JPH0575701U - Optical transmitter array - Google Patents

Optical transmitter array

Info

Publication number
JPH0575701U
JPH0575701U JP2288592U JP2288592U JPH0575701U JP H0575701 U JPH0575701 U JP H0575701U JP 2288592 U JP2288592 U JP 2288592U JP 2288592 U JP2288592 U JP 2288592U JP H0575701 U JPH0575701 U JP H0575701U
Authority
JP
Japan
Prior art keywords
optical transmission
array
light
refractive index
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2288592U
Other languages
Japanese (ja)
Inventor
吉弘 魚津
則司 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2288592U priority Critical patent/JPH0575701U/en
Publication of JPH0575701U publication Critical patent/JPH0575701U/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

(57)【要約】 【目的】 光源の光利用効率が高く、画像読取り能の高
速化に対応でき、光量斑の少ない光伝送体アレイを得る
こと。 【構成】 直方体形状で厚み方向にのみ二次曲線近似の
屈折率分布を有する光伝送体を平行配列体の両側面の少
なくとも一方に、シリンドリカルレンズ部を配設した光
伝送体アレイ。 【効果】 z軸方向の長さを調節することにより、非常
に光源との臨接面の面積を広くすることができ、光源の
利用効率が高められる。また円柱状光伝送体アレイで存
在する光量斑がほとんど抑えられる。また直方体形状を
しているので配列が非常に容易になった。
(57) [Summary] [Objective] To obtain an optical transmission medium array with high light utilization efficiency of a light source, capable of accommodating high-speed image reading ability, and having less unevenness of light amount. An optical transmission element array in which a cylindrical lens portion is provided on at least one of both side surfaces of a parallel array, the optical transmission elements having a rectangular parallelepiped shape and a refractive index distribution that approximates a quadratic curve only in the thickness direction. [Advantages] By adjusting the length in the z-axis direction, the area of the contact surface with the light source can be extremely widened, and the utilization efficiency of the light source can be improved. In addition, the unevenness of the amount of light existing in the cylindrical light transmitting element array can be almost suppressed. Moreover, since it has a rectangular parallelepiped shape, the arrangement is very easy.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は乾式複写機やLEDプリンタ、ファクシミリ用画像読取りセンサとし て有用に利用しうる光伝送体アレイに関するものである。 The present invention relates to an optical transmitter array that can be effectively used as a dry copying machine, an LED printer, an image reading sensor for a facsimile.

【0002】[0002]

【従来の技術】[Prior Art]

乾式複写機やファクシミリの画像読取りセンサとして、中心から外周にかけて 連続的な屈折率分布を有する円柱状レンズ素子を多数本平行に配列し、このレン ズ素子配列体を2枚の基板にて接合挟着した光伝送体アレイが有効に用いられて いる。複写機やLEDプリンタ、ファクシミリ等の小型化、高機能化、高速化の 要請にともない、光伝送体アレイの小型化、画像読取り性能の向上、とくに高速 化のために光伝送体の明るさの改善が求められている。現在では図1に示すよう なLED光源とレンズアレイおよび受光素子アレイを用いた光センサユニットが 用いられるようになってきている。 As an image reading sensor for dry copiers and facsimiles, a large number of cylindrical lens elements having a continuous refractive index distribution from the center to the outer periphery are arranged in parallel, and this lens element array is bonded and sandwiched by two substrates. The optical transmitter array that is worn is effectively used. With the demand for miniaturization, high functionality, and high speed of copying machines, LED printers, facsimiles, etc., the light transmission array is downsized and the image reading performance is improved. Improvement is required. At present, an optical sensor unit using an LED light source, a lens array and a light receiving element array as shown in FIG. 1 is being used.

