・もしもτ≦10分ならば新たなフィード液
のフィード速度を1.1 υに設定せよ。ここに、υは直前
回添加期のフィード速度である。
If τ ≦ 10 minutes, set the feed rate of the new feed liquid to 1.1υ. Here, υ is the feed rate in the immediately preceding addition period.

【0034】・もしも10分<τ≦30分ならば新たなフィ
ード速度をυに設定せよ。
If 10 minutes <τ ≤ 30 minutes, set a new feed rate to υ.

【0035】・もしも30分<τ≦1時間ならば新たなフ
ィード液フィード速度を0.9 υに設定せよ。
If 30 minutes <τ ≤ 1 hour, set a new feed liquid feed rate to 0.9υ.

【0036】・もしも1時間<τ≦2時間ならば新たな
フィード液フィード速度を0.8 υに設定せよ。
If 1 hour <τ ≤ 2 hours, set a new feed liquid feed rate to 0.8υ.

【0037】ただし、ここでυの係数及びτは、培養の
方式や基質の種類などの培養条件、使用菌株の性能など
により異なる場合もある。又、ルールの数は適宜増減し
てもなんらさしさわりはない。因みに、本実施例におけ
る培養では、予備実験によりτ>2時間となることはな
いことを確認済みであった。又、本実施例では毎回のフ
ィード液の添加時間を3時間にしたが、前述のごとく、
菌の活性が大きく変らない時間内であれば、この添加時
間を一定にする必要はない。
However, the coefficient of υ and τ may differ depending on the culture conditions such as the culture method and the type of substrate, the performance of the strain used, and the like. In addition, the number of rules does not matter even if it is appropriately increased or decreased. By the way, it was confirmed by the preliminary experiment that τ> 2 hours did not occur in the culture in this example. In addition, in this embodiment, the feed liquid was added for 3 hours each time, but as described above,
It is not necessary to make this addition time constant as long as the activity of the bacterium does not change significantly.

【0038】この培養を80時間続けることにより、L−
グルタミン酸を132g得た。また、自動運転開始後は第
5図に示すように、完全に自動で糖濃度を 2g/l以内
に安定に制御することができた。
By continuing this culture for 80 hours, L-
132 g of glutamic acid was obtained. Further, after the start of automatic operation, as shown in FIG. 5, the sugar concentration could be controlled completely automatically and stably within 2 g / l.

【0039】比較例1(従来法) (従来法の要点は、 pHの調節にNH3 を使用し、これ
に比例させて糖(フィード液)を添加する方法であ
る。)実施例1におけると同様にして得た種培養液と実
施例1におけると同じ主培養培地 270mlとを予め滅菌し
た1l容小型硝子製培養槽に入れ、30℃に保温し、除菌
空気を毎分 300ml通気し、 pHをNH3 ガスにて 7.5に
保ちつつ攪拌を開始した。(主培養開始)。
Comparative Example 1 (Conventional Method) (The main point of the conventional method is a method of using NH 3 for pH adjustment and adding sugar (feed solution) in proportion to this). The seed culture obtained in the same manner and 270 ml of the same main culture medium as in Example 1 were placed in a pre-sterilized 1-liter small-sized glass culture tank, kept at 30 ° C., and sterilized air was aerated at 300 ml per minute, Stirring was started while maintaining the pH at 7.5 with NH 3 gas. (Main culture start).

【0040】小型硝子製培養槽は、第3図に示すように
16ビットパーソナルコンピュータに接続した。
As shown in FIG. 3, the small glass culture tank is
Connected to a 16-bit personal computer.

【0041】主培養開始後5時間目にポリオキシエチレ
ンソルビタンモノパルミテートを 0.2%の濃度になるよ
うに添加し、さらに5時間主培養を続けた後パーソナル
コンピュータを制御可能状態にした。
Five hours after the start of the main culture, polyoxyethylene sorbitan monopalmitate was added to a concentration of 0.2%, the main culture was continued for another 5 hours, and then the personal computer was put in a controllable state.

