JPH0576329A - Sterilization of fluid material - Google Patents

Sterilization of fluid material

Info

Publication number
JPH0576329A
JPH0576329A JP3266814A JP26681491A JPH0576329A JP H0576329 A JPH0576329 A JP H0576329A JP 3266814 A JP3266814 A JP 3266814A JP 26681491 A JP26681491 A JP 26681491A JP H0576329 A JPH0576329 A JP H0576329A
Authority
JP
Japan
Prior art keywords
treatment
pressure
high pressure
sterilization
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3266814A
Other languages
Japanese (ja)
Inventor
Tamotsu Setoyama
保 瀬戸山
Yoshiharu Hisama
嘉晴 久間
Kouichirou Sonoike
耕一郎 園池
Yoshio Kimura
義夫 木村
Masami Ishihara
正美 石原
Kenji Fukumoto
研治 福元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHOKUHIN SANGYO CHOKOATSU RIYO
SHOKUHIN SANGYO CHOKOATSU RIYOU GIJUTSU KENKYU KUMIAI
Original Assignee
SHOKUHIN SANGYO CHOKOATSU RIYO
SHOKUHIN SANGYO CHOKOATSU RIYOU GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHOKUHIN SANGYO CHOKOATSU RIYO, SHOKUHIN SANGYO CHOKOATSU RIYOU GIJUTSU KENKYU KUMIAI filed Critical SHOKUHIN SANGYO CHOKOATSU RIYO
Priority to JP3266814A priority Critical patent/JPH0576329A/en
Publication of JPH0576329A publication Critical patent/JPH0576329A/en
Pending legal-status Critical Current

Links

Landscapes

  • Dairy Products (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • Tea And Coffee (AREA)
  • Non-Alcoholic Beverages (AREA)

Abstract

PURPOSE:To industrially advantageously sterilize a fluid material such as a beverage or a fluid food while keeping its quality by applying a high pressure to the fluid material and then rapidly reducing the pressure for the purpose of cell-crush treatment. CONSTITUTION:The objective sterilization is carried out by applying a high pressure of >=2500kg/cm<2> (preferably 3500-4500kg/cm<2>) to a fluid material (e.g. fluid material mainly composed of milk protein) and then taking out the treated material from the high-pressure treatment tank for the purpose of cell crush by rapid reduction of pressure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、飲料、液状食品、それ
らの原料もしくは半製品であって液状のもの、その他各
種の液状物の殺菌方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for sterilizing beverages, liquid foods, raw materials or semi-finished products thereof, which are liquid, and various other liquids.

【0002】[0002]

【従来の技術】飲料、液体調味料等、製造後一定期間保
存が可能であることを要求される液状物は、微生物の増
殖による変質、腐敗を防止するため、製造工程のいずれ
かの段階で何らかの殺菌処理を受けるのが普通である。
多くの場合、飲食物の殺菌は、その原料または最終製品
について加熱処理を施すことにより行われる。しかしな
がら、加熱殺菌処理は、比較的簡単に殺菌の目的を達す
ることができるものの、熱による変色、異臭発生、ビタ
ミンやアミノ酸の破壊など、好ましくない変質を招くこ
とが多い。
2. Description of the Related Art Liquid substances such as beverages and liquid seasonings which are required to be stored for a certain period of time after production are treated at any stage of the production process in order to prevent deterioration and spoilage due to the growth of microorganisms. It is common to undergo some sort of sterilization treatment.
In many cases, sterilization of food and drink is performed by subjecting the raw material or the final product to heat treatment. However, although the heat sterilization treatment can achieve the purpose of sterilization relatively easily, it often causes unfavorable alterations such as discoloration due to heat, generation of offensive odor, and destruction of vitamins and amino acids.