【0003】[0003]

【考案が解決しようとする課題】[Problems to be solved by the device]

図1中1は光伝送体アレイであり、この光伝送体アレイは屈折率分布型円柱状 レンズ素子2を多数本平行に配列したレンズ素子配列体を2枚の基板3、4にて 接着挟持した構造を有している。この円柱状レンズ素子2は直径1mm程度のもの である。この光伝送体アレイ中の棒状レンズ素子の光軸は画像面5からの伝送画 像を正確に読取るため、センサ6と一致させてある。光源7はLEDにて構成さ れており、棒状レンズ素子の光軸8とLEDの光軸9とのなす角度θは通常45度 となっており、LED光源から発せられた光が、画像面5で反射し棒状レンズ素 子にて捕捉される光量利用率は極めて少ないため、光伝送体アレイの感度が必ず しも良好なものとはなっていない。 In FIG. 1, reference numeral 1 denotes an optical transmission medium array. This optical transmission medium array has a lens element array in which a large number of gradient index cylindrical lens elements 2 are arranged in parallel and is sandwiched between two substrates 3 and 4. It has a structure. The cylindrical lens element 2 has a diameter of about 1 mm. The optical axis of the rod-shaped lens element in this optical transmission element array is aligned with the sensor 6 in order to accurately read the transmission image from the image plane 5. The light source 7 is composed of LEDs, and the angle θ formed by the optical axis 8 of the rod-shaped lens element and the optical axis 9 of the LED is usually 45 degrees, and the light emitted from the LED light source is Since the utilization factor of the amount of light reflected by 5 and captured by the rod-shaped lens element is extremely small, the sensitivity of the optical transmission element array is not always good.

【0004】 また円柱状レンズ素子の半径が1mm程度であるので、さらに光量利用率は低く なっている。このため光伝送体の半径を大きくして光量を向上する努力がなされ ているが、光伝送体の所望の屈折率分布を形成することが非常に困難である。さ らに円柱状光伝送体アレイでは円柱状物を配列するために光量の斑が存在してい た。Further, since the radius of the cylindrical lens element is about 1 mm, the light quantity utilization factor is further reduced. For this reason, efforts have been made to increase the radius of the optical transmission medium to improve the amount of light, but it is very difficult to form the desired refractive index distribution of the optical transmission medium. Furthermore, in the columnar optical transmitter array, there was unevenness in the amount of light due to the arrangement of the columnar objects.

【0005】[0005]

【課題を解決するための手段】[Means for Solving the Problems]

本考案者等は上記課題を解決すべく検討した結果、本考案を完成したものであ り、その要旨とするところは、x軸、y軸、Z軸を有する直方体形状を有する屈 折率分布型光伝送体であり、該光伝送体の厚み(x軸)方向に中心面から側面に 向かって[数1]で規定する屈折率分布曲線にほぼ近似の屈折率分布有する屈折 率分布型光伝送体の平行配列体の両側の少なくとも1面に光伝送体配列体の配設 方向に平行な母線をもつシリンドリカルレンズ部を設けたこと特徴とする光伝送 体アレイにある。 The present inventors have completed the present invention as a result of studying to solve the above-mentioned problems, and the gist of the present invention is the distribution of the refractive index having a rectangular parallelepiped shape having the x-axis, the y-axis, and the Z-axis. -Type optical transmission medium having a refractive index distribution approximately similar to the refractive index distribution curve defined by [Equation 1] from the center surface to the side surface in the thickness (x-axis) direction of the optical transmission material. An optical transmitter array is characterized in that a cylindrical lens portion having a generatrix parallel to the arrangement direction of the optical transmitter array is provided on at least one surface on both sides of the parallel array of transmitters.

【数1】[Equation 1]

【0006】 本考案の光伝送体アレイは、レンズ素子は図2中の21に示すごとく直方体の配 列体にて構成されており、従来の光伝送体アレイを用いた時の課題である光量利 用率の低さを解決するのに有効であり、かつ、円柱状光伝送体アレイで生じた光 量斑をほとんど有さないものとなっている。また、本考案に用いる直方体光伝送 体は漏光や外部からの余分な光を遮断するために光の入出射面以外は黒色化する ことが望ましい。In the optical transmission medium array of the present invention, the lens element is composed of a rectangular parallelepiped array as shown by 21 in FIG. 2, and the light quantity which is a problem when using the conventional optical transmission medium array. It is effective in solving the low utilization rate, and has almost no light unevenness generated in the columnar optical waveguide array. Further, in the rectangular parallelepiped optical transmission body used in the present invention, it is desirable that the portions other than the light input / output surface are blackened in order to block light leakage and extra light from the outside.