【0042】NH3 ガスラインに接続されたマスフロー
メータからアナログ信号を、パーソナルコンピュータ内
蔵のA/Dコンバータを介してパーソナルコンピュータ
に取り込み、パーソナルコンピュータ内部で1時間毎の
NH3 添加量に比例した量のフィード液フィード速度を
計算したあと、パーソナルコンピュータ内蔵のD/Aコ
ンバータを介してアナログ信号としてフィードポンプへ
送るようにプログラムした。
An analog signal from a mass flow meter connected to the NH 3 gas line is taken into the personal computer through an A / D converter built in the personal computer, and an amount proportional to the amount of NH 3 added every hour inside the personal computer. After calculating the feed liquid feed rate of the above, it was programmed to send it as an analog signal to the feed pump through the D / A converter incorporated in the personal computer.

【0043】その結果、第6図のAに示すように、培養
途中で菌体増殖期からグルタミン酸産生期に入ったとこ
ろでNH3 のフィード速度とフィード液のフィード速度
との比率がかわり、糖濃度の制御性が悪くなったため、
13時間目に比例係数を変更した。又、変更した後にもこ
の比例係数が不安定なため、培養槽内糖濃度の制御性も
第5図に比べて良くなく、残糖濃度(培養槽内糖濃度)
のチェックを5回行った。さらに、このような不安定さ
があるため、培養途中にて残糖濃度が0g/lになるの
をさけるように残糖濃度をあまり低くすることができな
かった。
As a result, as shown in FIG. 6A, the ratio of the feed rate of NH 3 to the feed rate of the feed solution changed when the cell growth phase entered the glutamic acid production phase during culture, and the sugar concentration was changed. Because the controllability of
The proportional coefficient was changed at the 13th hour. In addition, since the proportional coefficient is unstable even after the change, the controllability of the sugar concentration in the culture tank is not better than that in Fig. 5, and the residual sugar concentration (sugar concentration in the culture tank)
Was checked 5 times. Further, due to such instability, the residual sugar concentration could not be lowered so much as to avoid the residual sugar concentration becoming 0 g / l during the culture.

【0044】又、この培養を80時間続けることにより得
たL−グルタミン酸生産量 120gは実施例1の生産量 1
32gより低かった。
The amount of L-glutamic acid produced, which was 120 g obtained by continuing this culture for 80 hours, was the same as in Example 1.
It was lower than 32g.

【0045】第1表に実施例1と比較例1との比較をま
とめて示す。
Table 1 summarizes the comparison between Example 1 and Comparative Example 1.

【0046】[0046]

【表1】 [Table 1]

【0047】実施例2(流加培養によるL−フェニルア
ラニンの発酵生産) 菌体再利用連続培養を流加培養に変えた以外は実施例1
に準じてブレビバクテリウム・ラクトフェニルメンタム
(Brev.lactofermentum)FERM BP−1071を使用し
てL−フェニルアラニンを発酵生産した。
Example 2 (Fermentative production of L-phenylalanine by fed-batch culture) Example 1 except that the continuous cell-reuse culture was changed to fed-batch culture.
Brevibacterium lactophenylmentum according to
L-phenylalanine was fermentatively produced using (Brev.lactofermentum) FERM BP-1071.

【0048】ただし、培地、培養器、培養方法、培養タ
イムコース、フィード液のフィード速度制御方法は次の
通りであった。
However, the medium, the incubator, the culture method, the culture time course, and the feed rate control method of the feed solution were as follows.

【0049】[0049]

【表2】 [Table 2]

【0050】[0050]

【表3】 [Table 3]

【0051】(2) 培養器、培養方法; (a) 種培養: 500ml容フラスコに種培養培地30mlを入
れ、30℃で振盪培養した。
(2) Incubator, culturing method; (a) Seed culture: 30 ml of a seed culture medium was placed in a 500 ml flask and shake-cultured at 30 ° C.