【0003】加熱殺菌処理においてしばしば見られるよ
うな被処理物の品質低下を誘発しにくい殺菌法として、
近年、超高圧を加えることにより微生物を死滅させる殺
菌法が開発された(たとえば特開平2−312577号
公報)。これは、静水圧加圧装置等を用いて約5000
kg/cm2以上の高圧を加えることにより被処理物中の微生
物の細胞壁、細胞膜等に損傷を生じさせ、同時に細胞内
タンパク質の変性を生じさせることにより、細菌を死滅
させようとするものである。しかしながら、5000kg
/cm2を超える高圧を被処理物に作用させることは容易で
はなく、高価な超高圧発生装置と耐圧の高い処理装置を
必要とするばかりか、所定の超高圧に到達するのに長時
間を要するという欠点がある。液状物の加圧処理に比較
的利用し易い圧力は約4500kg/cm2以下であるが、そ
の程度の圧力では、処理を何度も繰り返さない限り十分
な殺菌は行われない。
As a sterilization method that is less likely to induce deterioration of the quality of the object to be treated, which is often seen in heat sterilization treatment,
In recent years, a sterilization method for killing microorganisms by applying ultrahigh pressure has been developed (for example, Japanese Patent Laid-Open No. 2-312577). This is about 5000 using a hydrostatic pressure device.
By applying a high pressure of kg / cm 2 or more, damage to the cell wall, cell membrane, etc. of the microorganism in the object to be treated, and at the same time denaturation of intracellular proteins, try to kill the bacteria. .. However, 5000 kg
It is not easy to apply a high pressure exceeding / cm 2 to the object to be processed, not only an expensive ultra-high pressure generator and a high pressure-resistant processing apparatus are required, but it also takes a long time to reach a predetermined ultra-high pressure. There is a drawback that it costs. The pressure that is relatively easy to use for the pressure treatment of the liquid is about 4500 kg / cm 2 or less, but at such a pressure, sufficient sterilization cannot be performed unless the treatment is repeated many times.

【0004】一方、細菌細胞を死滅させることができる
装置として、いわゆる細胞破砕機がある。これは、細菌
の懸濁液を2000kg/cm2程度の圧力に加圧した状態か
ら一挙に常圧の空間に放出して急減圧し、その急減圧の
衝撃と、放出された懸濁液が高速で固定壁面等に衝突す
るときの衝撃とを利用して、微生物細胞を破砕するもの
である。この方法において採用される圧力は上述の超高
静水圧利用法の場合よりもずっと低く、したがって装置
も小型でよく、能率的に実施可能である。しかしなが
ら、細胞破砕機はあくまでも細胞を破砕して細胞内成分
を取り出すためのものであって、殺菌を目的として使用
されるものではない。また、細胞破砕機によって細胞破
砕が可能なものは一部の微生物に限られ、酵母、乳酸菌
など、細胞壁の固い微生物に対しては、処理効果は不十
分である。たとえば、ラクトバチルス・カゼイを処理圧
1000kg/cm2で1回処理すると1.0×107個/mlの
菌数が7.0×106個/mlになる程度であって、殺菌法
として意味ある程度に菌数を減少させるには数回の反復
処理が必要である。したがって、細胞破砕機による処理
は工業的に実施可能な液状物殺菌法にはなり得ない。
On the other hand, as a device capable of killing bacterial cells, there is a so-called cell crusher. This is because the suspension of bacteria is pressurized to a pressure of about 2000 kg / cm 2 and released all at once into a space at normal pressure and suddenly decompressed. The impact of the sudden decompression and the released suspension are The crushing of microbial cells is carried out by utilizing the impact of collision with a fixed wall surface at high speed. The pressure employed in this method is much lower than in the ultra-high hydrostatic pressure application described above, so the device is also small and can be implemented efficiently. However, the cell crusher is only for crushing cells to take out intracellular components, and is not used for the purpose of sterilization. Further, the cells that can be disrupted by the cell disrupter are limited to some microorganisms, and the treatment effect is insufficient for microorganisms having a rigid cell wall such as yeast and lactic acid bacteria. For example, when Lactobacillus casei is treated once at a treatment pressure of 1000 kg / cm 2 , the number of bacteria of 1.0 × 10 7 cells / ml becomes 7.0 × 10 6 cells / ml. Meaning It takes several iterations to reduce the number of bacteria to some extent. Therefore, the treatment by the cell disruptor cannot be an industrially practicable liquid material sterilization method.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、飲食
物の品質保持の観点からは加熱殺菌処理に勝るにもかか
わらず上述のように問題点の多かった高圧利用殺菌法を
改良し、これを工業的に容易に実施可能で処理効果も十
分なものが得られるようにすることにある。
The object of the present invention is to improve the high-pressure sterilization method, which has many problems as described above in spite of being superior to heat sterilization treatment from the viewpoint of maintaining the quality of food and drink, This is to make it industrially easy to implement and to obtain a sufficient treatment effect.