【0007】 以下、図面により本考案を詳細に説明する。図2が本考案の光伝送体アレイの 概略を示す斜視図である。同図中21が厚み方向(x軸方向)にのみ屈折率分布を 有する直方体形状の光伝送体であり、22がシリンドリカルレンズである。光はA の方向から入射していく。Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 2 is a perspective view showing an outline of the optical transmission device array of the present invention. In the figure, reference numeral 21 is a rectangular parallelepiped optical transmission body having a refractive index distribution only in the thickness direction (x-axis direction), and 22 is a cylindrical lens. Light enters from the direction A.

【0008】 図3はx軸、y軸およびz軸を有する直方体形状の屈折率分布型光伝送体の拡 大図であるが、z方向y方向には屈折率の分布はなく、x軸方向にのみ二次曲線 状の屈折率分布を有している。FIG. 3 is an enlarged view of a rectangular parallelepiped gradient index optical transmission body having an x axis, ay axis and az axis, but there is no refractive index distribution in the z direction and the y direction, and Only has a quadratic curve-shaped refractive index distribution.

【0009】 図4は本考案の光伝送体アレイのzy平面における光学特性を示す断面図であ り、シリンドリカルレンズ部42により光が集束される。図5は本考案の光伝送体 アレイのxy平面における光学特性を示す平面図であるが、直方体形状の光伝送 体51の屈折率分布がx軸方向にのみついているので、光伝送体中で光線が曲げら れて光が集束する。このためにこの光伝送体アレイは、従来用いられてきた屈折 率分布型円柱レンズアレイと同じ光学特性をもつ。また本考案の光伝送体アレイ では、z方向の長さはシリンドリカルレンズの曲率によって決定できるために、 非常にレンズ面積を広げることが可能であり、光量利用効率を非常に高めること が可能であり、複写機、ファクシミリ、LEDプリンタの高速化、小型化に非常 に有効なものである。FIG. 4 is a cross-sectional view showing the optical characteristics in the zy plane of the optical transmission element array of the present invention, in which light is focused by the cylindrical lens portion 42. FIG. 5 is a plan view showing the optical characteristics in the xy plane of the optical transmission medium array of the present invention. Since the refractive index distribution of the rectangular parallelepiped optical transmission medium 51 is only in the x-axis direction, The light beam is bent and the light is focused. For this reason, this optical transmitter array has the same optical characteristics as the gradient index cylindrical lens array used conventionally. Further, in the optical transmitter array of the present invention, since the length in the z direction can be determined by the curvature of the cylindrical lens, the lens area can be greatly expanded, and the light quantity utilization efficiency can be greatly improved. It is very effective for speeding up and downsizing copiers, facsimiles, and LED printers.

【0010】 図6は本考案の光伝送体アレイの他の一例のzy面の光学特性を示す断面図で あり、この例においては光伝送体アレイ61の一端面にシリンドリカルレンズ62を 取付けたものである。像AはBにて正立像を結像する。図7は図6に示した光伝 送体アレイのxy面の断面図であり、この面内での光学特性を示している。71は 光伝送体アレイを、72はシリンドリカルレンズである。像Aは正立像Bとして結 像する。FIG. 6 is a cross-sectional view showing the optical characteristics of the zy plane of another example of the optical transmission element array of the present invention. In this example, a cylindrical lens 62 is attached to one end surface of the optical transmission element array 61. Is. The image A forms an erect image at B. FIG. 7 is a cross-sectional view of the optical transmitter array shown in FIG. 6 along the xy plane, showing the optical characteristics within this plane. Reference numeral 71 is an optical transmitter array, and 72 is a cylindrical lens. Image A forms an upright image B.