【0052】(b) 主培養:1l容小型硝子製培養槽に
種培養液30mlと主培養培地270mlとを入れ、30℃で通気
培養した(通気量は毎分 150ml)。なお、 pHはNH3
にて 7.5に制御した。
(B) Main culture: 30 ml of a seed culture and 270 ml of a main culture medium were placed in a 1-liter small-sized glass-made culture tank, and aerated culture was carried out at 30 ° C. (aeration volume was 150 ml per minute). The pH is NH 3
It was controlled to 7.5.

【0053】(3) 培養時間; (a) 種培養:48時間 (b) 主培養:96時間 (c) フィード開始時期:主培養開始後35時間 (4) フィード液のフィード速度制御方法;実施例1に
おけると同じ方法であったが、初回フィード速度を10ml
/h とした。
(3) Culture time; (a) Seed culture: 48 hours (b) Main culture: 96 hours (c) Feed start time: 35 hours after start of main culture (4) Feed liquid feed rate control method; Same procedure as in Example 1, but with 10 ml initial feed rate
/ H.

【0054】比較例2(従来法) pHの調節をNH3 を使用して行ない、 pHを指標とし
てフィード液のフィード速度を制御した。すなわち、 p
Hが設定値より上昇したらフィード速度を5%上げ、 p
Hの上昇が5時間なければフィード速度を10%落した。
Comparative Example 2 (conventional method) The pH was adjusted using NH 3, and the feed rate of the feed solution was controlled using the pH as an index. That is, p
When H rises above the set value, increase the feed speed by 5%, p
If H did not rise for 5 hours, the feed rate was reduced by 10%.

【0055】第2表に実施例2と比較例2との比較をま
とめて示す。
Table 2 shows a summary of comparison between Example 2 and Comparative Example 2.

【0056】[0056]

【表4】 [Table 4]

【0057】実施例3(流加培養による酵母菌体の生
産) 菌体再利用連続培養を流加培養に変えた以外は実施例1
に準じてサッカロマイセス・セレビシエ(Saccharomyce
s cerevisiae)CBS1523を使用して酵母菌体を生産し
た。
Example 3 (Production of yeast cells by fed-batch culture) Example 1 except that the continuous cell-reuse culture was changed to fed-batch culture.
According to Saccharomyces cerevisiae (Saccharomyce
cerevisiae) CBS1523 was used to produce yeast cells.

【0058】ただし、培地、培養器、培養方法、フィー
ド液のフィード速度制御方法は次の通りであった。
However, the medium, incubator, culturing method and feed rate control method of the feed solution were as follows.

【0059】[0059]

【表5】 [Table 5]

【0060】[0060]

【表6】 [Table 6]

【0061】(2) 培養器、培養方法; (a) 種培養: 500ml容フラスコに種培養培地30mlを入
れ、30℃で24時間振盪培養した。
(2) Incubator, culturing method; (a) Seed culture: 30 ml of a seed culture medium was placed in a 500 ml flask and shake-cultured at 30 ° C. for 24 hours.

【0062】(b) 主培養:1l容小型硝子製培養槽に
種培養液30mlと主培養培地 270mlとを入れ、30℃で10
時間通気培養した(通気量は毎分 150ml)。なお、 pH
はNH3 にて 6.5に制御した。また、主培養開始後10時
間目よりフィード液(培地)の添加を開始した。
(B) Main culture: A seed culture solution (30 ml) and a main culture medium (270 ml) were placed in a 1-liter small glass-made culture tank, and the mixture was maintained at 30 ° C. for 10 minutes.
Aeration culture was carried out for an hour (aeration rate was 150 ml / min). In addition, pH
Was controlled to 6.5 with NH 3 . In addition, addition of the feed solution (medium) was started 10 hours after the start of the main culture.