【0006】[0006]

【課題を解決するための手段】本発明による高圧利用殺
菌法は、被処理物に2500kg/cm2以上の高圧を加える
処理(以下、超高圧処理という)および高圧からの急減
圧細胞破砕処理を施すことを特徴とする。超高圧処理お
よび高圧からの急減圧処理を併せて施すと、液状物中の
微生物はいずれか一方の処理を施した場合よりも確実に
破砕される。また、超高圧処理は実施容易な2500〜
4500kg/cm2程度の加圧で十分になる。
The high-pressure sterilization method according to the present invention comprises a treatment for applying a high pressure of 2500 kg / cm 2 or more to the object to be treated (hereinafter referred to as an ultra-high pressure treatment) and a rapid decompression cell crushing treatment from a high pressure. It is characterized by applying. When the ultra-high pressure treatment and the rapid depressurization treatment from the high pressure are performed together, the microorganisms in the liquid substance are crushed more reliably than when either treatment is performed. In addition, ultra-high pressure treatment is easy to carry out from 2500 to
Pressurization of about 4500 kg / cm 2 is sufficient.

【0007】以下、本発明の殺菌法についてさらに詳細
に説明する。超高圧処理および高圧からの急減圧細胞破
砕処理はいずれを先に施してもよいが、超高圧処理を先
に施すほうが、処理効果の点で有利である。超高圧処理
は、静水圧加圧装置を利用すると実施容易であるが、直
接加圧法を採用してもよい。静水圧加圧装置を用いる場
合、処理する液状物はまずレトルトパウチ用の容器など
適当な容器に入れて密封し、静水圧を加える。能率的な
殺菌処理を行うには、加える静水圧は2500kg/cm2
上とすることが必要である。静水圧が2500kg/cm2
満では、長時間の処理が必要になる。特に、被処理物が
乳タンパクを主成分とするものの場合は、理由は定かで
ないが果汁など乳タンパクを含まないものの場合よりも
処理効果が現れにくいので、約3500kg/cm2以上の圧
力を採用することが望ましい。加える静水圧の上限はな
いが、5000kg/cm2をこえるような高圧を採用するこ
とは前述のように装置面での負担が大きくなり、昇圧の
ための時間も長くなるので、好ましくない。また、本発
明の目的に反することにもなるので、普通は約3500
kg/cm2まで、乳タンパクを主成分とするものを処理する
場合でも約4500kg/cm2までで実施することが望まし
い。超高圧処理の時間は、1回10分程度でよい。
The sterilization method of the present invention will be described in more detail below. Either the ultra-high pressure treatment or the rapid decompression cell crushing treatment from the high pressure may be performed first, but the ultra-high pressure treatment is advantageous in terms of treatment effect. The ultra-high pressure treatment can be easily performed by using a hydrostatic pressure device, but a direct pressure method may be adopted. When the hydrostatic pressure device is used, the liquid material to be treated is first placed in an appropriate container such as a container for a retort pouch and sealed, and hydrostatic pressure is applied. In order to carry out efficient sterilization treatment, the hydrostatic pressure applied should be 2500 kg / cm 2 or more. If the hydrostatic pressure is less than 2500 kg / cm 2 , long-time treatment is required. In particular, if the object to be treated is mainly composed of milk protein, the treatment effect is less likely to appear than in the case of a product such as fruit juice that does not contain milk protein, so a pressure of about 3500 kg / cm 2 or more is used. It is desirable to do. Although there is no upper limit to the hydrostatic pressure to be applied, it is not preferable to use a high pressure exceeding 5000 kg / cm 2 because the burden on the apparatus becomes large and the time for pressurization becomes long as described above. Also, since it is contrary to the object of the present invention, it is usually about 3500.
until kg / cm 2, it is desirable to carry out at any time up to about 4500 kg / cm 2 when processing those based on milk proteins. The time for ultra-high pressure treatment may be about 10 minutes each time.