【0011】 図8(ハ)はx軸、y軸、z軸を有する直方体型でx軸方向のみに屈折率分布 を有する光伝送体アレイ部81の両端面にシリンドリカルレンズ部82を一体的に形 成した本考案の光伝送体アレイの斜視図である。この光伝送体アレイは図7(イ )に示すごとく、x軸、y軸、z軸を有し、x軸方向にのみ屈折率分布を有する 屈折率分布型レンズ原体73より、図8(ロ)に示す光伝送体アレイ素子84を切り 出し、このアレイ素子を図7(ハ)に示すごとく積層することによって作ること ができる。FIG. 8C shows a rectangular parallelepiped type having an x-axis, a y-axis, and a z-axis, and a cylindrical lens section 82 is integrally formed on both end faces of an optical transmission element array section 81 having a refractive index distribution only in the x-axis direction. 1 is a perspective view of a formed optical transmission device array of the present invention. As shown in FIG. 7A, this optical transmitter array has an x-axis, a y-axis, and a z-axis, and has a refractive index distribution only in the x-axis direction. The optical transmission element array element 84 shown in (b) is cut out, and the array element is laminated as shown in FIG.

【0012】 本考案を実施するに際して用いるx軸方向にのみ屈折率分布を有する屈折率分 布型レンズ原体はアルカリ金属イオンを含むガラスで図7(イ)に示すごとき形 体の直方体を作り、この直方体をTe2SO4−R2SO4 (RはTe以外の金属を示す)混 合金属塩中に浸漬してアルカリイオンをイオン交換法にて処理し、x軸方向に屈 折率分布を有する原体とする方法、あるいはフッ素化アルキルメタクリレートポ リマとメチルメタクリレートとの混合物にて図7(イ)に示すごとき直方体を作 り、この直方体の側面よりメチルメタクリレートを一部揮散してx軸方向に屈折 率分布をつけ、メチルメタクリレートを重合する方法、または複数個の屈折率の 異なるポリマ/モノマ混合液を用意し、中心面から両側に向って順次屈折率が低 くなるように積層し、各層中のモノマの相互拡散処理を施してx軸方向に屈折率 分布を設け、各モノマを重合することにより作ることができる。The refractive index distribution type lens original body having a refractive index distribution only in the x-axis direction used for carrying out the present invention is made of glass containing alkali metal ions to form a rectangular parallelepiped shape as shown in FIG. Then, this rectangular parallelepiped was immersed in a mixed metal salt of Te 2 SO 4 −R 2 SO 4 (R represents a metal other than Te), alkali ions were treated by the ion exchange method, and the bending ratio in the x-axis direction was measured. A rectangular parallelepiped as shown in Fig. 7 (a) is made with a method of using a distribution standard or a mixture of fluorinated alkyl methacrylate polymer and methyl methacrylate, and methyl methacrylate is partially evaporated from the side surface of this rectangular parallelepiped. A method of polymerizing methyl methacrylate by providing a refractive index distribution in the x-axis direction, or preparing multiple polymer / monomer mixed liquids with different refractive indexes, and decreasing the refractive index sequentially from the center plane to both sides. It can be produced by stacking the above layers, subjecting the monomers in each layer to mutual diffusion treatment to provide a refractive index distribution in the x-axis direction, and polymerizing each monomer.

【0013】 本考案の光伝送体アレイは屈折率分布型レンズ素子としてx軸方向にのみ屈折 率分布を有する直方体を用い、シリンドリカルレンズと組合せて構成されている ため、光伝送体が円柱状のものとは異なり、光伝送体配列体間に光学的空間が生 ずることがないため、光量斑のない光伝送体アレイとすることができた。Since the optical transmission medium array of the present invention uses a rectangular parallelepiped having a refractive index distribution only in the x-axis direction as the gradient index lens element and is configured in combination with a cylindrical lens, the optical transmission medium has a cylindrical shape. Unlike the above, no optical space was created between the array of optical transmitters, and it was possible to obtain an optical transmitter array without unevenness of the light quantity.