【0063】(3) フィード液のフィード速度制御方
法;実施例1におけると同じ方法であったが、初回フィ
ード速度を5ml/h とした。
(3) Feed liquid feed rate control method: The same method as in Example 1 was used, but the initial feed rate was 5 ml / h.

【0064】比較例3(従来法) フィード液のフィード速度を副生物であるエタノール生
成速度(排気中のエタノールガスを測定)を指標として
制御した。すなわち、エタノール生成速度が設定値より
上昇したらフィード速度を下げ、設定値より下がったら
フィード速度を上げた。
Comparative Example 3 (Conventional Method) The feed rate of the feed solution was controlled by using the by-product ethanol production rate (measuring the ethanol gas in the exhaust gas) as an index. That is, when the ethanol production rate was higher than the set value, the feed rate was decreased, and when it was lower than the set value, the feed rate was increased.

【0065】第3表に実施例3と比較例3との比較をま
とめて示す。
Table 3 summarizes the comparison between Example 3 and Comparative Example 3.

【0066】[0066]

【表7】 [Table 7]

【0067】実施例4(流加培養によるL−スレオニン
の発酵生産) 菌体再利用連続培養を流加培養に変えた以外は実施例1
に準じてブレビバクテリウム・フラバム(Brev. favum)
FERM BP−1173を使用してL−スレオニンを発酵
生産した。
Example 4 (Fermentative production of L-threonine by fed-batch culture) Example 1 except that the continuous reuse of bacterial cells was changed to fed-batch culture.
According to Brevibacterium flavum (Brev. Favum)
L-threonine was fermentatively produced using FERM BP-1173.

【0068】ただし、培地、培養器、培養方法、培養タ
イムコース、フィード液のフィード速度制御方法は次の
通りであった。
However, the medium, incubator, culturing method, culturing time course, and feed rate control method of the feed solution were as follows.

【0069】[0069]

【表8】 [Table 8]

【0070】[0070]

【表9】 [Table 9]

【0071】(2) 培養器、培養方法; (a) 種培養: 500ml容フラスコに種培養培地30mlを入
れ、30℃で振蘯培養した。
(2) Incubator, culturing method; (a) Seed culture: 30 ml of a seed culture medium was placed in a 500 ml flask and shake-cultured at 30 ° C.

【0072】(b) 主培養:1l容小型硝子製培養槽に
種培養液30mlと主培養培地 270mlとを入れ、30℃で通
気培養した(通気量は毎分 150ml)。なお、 pHはNH
3 にて7.5に制御した。
(B) Main culture: A seed culture solution (30 ml) and a main culture medium (270 ml) were placed in a 1-liter small-sized glass culture tank, and aerated culture was carried out at 30 ° C. (aeration volume was 150 ml / min). In addition, pH is NH
It was controlled to 7.5 at 3 .

【0073】(3) 培養時間; (a) 種培養:40時間 (b) 主培養: 100時間 (c) フィード開始時期:主培養開始後20時間 (4) フィード液のフィード速度制御方法;実施例1に
おけると同じ方法であったが、初回フィード速度を 1.5
ml/hとした。
(3) Culture time; (a) Seed culture: 40 hours (b) Main culture: 100 hours (c) Feed start time: 20 hours after start of main culture (4) Feed liquid feed rate control method; Same method as in Example 1, but with an initial feed rate of 1.5
It was set to ml / h.

【0074】比較例4(従来法) pHを指標としてフィード液のフィードを制御した。す
なわち、 pHが設定値より上昇したらフィード液を0.5m
l/min の速度でオン・オフタイマーを用いて一定時間づ
つ添加した。
Comparative Example 4 (conventional method) The feed of the feed liquid was controlled using pH as an index. That is, if the pH rises above the set value, 0.5m
It was added at a constant rate using an on / off timer at a rate of l / min.