【0008】超高圧処理を終わったならば、処理容器か
ら被処理物を取り出し、次いで800〜2500kg/cm2
程度の高圧に加圧した状態から常圧またはそれに近い低
圧の雰囲気に被処理物を放出して急激に減圧する処理を
施し、望ましくはその際、高速で放出された被処理物の
流れを固定壁等に衝突させることにより機械的な衝撃を
与えて、微生物細胞を破砕する。この処理に使用可能な
装置の代表的な例としては、米国Microfluidics社のマ
イクロフルイダイザーがある。この装置は、高圧の被処
理物を対向する二つの噴出口から大気圧の室内に連続的
に噴出させ、さらに、噴出した被処理物の二つの流れを
互いに正面から衝突させることにより、被処理物中の微
生物に衝撃を与えて細胞破砕を行うものである。このほ
か、小規模実施には米国SLM−AMINCO社のフレ
ンチプレス細胞破砕機、大日本製薬株式会社のミニラボ
等(いずれも、高圧の被処理物を細孔から大気圧中に噴
射して装置壁面あるいは噴射口直前の部材に衝突させる
もの)を使用することができる。
After the ultra-high pressure treatment is finished, the object to be treated is taken out of the treatment container and then 800 to 2500 kg / cm 2
Performing a process of releasing the object to be treated from a state of pressurizing it to a high pressure of about normal pressure or a low pressure atmosphere close to it and rapidly depressurizing it, preferably at that time, fixing the flow of the object to be treated released at high speed By colliding with a wall or the like, a mechanical shock is given to crush the microbial cells. A typical example of an apparatus that can be used for this process is Microfluidizer manufactured by Microfluidics, Inc., USA. This device continuously ejects a high-pressure object to be processed from two facing ejection ports into an atmospheric pressure chamber, and further collides the two flows of the ejected object to be processed with each other from the front. The cells are disrupted by impacting the microorganisms in the material. In addition, for small-scale implementation, a French press cell crusher from SLM-AMINCO in the US, a minilab from Dainippon Pharmaceutical Co., Ltd., etc. Alternatively, a member that collides with a member immediately before the injection port can be used.

【0009】超高圧処理および高圧からの急減圧処理
は、各1回の処理では不十分な場合、2回以上繰り返し
て行うことができる。本発明による殺菌方法は、加圧状
態から狭い流路を通過させて放出する急減圧処理を行う
ため、流動性ある液状物に対してのみ実施可能である
が、液状物である限り、すべての飲食品、それらの原料
もしくは半製品であって液状のもの、その他各種の液状
物に適用可能である。
The ultrahigh pressure treatment and the rapid depressurization treatment from the high pressure can be repeated twice or more when each treatment is not sufficient. The sterilization method according to the present invention performs rapid depressurization treatment in which a pressurized state is passed through a narrow flow path to release the liquid, so that it can be carried out only on a fluid liquid, but as long as it is a liquid, all It is applicable to foods and drinks, raw materials or semi-finished products thereof, which are liquid, and various other liquids.

【0010】[0010]

【実施例】【Example】

実施例1 ラクトバチルス・カゼイをILS-ラクトース培地で培養
し、得られた菌体を10mM HEPESに約3.0×107個/m
lになるように懸濁させた。微生物を含有する飲食物の
モデルとしての上記乳酸菌懸濁液に、3500kg/cm2
静水圧処理、マイクロフルイダイザーを用いる800kg
/cm2からの急減圧細胞破砕処理、または上記と同じ条件
の静水圧処理と急減圧処理とを続けて施す本発明の殺菌
処理を施した。その結果を表1に示す。 表1 静水圧処理回数 急減圧処理回数 生残菌数(個/ml) 比較例 4 0 4.0×103 実施例 2 2 2.0×103 実施例 1 3 2.0×103 比較例 0 4 3.0×106
 Example 1 Cultivation of Lactobacillus casei in ILS-lactose medium
Then, the obtained cells were added to 10 mM HEPES at about 3.0 × 10.7Pieces / m
Suspended to l. Food and drink containing microorganisms
To the above lactic acid bacteria suspension as a model, 3500 kg / cm2of
Hydrostatic pressure treatment, 800kg using microfluidizer
/cm2Rapid decompression cell lysate treatment from or the same conditions as above
Sterilization of the present invention in which the hydrostatic pressure treatment and the rapid depressurization treatment are successively performed
Treated. The results are shown in Table 1. Table 1Number of hydrostatic pressure treatments Number of sudden decompression treatments Number of surviving bacteria (cells / ml)  Comparative Example 4 4.0 x 103  Example 2 2 2.0 x 103  Example 1 3 2.0 × 103  Comparative Example 0 4 3.0 × 106