【0014】[0014]

【提出日】平成4年12月28日[Submission date] December 28, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0010[Correction target item name] 0010

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0010】 図6は本考案の光伝送体アレイの他の一例のzy面の光学特性を示す断面図で あり、この例においては光伝送体アレイ61の一端面にシリンドリカルレンズ6 2を取付けたものである。像AはBにて倒立像を結像する。図7は図6に示した 光伝送体アレイのxy面の断面図であり、この面内での光学特性を示している。 71は光伝送体アレイを、72はシリンドリカルレンズである。像Aは倒立像B として結像する。FIG. 6 is a cross-sectional view showing the optical characteristics of the zy plane of another example of the optical transmission element array of the present invention. In this example, a cylindrical lens 62 is attached to one end surface of the optical transmission element array 61. It is a thing. The image A forms an inverted image at B. FIG. 7 is a cross-sectional view of the xy plane of the optical transmission medium array shown in FIG. 6, showing the optical characteristics in this plane. Reference numeral 71 is an optical transmission element array, and 72 is a cylindrical lens. The image A is formed as an inverted image B 2.

【図面の簡単な説明】[Brief description of drawings]

【図1】屈折率分布型円柱状光伝送体アレイを組込んだ
画像読取りユニットの概略図である。
FIG. 1 is a schematic view of an image reading unit incorporating a gradient index columnar optical transmission medium array.

【図2】本考案の光伝送体アレイの一例を示す斜視図で
ある。
FIG. 2 is a perspective view showing an example of an optical transmission element array of the present invention.

【図3】光伝送体アレイ作成用原板である。FIG. 3 is a master plate for making an optical transmission medium array.

【図4】本考案の光伝送体アレイの光学特性を示す図で
ある。
FIG. 4 is a diagram showing optical characteristics of the optical transmission element array of the present invention.

【図5】本考案の光伝送体アレイの光学特性を示す図で
ある。
FIG. 5 is a diagram showing optical characteristics of the optical transmission device array of the present invention.

【図6】本考案の光伝送体アレイの光学特性を示す図で
ある。
FIG. 6 is a diagram showing optical characteristics of the optical transmission element array of the present invention.

【図7】本考案の光伝送体アレイの光学特性を示す図で
ある。
FIG. 7 is a diagram showing optical characteristics of the optical transmission device array of the present invention.

【図8】本考案の光伝送体アレイの他の一例の組立方法
を示す図である。
FIG. 8 is a view showing a method of assembling another example of the optical transmission element array of the present invention.

【符号の説明】[Explanation of symbols]

1 ………………… 光伝送体アレイ 2 ………………… 円柱状光伝送体 3、4……………… 基板 5 ………………… 画像面 6 ………………… 受光素子 7 ………………… 発光素子 21,41,51,61,71,81 ……………………… 直方体屈折
率分布型光伝送体 22,42,52,62,72,82 ……………………… シリンドリ
カルレンズ 83 ………………… 光伝送体作成用原板 84 ………………… 光伝送体アレイ素子
1 …………………… Light transmitter array 2 …………………… Cylindrical light transmitter 3, 4 ……………… Substrate 5 …………………… Image plane 6 ………… ………… Light receiving element 7 …………………… Light emitting element 21,41,51,61,71,81 ………………… Rectangular parallel-refractive index distribution type optical transmitter 22,42,52,62 , 72, 82 ……………………… Cylindrical lens 83 ………………… Original plate for making optical transmitter 84 ………………… Array element for optical transmitter

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年4月21日[Submission date] April 21, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項1[Name of item to be corrected] Claim 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【数1】n(a)=n{1−(g/2)a} 式中、nは光伝送体の中心面部の屈折率を、n(a)
は光伝送体の中心面より外側へ向かってaの位置部の屈
折率、gは屈折率分布定数、aは光伝送体の中心面より
外側への距離を示す。
[Number 1] n (a) = n o { 1- (g 2/2) a 2} wherein, n o is the refractive index of the central surface portion of the optical transmission body, n (a)
Is the refractive index at the position of a toward the outside from the center plane of the light transmission body, g is the refractive index distribution constant, and a is the distance from the center plane of the light transmission body to the outside.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 x軸、y軸およびz軸を有する直方体形
状を有する屈折率分布型光伝送体であり、該光伝送体の
厚み方向(x軸方向)に中心面から側面に向って[数
1]で規定する屈折率分布曲線にほぼ近似の屈折率分布
を有する屈折率分布型光伝送体の平行配列体の両側面に
光伝送体配列体の配設方向に平行な母線をもつシリンド
リカルレンズ部を設けたことを特徴とする光伝送体アレ
イ。 【数1】
1. A gradient index optical transmission body having a rectangular parallelepiped shape having an x-axis, a y-axis and a z-axis, wherein a direction from the center plane to the side surface in the thickness direction (x-axis direction) of the optical transmission body is [ [1] A cylindrical structure having a generatrix parallel to the arrangement direction of the optical transmission medium array on both side surfaces of the parallel array of the refractive index distribution type optical transmission medium having a refractive index distribution approximately similar to the refractive index distribution curve An optical transmission element array comprising a lens portion. [Equation 1]
JP2288592U 1992-03-18 1992-03-18 Optical transmitter array Pending JPH0575701U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2288592U JPH0575701U (en) 1992-03-18 1992-03-18 Optical transmitter array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2288592U JPH0575701U (en) 1992-03-18 1992-03-18 Optical transmitter array

Publications (1)

Publication Number Publication Date
JPH0575701U true JPH0575701U (en) 1993-10-15

Family

ID=12095138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2288592U Pending JPH0575701U (en) 1992-03-18 1992-03-18 Optical transmitter array

Country Status (1)

Country Link
JP (1) JPH0575701U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002189103A (en) * 2000-12-20 2002-07-05 Asahi Optical Co Ltd Distributed refractive index type optical element and method for manufacturing the same
US7532402B2 (en) 2001-09-27 2009-05-12 Agfa-Gevaert Healthcare Gmbh Imaging device for imaging a long object

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002189103A (en) * 2000-12-20 2002-07-05 Asahi Optical Co Ltd Distributed refractive index type optical element and method for manufacturing the same
US7532402B2 (en) 2001-09-27 2009-05-12 Agfa-Gevaert Healthcare Gmbh Imaging device for imaging a long object

Similar Documents

Publication Publication Date Title
US5121254A (en) Image transmitting element and process for producing photo-shield spacer plate used therein
US4790632A (en) Liquid crystal device having the microlenses in correspondence with the pixel electrodes
CN100492058C (en) Micro lens array and its manufacturing method
JP2004303441A (en) Planar lighting system
JP2001174606A (en) Image forming optical device
JPH0575701U (en) Optical transmitter array
US4844589A (en) Lenses having plural contiguous refractive index distribution substrates and method of manufacture
US5163117A (en) Image transmitting element comprising an array of photo-transmissible holes
JP2839807B2 (en) Assembly method of optical coupling device
JPH1114803A (en) Rod lens array and unmagnified image optical device using the array
CN115421228A (en) Self-focusing lens three-dimensional array and preparation method thereof
JPH0760221B2 (en) Optical scanning device
CN215769087U (en) Fast axis collimating lens for semiconductor laser and light emitting system
JPH06160764A (en) Imaging element
JPH0120403B2 (en)
JP7216240B1 (en) Optical devices and image sensors
CN219496657U (en) Detection device and terminal equipment with same
JPH06214190A (en) Line image-forming element
JPH06148516A (en) Image forming element
CN116736415A (en) Optical waveguide lens
JP2002228923A (en) Image-forming optical device
JP4759114B2 (en) Surface light source element
JPH02162318A (en) Image transmitter
JPS6128192Y2 (en)
JPH11223767A (en) Image forming lens for copy and copying device