【0075】第4表に実施例4と比較例4との比較をま
とめ示す。
Table 4 summarizes the comparison between Example 4 and Comparative Example 4.

【0076】[0076]

【表10】 [Table 10]

【0077】実施例5(流加培養によるグアノシンの発
酵生産) 菌体再利用連続培養を流加培養に変えた以外は実施例1
に準じてバチルス・ズブチリス(Bacillus subtilis) F
ERM BP−3601を使用してグアノシンを発酵生産し
た。
Example 5 (Fermentative production of guanosine by fed-batch culture) Example 1 except that the continuous cell-reuse culture was changed to fed-batch culture.
According to Bacillus subtilis F
Guanosine was fermentatively produced using ERM BP-3601.

【0078】ただし、培地、培養器、培養方法、培養タ
イムコース、フィード液のフィード速度制御方法は次の
通りであった。
However, the medium, incubator, culturing method, culturing time course, and feed rate control method of the feed solution were as follows.

【0079】[0079]

【表11】 [Table 11]

【0080】[0080]

【表12】 [Table 12]

【0081】(2) 培養器、培養方法; (a) 種培養: 500ml容フラスコに種培養培地30mlを入
れ、30℃で振蘯培養した。
(2) Incubator, culturing method; (a) Seed culture: 30 ml of a seed culture medium was placed in a 500 ml flask and shake-cultured at 30 ° C.

【0082】(b) 主培養:1l容小型硝子製培養槽に
種培養液30mlと主培養培地 270mlとを入れ、30℃で通
気培養した(通気量は毎分 200ml)。なお、 pHはNH
3 にて6.5に制御した。
(B) Main culture: A seed culture solution (30 ml) and a main culture medium (270 ml) were placed in a 1-liter small-sized glass culture tank, and aerobically cultured at 30 ° C. (aeration rate was 200 ml / min). In addition, pH is NH
It was controlled to 6.5 at 3 .

【0083】(3) 培養時間; (a) 種培養:30時間 (b) 主培養: 150時間 (c) フィード開始時期:主培養開始後50時間 (4) フィード液のフィード速度制御方法;実施例1に
おけると同じ方法であったが、初回フィード速度を1ml
/hとした。
(3) Culture time; (a) Seed culture: 30 hours (b) Main culture: 150 hours (c) Feed start time: 50 hours after start of main culture (4) Feed rate control method of feed solution; Implementation Same procedure as in Example 1, but with an initial feed rate of 1 ml
/ h.

【0084】比較例5(従来法) pHの調節をNH3 を使用して行ない、 pHを指標とし
てフィード液のフィード速度を制御した。すなわち、 p
Hが設定値より上昇したらフィード速度を5%上げ、 p
Hの上昇が5時間なければフィード速度を10%落した。
Comparative Example 5 (conventional method) The pH was adjusted using NH 3, and the feed rate of the feed liquid was controlled using the pH as an index. That is, p
When H rises above the set value, increase the feed speed by 5%, p
If H did not rise for 5 hours, the feed rate was reduced by 10%.

【0085】第5表に実施例5と比較例5との比較をま
とめて示す。
Table 5 summarizes the comparison between Example 5 and Comparative Example 5.

【0086】[0086]

【表13】 [Table 13]

【0087】[0087]