【0011】実施例2 10%脱脂粉乳溶液にラクトバチルス・カゼイの生菌体
を107個/mlになるように添加後、3000kg/cm2
静水圧処理、マイクロフルイダイザーを用いる800kg
/cm2からの急減圧処理、および上記と同じ条件の静水圧
処理と急減圧処理を続けて施す本発明の殺菌処理を施し
た。その結果を表2に示す。 表2 静水圧処理回数 急減圧処理回数 生残菌数(個/ml) 比較例 4 0 1.0×105 実施例 2 2 2.0×104 実施例 1 3 1.0×104 比較例 0 4 3.0×106
Example 2 Lactobacillus casei live cells in 10% skim milk powder solution
1073000kg / cm after adding so that the number becomes 1 / ml2of
Hydrostatic pressure treatment, 800kg using microfluidizer
/cm2Rapid depressurization process from and hydrostatic pressure under the same conditions as above
The sterilization treatment of the present invention is performed by continuously performing the treatment and the rapid depressurization treatment.
It was The results are shown in Table 2. Table 2Number of hydrostatic pressure treatments Number of sudden decompression treatments Number of surviving bacteria (cells / ml)  Comparative Example 4 0 1.0 × 10Five  Example 2 2 2.0 x 10Four  Example 1 3 1.0 × 10Four  Comparative Example 0 4 3.0 × 106

【0012】実施例3 無殺菌バレンシアオレンジ果汁に3000kg/cm2の静水
圧処理、フレンチプレスによる2000kg/cm2からの急
減圧細胞破砕処理、および上記と同じ条件の静水圧処理
と急減圧処理を続けて施す本発明の殺菌処理を施した。
その結果を表3に示す。 表3 静水圧処理回数 急減圧処理回数 生残菌数(個/ml) 比較例 4 0 300 実施例 2 2 6 実施例 1 3 0 比較例 0 4 30
Example 3 3000 kg / cm of unsterilized Valencia orange juice2Still water
2000kg / cm by pressure treatment, French press2Sudden from
Reduced pressure cell disruption and hydrostatic treatment under the same conditions as above
Then, the sterilization treatment of the present invention was performed in which the rapid depressurization treatment was continuously performed.
The results are shown in Table 3. Table 3Number of hydrostatic pressure treatments Number of sudden decompression treatments Number of surviving bacteria (cells / ml)  Comparative Example 4 0 300 Example 2 2 6 Example 1 3 0 Comparative Example 0 4 30

【0013】実施例4 10%脱脂乳にラクトバチルス・カゼイを接種して37
℃で48時間培養し、得られたヨーグルトに、4000
kg/cm2の静水圧処理1回と、マイクロフルイダイザーに
よる急減圧処理6回を施したところ、生残する乳酸菌は
まったく認められず、加熱臭のない風味の優れた殺菌タ
イプヨーグルトが得られた。
Example 4 Lactobacillus casei was inoculated into 10% skim milk, and 37
The yogurt was incubated at ℃ for 48 hours,
When 1 kg of hydrostatic pressure treatment of kg / cm 2 and 6 times of rapid depressurization treatment with a microfluidizer were performed, no lactic acid bacteria remained and no odor of heating was obtained. It was

【0014】実施例5 ラクトバチルス・カゼイをILS-ラクトース培地で培養
し、得られた菌体を殺菌バレンシアオレンジ果汁に約
3.0×107個/mlになるように懸濁させた。この果汁
に、静水圧処理とミニラボまたはフレンチプレスを用い
た急減圧細胞破砕処理とを、それぞれ単独で、または組
み合わせて、施した。処理圧および処理時間を種々変更
し、生菌数を目的とする水準まで減少させるのに必要な
処理回数を調べた結果を表4〜表7に示す。なお、静水
圧処理と高圧からの急減圧処理との組み合わせの場合
は、静水圧処理を1回とし、高圧からの急減圧処理の回
数を変更した。
Example 5 Lactobacillus casei was cultured in an ILS-lactose medium, and the obtained cells were suspended in sterilized Valencia orange juice at a concentration of about 3.0 × 10 7 cells / ml. This juice was subjected to hydrostatic pressure treatment and rapid decompression cell disruption treatment using a minilab or French press, either alone or in combination. Tables 4 to 7 show the results of examining the number of treatments required to reduce the viable cell count to a desired level by changing the treatment pressure and the treatment time. In the case of the combination of the hydrostatic pressure treatment and the rapid depressurization treatment from the high pressure, the hydrostatic pressure treatment was once and the number of the rapid depressurization treatment from the high pressure was changed.