【発明の効果】本発明により、培養槽内の炭素源(基
質)濃度を低く(例えば、糖(炭素源)濃度を容易に5
g/l以下に更には3g/l以下にさえも)制御するこ
とができ、惹いては基質阻害効果を防止することがで
き、特に連続培養及び菌体再利用連続培養においては原
料の系外への流出を防ぐことができ、収率及び生産速度
を向上させ得る(それぞれ、1〜30%及び1〜30%)、
連続培養及び菌体再利用連続培養においては、生産物分
離工程への糖などの基質の流出を最低限に抑えることが
でき、分離工程への影響を殆んどゼロにし得る、基質濃
度の分析作業を皆無にし得る、全く人の監視無しで安定
に基質濃度の自動制御をし得る、などのメリットを得る
ことができるところとなった。
INDUSTRIAL APPLICABILITY According to the present invention, the carbon source (substrate) concentration in the culture tank can be lowered (for example, the sugar (carbon source) concentration can be easily reduced to 5
g / l or less, or even 3 g / l or less), and thus the substrate inhibitory effect can be prevented, and especially in continuous culture and bacterial cell recycling continuous culture, Can be prevented and the yield and production rate can be improved (1-30% and 1-30%, respectively),
In continuous culture and bacterial cell reuse continuous culture, analysis of substrate concentration can minimize the outflow of substrates such as sugar to the product separation process and can have almost no effect on the separation process. It has become possible to obtain merits such as eliminating the work at all and being able to stably and automatically control the substrate concentration without any human supervision.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の装置の1例を示す。FIG. 1 shows an example of the device of the present invention.

【図2】実施例1に使用の装置を示す。FIG. 2 shows the apparatus used in Example 1.

【図3】比較例1に使用の装置を示す。FIG. 3 shows an apparatus used in Comparative Example 1.

【図4】実施例1におけるフィード培養の状況を示す。FIG. 4 shows the situation of feed culture in Example 1.

【図5】同じく実施例1における糖濃度の制御状況を示
す。
FIG. 5 shows the control status of sugar concentration in Example 1 as well.

【図6】比較例1における培養状況を示す。FIG. 6 shows a culture situation in Comparative Example 1.

フロントページの続き (72)発明者 島崎 敬士 佐賀県佐賀郡諸富町大字諸富津450 味の 素株式会社九州工場内Front page continuation (72) Inventor Keishi Shimazaki 450 Morotomi, Morotomi-cho, Saga-gun, Saga Ajinomoto Co., Inc. Kyushu Factory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 炭素源フィード液を断続的に培養槽に添
加する微生物の好気的流加培養、連続培養又は菌体再利
用連続培養において、フィード液の初回添加は予め求め
ておいたフィード速度でフィード液を一定時間添加する
ことによって行ない、第2回目以降の添加はある添加期
に先行する添加停止期において培養槽内炭素源(基質)
が枯渇するときに生ずる pHの上昇又は溶存酸素濃度の
上昇がコンピュータで検出されるときに開始しかつ該添
加停止期の時間と該添加停止期に先行する添加期のフィ
ード液のフィード速度とから該添加停止期の時間が長け
ればより小さくそして短ければより大きくなるように該
コンピュータで算出されるフィード速度で一定時間添加
することによって行なうことを特徴とする微生物好気培
養において培養槽内基質濃度を常に自動的に低レベルに
維持するように制御する方法。
1. In aerobic fed-batch culture, continuous culture or continuous microbial cell reuse culture in which a carbon source feed solution is intermittently added to a culture tank, the initial addition of the feed solution is a previously determined feed. The feed solution is added at a constant rate for a certain period of time, and the second and subsequent additions are the carbon sources (substrates) in the culture tank during the addition stop phase that precedes a certain addition phase.
From the feed rate of the feed liquid in the addition phase, which starts when the increase in pH or the increase in dissolved oxygen concentration that occurs when oxygen is depleted is detected by the computer and the addition stop period precedes the addition stop period. Substrate concentration in culture tank in aerobic culture of microorganisms, characterized in that the addition is carried out for a certain period of time at a feed rate calculated by the computer so that it becomes smaller if the duration of the addition suspension period is longer and larger if it is shorter. How to control to always keep low level automatically.
【請求項2】 (i) 槽内培養液の pH及び溶存酸素濃度
をそれぞれ検出するセンサー及び通気攪拌装置を具備し
フィード液を流量制御装置を介して受入れるようにした
培養槽及び(ii)2個の信号変換機を具備するコンピュー
タを含みかつ(a) pHセンサー及び溶存酸素濃度センサ
ーによる pH及び溶存酸素濃度の検出値がそれぞれ一方
の信号変換機を介してコンピュータに入力されるように
センサーが接続されており及び(b) コンピュータの算出
したフィード液フィード速度設定値が他方の信号変換機
を介して流量制御装置に伝送されるように接続されてい
ることを特徴とする請求項1記載の方法を実施するため
の装置。
2. A culture tank comprising: (i) a sensor for detecting the pH and the dissolved oxygen concentration of the culture solution in the tank and an aeration and stirring device, and the feed solution being received through a flow control device; and (ii) 2 A sensor having a signal converter, and (a) a sensor for inputting the detected values of pH and dissolved oxygen concentration by the pH sensor and the dissolved oxygen concentration sensor to the computer through one signal converter, respectively. And (b) the computer-calculated feed liquid feed speed setpoint is connected so as to be transmitted to the flow control device via the other signal converter. Apparatus for performing the method.
JP27793891A 1990-11-30 1991-10-24 Method and apparatus for controlling carbon source concentration in microbial aerobic culture Expired - Fee Related JP2932791B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP27793891A JP2932791B2 (en) 1990-11-30 1991-10-24 Method and apparatus for controlling carbon source concentration in microbial aerobic culture
BR919105208A BR9105208A (en) 1990-11-30 1991-11-29 PROCESS FOR AEROBIC CULTIVATION OF A MICROORGANISM IN A Batch-fed CULTURE, CONTINUOUS CULTURE OR CONTINUOUS CULTURE CULTURE, APPLIANCE TO CONTROL THE CONCENTRATION OF THE SUBSTRATE CARBON SOURCE AND PROCESS TO PRODUCE LIS
BE9101098A BE1008008A3 (en) 1990-11-30 1991-11-29 Method and apparatus for adjusting the concentration of carbon source in aerobic culture microorganism.
MYPI91002222A MY121534A (en) 1990-11-30 1991-11-29 Method and apparatus for controlling carbon source concentration in aerobic cultivation of a microorganism.
ITMI913198A IT1256566B (en) 1990-11-30 1991-11-29 PROCEDURE AND EQUIPMENT TO CONTROL THE CONCENTRATION OF THE CARBON SOURCE IN AN AEROBIC CULTURE OF A MICROORGANISM
FR9114851A FR2669935B1 (en) 1990-11-30 1991-11-29 PROCESS AND APPARATUS FOR REGULATING THE CONCENTRATION OF CARBON SOURCE IN THE AEROBIC CULTURE OF A MICROORGANISM.
FR9202315A FR2676234B1 (en) 1990-11-30 1992-02-27 PROCESS AND APPARATUS FOR REGULATING THE CONCENTRATION OF CARBON SOURCE IN THE AEROBIC CULTURE OF A MICROORGANISM.
CN92101496A CN1041534C (en) 1991-03-12 1992-03-09 Method and apparatus for controlling carbon source concentration in aerobic cultivation of microorganism
CN97112748A CN1117869C (en) 1991-03-12 1997-06-10 Process for producing L-lysine by fermentation
US08/905,713 US5912113A (en) 1990-11-30 1997-08-04 Method and apparatus for controlling carbon source concentration in aerobic cultivation of a microorganism
US09/192,565 US6025169A (en) 1990-11-30 1998-11-17 Process for production of lysine by fermentation

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP33968790 1990-11-30
JP2-339687 1990-11-30
JP27793891A JP2932791B2 (en) 1990-11-30 1991-10-24 Method and apparatus for controlling carbon source concentration in microbial aerobic culture

Publications (2)

Publication Number Publication Date
JPH0576346A true JPH0576346A (en) 1993-03-30
JP2932791B2 JP2932791B2 (en) 1999-08-09