【0015】 表4:静水圧処理:3500kg/cm2,10分 ミニラボ処理圧:800kg/cm2 静水圧処理回数 ミニラボ処理回数 生残菌数(個/ml) 比較例 5 0 2.0×103 実施例 1 3 2.0×103 比較例 0 18 2.0×103 Table 4: Hydrostatic pressure treatment: 3500 kg / cm2, 10 minutes Minilab processing pressure: 800kg / cm2  Number of hydrostatic pressure treatments Minilab processing times Number of surviving bacteria (cells / ml)  Comparative Example 5 2.0 x 103  Example 1 3 2.0 × 103  Comparative Example 0 18 2.0 × 103

【0016】 表5:静水圧処理:2500kg/cm2,60分 ミニラボ処理圧:800kg/cm2 静水圧処理回数 ミニラボ処理回数 生残菌数(個/ml) 比較例 5 0 1.0×104 実施例 1 3 1.0×104 比較例 0 16 1.0×104 Table 5: Hydrostatic pressure treatment: 2500 kg / cm2, 60 minutes Minilab processing pressure: 800kg / cm2  Number of hydrostatic pressure treatments Minilab processing times Number of surviving bacteria (cells / ml)  Comparative Example 5 0 1.0 × 10Four  Example 1 3 1.0 × 10Four  Comparative Example 0 16 1.0 × 10Four

【0017】 表6:静水圧処理:3500kg/cm2,10分 フレンチプレス処理圧:2000kg/cm2 静水圧処理回数 フレンチプレス処理回数 生残菌数(個/ml) 比較例 7 0 3.0×102 実施例 1 3 3.0×102 比較例 0 8 3.0×102 Table 6: Hydrostatic pressure treatment: 3500 kg / cm2, 10 minutes French press processing pressure: 2000kg / cm2  Number of hydrostatic pressure treatments Number of French press treatments Number of surviving bacteria (cells / ml)  Comparative Example 7 0 3.0 x 102  Example 1 3 3.0 x 102  Comparative Example 0 8 3.0 × 102

【0018】 表7:静水圧処理:2500kg/cm2,60分 フレンチプレス処理圧:2000kg/cm2 静水圧処理回数 フレンチプレス処理回数 生残菌数(個/ml) 比較例 7 0 8.0×102 実施例 1 3 8.0×102 比較例 0 7 8.0×102 Table 7: Hydrostatic pressure treatment: 2500 kg / cm2, 60 minutes French press processing pressure: 2000kg / cm2  Number of hydrostatic pressure treatments Number of French press treatments Number of surviving bacteria (cells / ml)  Comparative Example 7 8.0 × 102  Example 1 3 8.0 × 102  Comparative Example 0 7 8.0 × 102

【0019】実施例6 ウーロン茶加熱抽出液に汚染モデル菌液として乳酸菌ス
トレプトコッカス・ラクチスを103/mlになるように
添加後、静水圧3000kg/cm2で1回処理したのちマイ
クロフルイダイザーを用い800kg/cm2から急減圧する
処理を繰り返したところ、2回のマイクロフルイダイザ
ー処理で菌数が0個/mlになった。比較のため3000
kg/cm2の静水圧処理だけを繰り返したところ、菌数が0
個/mlになるのに5回の処理を必要とした。
Example 6 Lactobacillus Streptococcus lactis was added to a heated extract of oolong tea as a contamination model bacterium solution so that the concentration was 10 3 / ml, and the mixture was treated once with a hydrostatic pressure of 3000 kg / cm 2 and then 800 kg using a microfluidizer. When the treatment of suddenly reducing the pressure from / cm 2 was repeated, the number of bacteria became 0 / ml after the treatment with the microfluidizer twice. 3000 for comparison
When only hydrostatic pressure treatment of kg / cm 2 was repeated, the number of bacteria was 0.
Five treatments were required to reach the count / ml.

【0020】[0020]

【発明の効果】超高圧処理と高圧からの急減圧細胞破砕
処理を併せて実施する本発明の殺菌法は、従来の高圧利
用殺菌法が約5000kg/cm2以上の高圧を必要としたの
に比べると、超高圧処理における圧力が2500〜45
00kg/cm2程度で済むぶん、装置がはるかに簡単になり
能率も良いという特長がある。また、昇圧と降圧に長時
間を要する超高圧処理の回数が少なくて済み、殺菌を短
時間で終わらせることができる。さらに、細胞破砕機だ
けを用いる急減圧殺菌方法と比べても、急減圧処理だけ
では死滅させることが困難な酵母や乳酸菌を含むほとん
どの微生物を死滅させることができるという特長があ
る。したがって、本発明によれば風味や栄養価値を損な
うおそれのない高圧利用殺菌法を従来よりも容易に且つ
低いコストで実施することが可能になる。
EFFECTS OF THE INVENTION The sterilization method of the present invention, which performs both ultra-high pressure treatment and rapid decompression cell crushing treatment from high pressure, requires a high pressure of about 5000 kg / cm 2 or more in the conventional high-pressure sterilization method. By comparison, the pressure in ultra-high pressure treatment is 2500-45
Since it only requires about 00 kg / cm 2 , it has the feature of being much simpler and more efficient. In addition, the number of ultra-high pressure treatments that require a long time for pressurization and depressurization is small, and sterilization can be completed in a short time. Furthermore, compared with the rapid depressurization sterilization method using only a cell crusher, there is a feature that most microorganisms including yeasts and lactic acid bacteria, which are difficult to kill only by the rapid depressurization treatment, can be killed. Therefore, according to the present invention, it becomes possible to carry out a high-pressure sterilization method that does not impair the flavor and nutritional value more easily and at a lower cost than conventional methods.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 A23L 2/16 9162−4B (72)発明者 園池 耕一郎 東京都港区東新橋1−1−19 株式会社ヤ クルト本社内 (72)発明者 木村 義夫 東京都港区東新橋1−1−19 株式会社ヤ クルト本社内 (72)発明者 石原 正美 神奈川県川崎市中原区井田1618番 新日本 製鐡株式会社先端技術研究所内 (72)発明者 福元 研治 神奈川県川崎市中原区井田1618番 新日本 製鐡株式会社先端技術研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI Technical indication location A23L 2/16 9162-4B (72) Inventor Koichiro Sonoe 1-1-Higashishimbashi, Minato-ku, Tokyo 19 Yakult Honsha Co., Ltd. (72) Inventor Yoshio Kimura 1-1-19 Higashishimbashi, Minato-ku, Tokyo Yakult Honsha Co., Ltd. (72) Masami Ishihara 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa New Japan (72) Inventor Kenji Fukumoto, 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa Shin-Nippon Steel Engineering Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 液状物に2500kg/cm2以上の高圧を加
える処理および高圧からの急減圧細胞破砕処理を施すこ
とを特徴とする液状物の殺菌方法。
1. A method for sterilizing a liquid material, which comprises applying a high pressure of 2500 kg / cm 2 or more to the liquid material and subjecting the liquid material to rapid cell decompression from a high pressure.
【請求項2】 主成分として乳タンパクを含有する液状
物に3500kg/cm2〜4500kg/cm2の高圧を加える処
理および高圧からの急減圧細胞破砕処理を施すことを特
徴とする乳タンパクを主成分とする液状物の殺菌方法。
2. A milk protein, wherein a rapid decompression cell disruption process from the process and the high pressure in the liquid containing the milk protein as the main component added pressure of 3500kg / cm 2 ~4500kg / cm 2 applied mainly A method for sterilizing a liquid material as an ingredient.
JP3266814A 1991-09-19 1991-09-19 Sterilization of fluid material Pending JPH0576329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3266814A JPH0576329A (en) 1991-09-19 1991-09-19 Sterilization of fluid material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3266814A JPH0576329A (en) 1991-09-19 1991-09-19 Sterilization of fluid material

Publications (1)

Publication Number Publication Date
JPH0576329A true JPH0576329A (en) 1993-03-30

Family

ID=17436045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3266814A Pending JPH0576329A (en) 1991-09-19 1991-09-19 Sterilization of fluid material

Country Status (1)

Country Link
JP (1) JPH0576329A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0642745A1 (en) * 1993-09-09 1995-03-15 Gerard Van Noort Method of and apparatus for enhancing the shelf-stability of a biological product
JPH07289218A (en) * 1994-04-21 1995-11-07 Nissan Earosupeesu Eng:Kk Sterilization and apparatus therefor
JPH119242A (en) * 1997-06-25 1999-01-19 Kagome Co Ltd Production of liquid food
WO1999038394A3 (en) * 1998-01-30 1999-09-16 Flow Int Corp Method for ultra high pressure inactivation of microorganisms in juice products
EP1027835A1 (en) * 1997-10-23 2000-08-16 Morinaga Milk Industry Co., Ltd. Method and apparatus for continuous heat sterilization of liquid
JP2000236857A (en) * 1999-02-22 2000-09-05 Ebara Corp Inactivation of pathogenic cyst-forming microorganism in liquid
JP2011110522A (en) * 2009-11-30 2011-06-09 Takako:Kk Apparatus and system for suppressing amount of microorganism
CN108135225A (en) * 2015-09-29 2018-06-08 Cbh清新有限公司 For the high pressure processing method of dairy products

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0642745A1 (en) * 1993-09-09 1995-03-15 Gerard Van Noort Method of and apparatus for enhancing the shelf-stability of a biological product
JPH07289218A (en) * 1994-04-21 1995-11-07 Nissan Earosupeesu Eng:Kk Sterilization and apparatus therefor
JPH119242A (en) * 1997-06-25 1999-01-19 Kagome Co Ltd Production of liquid food
EP1027835A1 (en) * 1997-10-23 2000-08-16 Morinaga Milk Industry Co., Ltd. Method and apparatus for continuous heat sterilization of liquid
EP1027835A4 (en) * 1997-10-23 2001-01-24 Morinaga Milk Industry Co Ltd Method and apparatus for continuous heat sterilization of liquid
WO1999038394A3 (en) * 1998-01-30 1999-09-16 Flow Int Corp Method for ultra high pressure inactivation of microorganisms in juice products
JP2000236857A (en) * 1999-02-22 2000-09-05 Ebara Corp Inactivation of pathogenic cyst-forming microorganism in liquid
JP2011110522A (en) * 2009-11-30 2011-06-09 Takako:Kk Apparatus and system for suppressing amount of microorganism
CN108135225A (en) * 2015-09-29 2018-06-08 Cbh清新有限公司 For the high pressure processing method of dairy products

Similar Documents

Publication Publication Date Title
Jiménez-Sánchez et al. Alternatives to conventional thermal treatments in fruit-juice processing. Part 1: Techniques and applications
Peng et al. Recent insights in the impact of emerging technologies on lactic acid bacteria: A review
JP3672931B2 (en) High-temperature / ultra-high pressure sterilization of low acid foods
Spilimbergo et al. Non‐thermal bacterial inactivation with dense CO2
Tianli et al. Spoilage by Alicyclobacillus bacteria in juice and beverage products: chemical, physical, and combined control methods
KR102096615B1 (en) Continuous system and procedure of sterilization and physical stabilization of pumpable fluids by means of ultra-high pressure homogenization
EP2572592A1 (en) Method and appliances for low temperature pasteurisation of liquid foods and removal of oxygen from liquid foods by decompression and/or high linear or rotary acceleration
MXPA01002437A (en) Ultra high pressure, high temperature food preservation process.
US6120732A (en) Microbial inactivation by high-pressure throttling
TAKAHASHI et al. Microbicidal effect of hydrostatic pressure on satsuma mandarin juice
Put et al. Heat resistance studies on yeast spp. causing spoilage in soft drinks
US20150351442A1 (en) High pressure processing of juice containing probiotics
US20080152775A1 (en) Inactivation of food spoilage and pathogenic microorganisms by dynamic high pressure
Pandya et al. Concurrent effects of high hydrostatic pressure, acidity and heat on the destruction and injury of yeasts
Cachon et al. Quality performance assessment of gas injection during juice processing and conventional preservation technologies
JPH0576329A (en) Sterilization of fluid material
Griffiths et al. Pulsed electric field processing of liquid foods and beverages
Milani et al. Pasteurization of beer by non-thermal technologies
Alemán et al. Comparison of static and step‐pulsed ultra‐high pressure on the microbial stability of fresh cut pineapple
JP2736605B2 (en) Liquid material sterilization method
EP1201252B1 (en) Method for inactivating microorganisms using high pressure processing
Birwal et al. Nonthermal processing of dairy beverages
Ismail Non-thermal milk and milk products processing
WO2020226676A1 (en) A pressure-treated toddy drink
Olatunde et al. Novel food processing techniques and application for fermented foods