Family

ID=26552637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27793891A Expired - Fee Related JP2932791B2 (en) 1990-11-30 1991-10-24 Method and apparatus for controlling carbon source concentration in microbial aerobic culture

Country Status (1)

Country Link
JP (1) JP2932791B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002320498A (en) * 2001-04-27 2002-11-05 Nikken Chem Co Ltd Method for producing erythritol by continuous culture
JP2008259451A (en) * 2007-04-12 2008-10-30 Mitsubishi Chemicals Corp Method for preparing organic acid-producing microorganism strain and method for producing organic acid
JP2010527579A (en) * 2006-09-11 2010-08-19 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Dissolved oxygen profile to increase fermentation productivity and economics
JP2016524923A (en) * 2013-07-26 2016-08-22 ロケット フレールRoquette Freres Chlorella fed-batch fermentation method by sequential automatic addition of glucose
JP2020536497A (en) * 2017-10-16 2020-12-17 リジェネロン・ファーマシューティカルズ・インコーポレイテッド In situ Raman spectroscopy systems and methods for controlling process variables in cell culture

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002320498A (en) * 2001-04-27 2002-11-05 Nikken Chem Co Ltd Method for producing erythritol by continuous culture
JP2010527579A (en) * 2006-09-11 2010-08-19 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Dissolved oxygen profile to increase fermentation productivity and economics
JP2008259451A (en) * 2007-04-12 2008-10-30 Mitsubishi Chemicals Corp Method for preparing organic acid-producing microorganism strain and method for producing organic acid
JP2016524923A (en) * 2013-07-26 2016-08-22 ロケット フレールRoquette Freres Chlorella fed-batch fermentation method by sequential automatic addition of glucose
JP2020536497A (en) * 2017-10-16 2020-12-17 リジェネロン・ファーマシューティカルズ・インコーポレイテッド In situ Raman spectroscopy systems and methods for controlling process variables in cell culture

Also Published As

Publication number Publication date
JP2932791B2 (en) 1999-08-09

Similar Documents

Publication Publication Date Title
US5912113A (en) Method and apparatus for controlling carbon source concentration in aerobic cultivation of a microorganism
EP0889949B1 (en) Fermentation control
US7521203B2 (en) Feeding processes for fermentation
JPH07184634A (en) Culture method for aerobic culture of microorganism and apparatus therefor
US5139938A (en) Production of substances with an acetic acid-producing and assimilating bacterium inhibited by acetic acid
Bishop et al. The needs for sensors in bacterial and yeast fermentations
JP2932791B2 (en) Method and apparatus for controlling carbon source concentration in microbial aerobic culture
EP0219791B1 (en) Process for culturing recombinant cells
KR100429935B1 (en) How to use yeast alcohol dehydrogenase isoenzyme II (ADHII) promoter system for biotechnically produced high yield of heterologous protein
CN1041534C (en) Method and apparatus for controlling carbon source concentration in aerobic cultivation of microorganism
JPH06261741A (en) Method of multiplying microorganism
JP2003530823A (en) Method for increasing the yield of recombinant protein in a microbial fermentation process
US5053328A (en) Process for the fermentative preparation of L-amino acids from α-keto carboxylic acids
SU905800A1 (en) System for automatic controlling of semi-continuous process of micro-organism cultivation
SU1275036A1 (en) Method of automatic control for process of alcoholic fermentation
WO2002083836A2 (en) Fermentor ammonium sulfate control
SU1479518A1 (en) Method of automatic of multistage fermentation process
JPH0361439B2 (en)
JPH02100667A (en) Feeding culture of microorganism and device therefor
SU1437396A1 (en) Method of automatic control of microorganism cultivation process
JPS62289192A (en) Continuous production of amino acid by fermentation
JPH0368670B2 (en)
SU619511A1 (en) Method of automatic control of microorganism continuous growing process
RU1786072C (en) Method of automatic control of biotechnological process
JPH029793B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees