JPH0575003B2 - - Google Patents

Info

Publication number
JPH0575003B2
JPH0575003B2 JP61204664A JP20466486A JPH0575003B2 JP H0575003 B2 JPH0575003 B2 JP H0575003B2 JP 61204664 A JP61204664 A JP 61204664A JP 20466486 A JP20466486 A JP 20466486A JP H0575003 B2 JPH0575003 B2 JP H0575003B2
Authority
JP
Japan
Prior art keywords
polymerization
stage
emulsion
weight
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61204664A
Other languages
Japanese (ja)
Other versions
JPS6361011A (en
Inventor
Yoshiki Yoshikawa
Toshio Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIZUTANI PAINT Manufacturing
Original Assignee
MIZUTANI PAINT Manufacturing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIZUTANI PAINT Manufacturing filed Critical MIZUTANI PAINT Manufacturing
Priority to JP20466486A priority Critical patent/JPS6361011A/en
Publication of JPS6361011A publication Critical patent/JPS6361011A/en
Publication of JPH0575003B2 publication Critical patent/JPH0575003B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は窯業系建材の製造において、養生前の
塗装を可能にし、更に高温高圧蒸気養生によつて
無機質基材の養生と塗膜の乾燥を同時に実施さ
せ、塗膜外観および塗膜性能に優れた、オートク
レーブ養生可能な窯業系建材用塗装材に関する。 尚、本明細書において窯業系建材とは、セメン
ト系、ケイ酸カルシウム系、石膏系、石綿系等の
無機質の材料から主として構成される屋根材や壁
材を意味するもので、具体的には屋根材として、
厚形スレート、石綿セメント板等、壁材として、
石綿ケイ酸カルシウム板、炭酸マグネシウム板、
石綿セメント板、ALC板等がある。 〔技術的背景〕 近年、住宅用建材の工業化(プレハブ化)が著
しい伸びを見せている中で、工業化建材は軽量、
高強度化と生産性の向上、省力化がますます盛ん
に行なわれている。また一方では、工業化建材の
化粧性において、デザインの複雑化、高級化が進
み、機能性においては、耐久性、居住性等の要望
も一段と強くなつている。この為に窯業系建材
は、コスト面を含めた生産性の向上と塗膜を含め
た耐久性の向上に迫られている。 〔従来技術および問題点〕 窯業系建材は美観と保護を目的として従来から
養生硬化した無機質基材成型品の表面に着色塗料
を塗装し乾燥させる方法や、無機質基材成型後直
ちに表面に着色セメントスラリーを塗布し、養生
硬化後透明塗料または着色塗料を塗装し乾燥させ
る方法が行なわれている。これらの方法で得られ
た窯業系建材は、無機質基材成型品や着色セメン
トスラリーの養生硬化した後に塗装する為、密着
性が不十分であつたり、長期間の使用で光沢の低
下、変色、クラツクの発生等の耐候性に欠点があ
つた。更に生産コストやスピード化にも問題があ
つた。 そこで無機質基材成型後直ちに、着色塗料を
塗装着色セメントスラリーを塗布し、続いて透
明塗料を塗装着色セメントスラリーと合成樹脂
エマルシヨンの複合塗装材を塗布、そして養生乾
燥させる方法等、窯業系建材の養生前に塗装して
生産工程の短縮化とコスト低減、更に塗膜性能の
向上が提案された。しかし、これらの方法で得ら
れた窯業系建材は養生前の塗装に起因する、合成
樹脂エマルシヨンの湿潤造膜性、養生時に発生す
るアルカリ分による塗膜の劣化の問題があり、期
待される密着性が得られなかつたり、塗膜の連続
性が劣り、表面に1次エフロレツセンス(白華)
が生じたり、長期間の使用で劣化やワレが生じる
等、単に塗装方法のみに着目しただけでは欠点を
克服することは出来ず、結合材としての合成樹脂
エマルシヨンの組成についても着目する必要があ
つた。 一方では、窯業系建材の軽量化、高強度化が更
に要望される中で、高温高圧蒸気養生(オートク
レーブ養生)を生産工程に取り入れた養生方法の
検討も進められており、汎用のアクリル系エマル
シヨンでは湿潤造膜性や1次エフロレツセンス防
止性に劣り、更に塗膜のアルカリ劣化が加熱の為
に著しく促進されるので、オートクレーブ養生前
の塗装が不可能とされている。例えば、オートク
レーブ養生を含めた未養生セメント表面の塗装を
可能にした特開昭57−71884号があるが、実施例
ではオートクレーブ養生が全く例示されていな
い。このように、オートクレーブ養生を含めた養
生前の塗装を可能にした合成樹脂エマルシヨンは
具体的に開示されるに至つていない。 〔発明の目的〕 本発明は無機質混和材(セメント・骨材等)の
混和安定性、湿潤造膜性、1次・2次エフロレツ
センス防止性、均一な発色性等に優れて、養生前
の塗装を可能にし、オートクレーブ養生により、
無機質基材の養生と塗膜の乾燥を同時に実施させ
て、優れた塗膜外観と塗膜性能を付与するオート
クレーブ養生可能な窯業系建材用塗装材を提供す
るものである。 〔発明の構成〕 本発明は窯業系建材の製造において、上記問題
点を解決して養生前に塗装し、自然養生または蒸
気養生による1次養生を経て、オートクレーブ養
生を可能にする為の合成樹脂エマルシヨンに関し
て鋭意研究を重ねた結果、多段階逐次乳化重合に
より、塗膜の物性を支配する比較的硬質の重合体
粒子表面に、特定割合の不飽和カルボン酸を含有
した、重合体粒子の連続性を支配する比較的軟質
の重合体を被覆し、更に、その表面を高密度に架
橋させ、特定の組成および構造を有する合成樹脂
エマルシヨンが目的を十分達成することを見い出
して本発明を完成した。 すなわち本発明は、 (A) 第1段階重合成分として、アルキル基の炭素
数が1〜8のアルキル(メタ)アクリレートを
主成分とし、かつ第1段階単量体成分を共重合
して得られる共重合体の理論的ガラス転移温度
が0℃以上から成る単量体混合物 (B) 第2段階重合成分として、アルキル基の炭素
数が1〜8アルキル(メタ)アクリレートを主
成分とし、第2段階単量体成分の3〜10重量%
の不飽和カルボン酸を必須成分として含み、か
つ第2段階単量体成分を共重合して得られる共
重合体の理論的ガラス転移温度が20℃以下から
成る単量体混合物 (C) 第3段階重合成分として、1分子中に2個以
上の二重結合を有する疎水性の多官能性単量体
および加水分解性シリル基含有の不飽和単量体 を重合体全体に占める各段階重合成分が(A)を60〜
80重量%、(B)を15〜35重量%、(C)を5〜15重量%
の割合で逐次乳化重合させ、第1段階重合成分の
重合率が90重量%以上に達した該乳化物の存在下
に第2段階重合成分の重合を開始させるように第
1段階と第2段階の一部を重複させるとともに、
第1段階および第2段階重合成分の重合率が90重
量%以上に達した該乳化物の存在下に第3段階重
合成分の重合を開始させるように第2段階と第3
段階の一部を重複させて得た、第2段階重合層の
表面が高密度に架橋された構造を有する多段階逐
次乳化重合エマルシヨンを含有することを特徴と
するオートクレーブ養生可能な窯業系建材用塗装
材である。 本発明の合成樹脂エマルシヨン粒子は、耐オー
トクレーブ性、塗膜の耐久性に効果があるコアー
層を形成する第1段階重合成分と、無機質混和安
定性、湿潤造膜性および1次エフロレツセンス防
止性に効果があるシエル層を形成する第2段階重
合成分、更にコアー層とシエル層の相互効果を促
進する為の架橋部分を形成する第3段階重合成分
の重合体から構成されている。 本発明においては、第1段階および第2段階共
重合体の特性を十分に引き出させる為に、第1段
階単量体成分を共重合して得られる共重合体の理
論的ガラス転移温度が0℃以上、第2段階単量体
成分を共重合して得られる共重合体の理論的ガラ
ス転移温度が20℃以下に成るような割合で単量体
成分を用いる。前者が0℃以下ではオートクレー
ブ養生時に塗膜が著しく軟化して塗膜外観が悪く
なり、後者が20℃を超えると湿潤造膜性に劣り、
1次エフロレツセンス防止性が悪くなるので好ま
しくない。 尚、ここで用いられる単量体を共重合して得ら
れる共重合体の理論的ガラス転移温度(Tg)は
次式の計算によるものとする。 1/Tg=W1/Tg1+W2/Tg2+…+Wn/Tgn 〔但し、Tg1,Tg2,…Tgnは1,2,…n各
成分の単独重合体のガラス転移温度(K゜)、W1
W2,…Wnは1,2,…n各成分の重量分率〕 また、重合体全体に占める各段階重合成分が(A)
を60〜80重量%、(B)を15〜35重量%、(C)を5〜15
重量%の割合で用いる。コアー層を形成する第1
段階重合成分が(A)が60重量%未満ではオートクレ
ーブ養生中に塗膜劣化(塗膜白化、軟化膨潤、光
沢低下)が起こり、反対に(A)が80重量%を超える
とセメントを含む無機質混和材の混和安定性が悪
くなり好ましくない。また、シエル層を形成する
(B)が15〜35重量%を逸脱した場合は目的の塗膜外
観や塗膜性能に達成しない。更に第3段階重合成
分(C)が5重量%未満では、混和安定性が悪く、耐
オートクレーブ性や密着性、耐水性等の塗膜性能
に劣り、15重量%を超えるとシエル層のアルカリ
膨潤性が著しく阻害される為に連続性が悪くなつ
て塗膜表面に1次エフロレツセンスを生じやす
く、また、塗膜にワレを生じる。更に未反応二重
結合が残存したり、加水分解−縮合反応等の副反
応を伴ない凝固物が出来やすくなり好ましくな
い。 本発明の第1段階および第2段階重合成分に使
用するアルキル基の炭素数が1〜8のアルキル
(メタ)アクリレートとしては、例えば、メチル
(メタ)アクリレート、エチル(メタ)アクリレ
ート、プロピル(メタ)アクリレート、ノルマル
ブチル(メタ)アクリレート、イソブチル(メ
タ)アクリレート、ターシヤリーブチル(メタ)
アクリレート、アミル(メタ)アクリレート、ヘ
キシル(メタ)アクリレート、オクチル(メタ)
アクリレート、2−エチルヘキシル(メタ)アク
リレート等があり、これらの群から選ばれる1種
または2種以上混合して使用してもよい。最も好
ましくは、2−エチルヘキシルアクリレートとメ
チルメタクリレートである。 尚、この明細書全体を通じて「(メタ)アクリ
レート」は「アクリレート」または「メタクリレ
ート」の意味である。 アルキル(メタ)アクリレートは耐オートクレ
ーブ性および塗膜性能に直接影響を与え、所望す
る物性に応じて選択されるもので、アルキル基の
炭素数が8を超えるアルキル(メタ)アクリレー
トは乳化重合時に凝固物を発生したり、重合反応
が著しく悪くなつて不適である。更に場合によつ
てはスチレンの如き芳香族ビニル類、バーサチツ
ク酸ビニルの如きビニルエステル類、αβ不飽和
モノまたはジカルボン酸のアミド類、N−メチロ
ールアミド類、グリシジルエステル類、エチレン
グリコールエステル類等を混合して使用してもよ
い。これらは、アルキル(メタ)アクリレートの
一部を置き換えて塗膜性能の向上の為に使用さ
れ、その量は重合体全体の40重量%未満にするの
が好ましく、40重量%以上使用すると重合反応性
が悪くなり、未反応の単量体が多く残存したり、
エマルシヨンの増粘、更にゲル化する。また、塗
膜の耐久性が逆に低下するので好ましくない。 本発明において、第2段階重合成分に第2段階
単量体成分の3〜10重量%の不飽和カルボン酸を
必須成分として含む。この不飽和カルボン酸とし
て、例えば、メタクリル酸、アクリル酸、クロト
ン酸、イタコン酸、マレイン酸等があり、これら
の群から選ばれる1種または2種以上混合して使
用してもよい。最も好ましくは、メタクリル酸で
ある。第2段階重合成分に必要な不飽和カルボン
酸はシエル層のアルカリ膨潤性に寄与して重合体
粒子の湿潤造膜性を良くすると同時に、基材や無
機質混和材に存在するCa(OH)2が塗装直後や養
生乾燥中の水分の移動に伴なつて表面に析出する
1次エフロレツセンスを防止する効果と、無機質
混和材の混和安定性を向上させる効果がある。こ
の量が3重量%未満では1次エフロレツセンス防
止性や混和安定性が悪く、逆に10重量%を超えて
も混和安定性が悪くなり、養生後降雨によつて2
次エフロレツセンスを発生するので好ましくな
い。 本発明の第3段階重合成分に使用する1分子中
に2個以上の二重結合を有する疎水性の多官能性
単量体(以下単に多官能性単量体という)として
は、例えば、エチレングリコールジ(メタ)アク
リレート、ジエチレングリコールジ(メタ)アク
リレート、トリメチロールプロパントリ(メタ)
アクリレート、1.6ヘキサンジオールジ(メタ)
アクリレート、テトラエチレングリコールジ(メ
タ)アクリレート、1.3ブタンジオールジ(メタ)
アクリレート、ネオペンチルグリコールジ(メ
タ)アクリレート、ジビニルベンゼン、アリル
(メタ)アクリレート等があり、これらの群から
選ばれる1種または2種以上混合して使用してよ
い。最も好ましくは、エチレングリコールジメタ
クリレートおよびジビニルベンゼンである。多官
能性単量体は疎水性であることが重要で、第2段
階重合成分によつてシエル層を形成したその表面
に高架橋部分の海島構造を作り、含有量が多いも
かかわらず、コアー層の塗膜性能とシエル層の造
膜性の相乗効果の作用があり、無機質混和安定
性、耐オートクレーブ性、更に塗膜性能の著しい
向上が見られる。親水性の多官能性単量体または
親水性単量体と併用した場合は、第2段階重合層
の表面に均一に単量体が分配されて粒子表面に第
3段階重合層を作るものと思われ、目的の塗膜外
観や塗膜性能が得られない。 また、加水分解性シリル基含有の不飽和単量体
(以下単に有機珪素単量体という)としては、例
えば、ビニルトリメトキシシラン、ビニルトリエ
トキシシラン、ビニルトリス(2−メトキシエト
キシ)シラン、ビニルトリアセトオキシシラン、
ビニルプロポキシシラン、γ−メタクリロキシプ
ロピルトリメトキシシラン、γ−メタクリロキシ
プロピルトリメエキシシラン、γ−メタクリロキ
シプロピルメチルジメトキシシラン等があり、こ
れらの群から選ばれる1種または2種以上混合し
て使用してもよい。最も好ましくは、γ−メタク
リロキシプロピルトリメトキシシランである。有
機珪素単量体は多官能性単量体と併用して第3段
階重合成分として使用することが必須であり、こ
れにより、耐オートクレーブ性や塗膜の密着性、
特に耐水性、凍結融解性試験後の密着性向上に効
果がある。この単量体を単独で使用した場合は無
機質混和材の混和安定性や1次エフロレツセンス
防止性が著しく悪くなり、更に塗膜にクラツクを
生じるので好ましくない。 本発明において、多段階逐次乳化重合エマルシ
ヨンを製造するには、第1段階重合成分を連続的
和および分割的に滴下しながら従来公知の方法で
乳化共重合する。この場合使用する乳化剤とし
て、例えば、ポリオキシエチレンアルキルエーテ
ル、ポリオキシエチレンアルキルフエノールエー
テル、ポリエチレンオキシドポリプロピレンオキ
シドブロツクコポリマー、ポリオキシエチレンソ
ルビタンエステル等の非イオン性界面活性剤、あ
るいは、高級アルコール硫酸エステル、アルキル
ベンジンスルホン酸ナトリウム、ジアルキルスル
ホコハク酸ナトリウム、ポリオキシエチレンアル
キルエーテル硫酸ナトリウム、ポリオキシエチレ
ンアルキルフエニルエーテル硫酸ナトリウム等の
アニオン性界面活性剤が用いられ、アリルアルキ
ルスルホコハク酸ナトリウム等の反応性界面活性
剤を用いると耐水性や密着性において、更に好ま
しい。重合開始剤として、例えば、過硫酸アンモ
ニウム、過硫酸ナトリウム、過硫酸ナトリウム等
の過硫酸塩類や過酸化水素等を用い、また必要に
より、重亜硫酸ナトリウム、アスコルビン酸、チ
オ硫酸ナトリウム等のレドツクス系触媒や重炭酸
ナトリウム、炭酸アンモニウム、リン酸二ナトリ
ウム等の緩衝剤を用いて、50℃〜95℃の重合温度
で第1段階重合成分の重合率が90重量%以上まで
乳化共重合させる。この時、重合率が90重量%未
満の場合は、塗膜外観が悪く、目的とする塗膜性
能が得られない。引き続いて、該乳化物の存在下
に第2段階重合成分の重合を開始させ、第1段階
乳化重合と全く同様にして、第1段階および第2
段階重合成分の重合率が90重量%以上まで乳化共
重合させる。この時、重合率が90重量%未満の場
合は、シエル層の造膜性とコアー層の塗膜性能が
得られない。更に引き続いて、該乳化物の存在下
に第3段階重合成分の重合を開始させて同様に乳
化重合して得られる。 このように各段階が先に形成された乳化共重合
が終了する前の各段階重合体乳化物の存在下に逐
次乳化重合させて、第1段階と第2段階および第
2段階と第3段階の一部が重視し、かつ第2段階
重合層の表面を高密度に架橋した構造である多段
階逐次乳化重合エマルシヨンが得られる。この場
合、新しい重合体粒子を作ることなく、各段階重
合体粒子の表面に重複させる為に第2段階重合以
降、界面活性剤を新たに追加することなく、重合
を行うことが必要である。また、重合性ラジカル
が完全に消滅している場合は、重合開始剤の添加
によつて、新しく重合反応を開始させる必要があ
る。 すなわち、第2段階に比較的多量の親水性不飽
和カルボン酸を表面層に被覆させ、第3段階に疎
水性の架橋性単量体のみを用いて、表面を高密度
に架橋して重合体粒子表面を異質構造にさせたア
クリル系エマルシヨンが本発明の特徴である。 〔発明の効果〕 本発明のオートクレーブ養生可能な窯業系建材
用塗装材は無機質混和材の混和安定性、湿潤造膜
性、1次、2次エフロレツセンス防止性、均一な
発色性等に優れて、着色塗料、透明塗料およびセ
メント−エマルシヨン複合塗装材として、窯業系
建材の養生前の塗装を可能にし、オートクレーブ
養生により、無機質基材の養生の塗膜の乾燥を同
時に実施させて、短時間で軽量、高強度の窯業系
建材を作ることが出来る。こうして出来た塗膜
は、密着性、凍結融解性、耐候性等の耐久性に優
れたもので窯業系建材の表面層と一体になつて強
化し、窯業系建材の脆弱さを改良する効果と同時
にシーラーとしてはもちろん、上塗り塗料として
の機能を兼ね備えて、厚膜でかつシーラー不用の
塗料としての効果もある。 〔実施例および比較例〕 次に本発明を具体的に説明するが、これらの実
施例に限定されるもではない。 尚、記載の%はすべて重量%をあらわし、部は
重量部をあらわす。 実施例 1 攪拌棒、温度計、単量体滴下ロート、窒素ガス
導入管および冷却管を取り付けた1のセパラブ
ルフラスコに脱イオン水200部、界面活性剤のポ
リオキシエチレンオクチルフエノールエーテル2
部とポリオキシエチレンラウリルエーテル硫酸ナ
トリウム0.2部(界面活性剤全量の20%)、重炭酸
ナトリウム1部を仕込み、窒素置換しながらウオ
ーターバスにて75℃まで昇温させた。次に第1段
階として、第1に示した第1段階単量体混合物の
10%を仕込み、10過硫酸アンモニウム水溶液の5
部を添加して重合を開始し、30分間仕込み重合反
応を行つた。内温を78〜80℃に発熱を制御しつ
つ、残りの第1段階単量体混合物90%を3時間10
分にわたつて連続滴下して、同時に10%過硫酸ア
ンモニウム5部を4時間20分、残りの界面活性剤
(全量の80%)を2時間30分で連続添加させて重
合反応を進行させた。第1段階単量体混合物滴下
終了後(この時点で重合率は98%であつた)、引
き続いて第2段階として同表に示した第2段階単
量体混合物を50分間にわたつて連続滴下し、重合
反応を進行させた。第2段階単量体混合物滴下終
了後(この時点で重合率は98%であつた)、引き
続いて第3段階として同表に示した第3段階単量
体混合物を20分間連続滴下し、重合反応を行つ
た。滴下終了後内温を85℃まで昇温し、更に2時
間温度を維持しながら熟成した後、室温まで冷却
してからアンモニア水にてPHを8.5に調整し、100
メツシユの金網にてろ過し、安定な合成樹脂エマ
ルシヨンを得た。 実施例 2〜5 実施例1に記すエマルシヨンの製造方法に従
い、各段階単量体混合物を表1に示したもので、
安定な合成樹脂エマルシヨンを得た。 実施例 6 実施例1に記すエマルシヨンの製造方法に従
い、各段階単量体混合物を表1に示したもので、
第1段階単量体混合物を2時間40分、第2段階単
量体混合物を1時間20分にわたつて連続滴下させ
て、安定な合成樹脂エマルシヨンを得た。 比較例 1および2 攪拌棒、温度計、単量体滴下ロート、窒素ガス
導入管および冷却管を取り付けた1のセパラブ
ルフラスコに脱イオン水200部、界面活性剤のポ
リオキシエチレンオクチルフエノールエーテル2
部とポリオキシエチレンラウリルエーテル硫酸ナ
トリウム0.2部(全量の20%)、重炭酸ナトリウム
1部を仕込み、窒素置換しながらウオーターバス
にて75℃まで昇温させた。次に、第1段階とし
て、第1に示した第1段階単量体混合物全量の10
%を仕込み、10過硫酸アンモニウム水溶液の5部
を添加して重合を開始し、30分間仕込み重合反応
を行つた。内温を78〜80℃に発熱を制御しつつ、
残りの第1段階重量単量体混合物90%および10%
過硫酸アンモニウム水溶液5部を4時間にわたつ
て連続滴下して、同時に残りの界面活性剤(全量
の80%)を3時間30分で添加させて重合反応を行
つた。第1段階重合単量体混合物滴下終了後、内
温を85℃まで昇温し、更に2時間温度を維持しな
がら熟成した後、室温まで冷却してからアンモニ
ア水にてPH8.5に調整し、100メツシユの金網にて
ろ過し、合成樹脂エマルシヨンを得た。 比較例 3〜8 実施例1に記すエマルシヨンの製造方法に従
い、各段階単量体混合物を表1に示したもので、
合成樹脂エマルシヨンを得た。 比較例 9 実施例1に記すエマルシヨンの製造方法に従
い、各段階重合単量体混合物を表1に示したもの
で、第1段階単量体混合物を2時間10分にわたつ
て連続滴下し、同時に残りの界面活性剤(全量の
80%)を2時間で連続添加し、引い続いて第2段
階単量体混合物を1時間50分にわたつて連続滴下
させて、合成樹脂エマルシヨンを得た。 比較例 10 実施例1に記すエマルシヨンの製造方法に従
い、各段階単量体混合物を表1に示したもで、第
1段階単量体混合物を2時間10分にわたつて連続
滴下し、同時に残りの界面活性剤(全量の80%)
を2時間で連続添加し、引き続いて第2段階単量
体混合物を1時間30分にわたつて連続滴下し、引
き続いて第3段階単量体混合物を40分間連続滴下
して、合成樹脂エマルシヨンを得た。 比較例 11 攪拌棒、温度計、単量体滴下ロート、窒素ガス
導入管および冷却管を取り付けた1のセパラブ
ルフラスコに脱イオン水200部、界面活性剤のポ
リオキシエチレンオクチルフエノールエーテル2
部とポリオキシエチレンラウリルエーテル硫酸ナ
トリウム0.2部(全量の20%)、重炭酸ナトリウム
1部を仕込み、窒素置換しながらウオーターバス
にて75℃まで昇温させた。次に第1段階として第
1に示した第1段階単量体混合物全量の10%を仕
込み、10過硫酸アンモニウム水溶液の5部を添加
して重合を開始し、30分間仕込み重合反応を行つ
た。内温を78〜80℃に発熱を制御しつつ、第1段
階単量体混合物の10%を25分ごとに分割添加しな
がら同時に10%過硫酸アンモニウム水溶液5部を
4時間および残りの界面活性剤(全量の80%)を
2時間30分にわたつて連続添加して重合を進行さ
せた。最終の第1段階単量体混合物添加終了後
(この時点で重合率は89%であつた)、引き続いて
第2段階として同表に示した第2段階単量体混合
物の50%を添加し、25分後に残りの50%を添加し
重合反応を進行させた。第2段階単量体混合物添
加終了後(この時点で重合率は87%であつた)、
引き続いて第3段階として同表に示した第3段階
単量体混合物を20分間連続滴下し重合反応を行つ
た。滴下終了後、内温を85℃まで昇温し、更に2
時間温度を維持しながら熟成した後、室温まで冷
却してからアンモニア水にてPHを8.5に調整し、
100メツシユの金網にてろ過し、合成樹脂エマル
シヨンを得た。 塗膜試験 実施例および比較例で得られた合成樹脂エマル
シヨンを用いて、以下の配合によりAとBを攪拌
機で分散混合してセメント−エマルシヨン複合塗
装材を得た。 ポルトランドセメント100部、8号硅砂200部、
水95部のモルタルペーストを型に載せ、100Ks/
cm2で加圧成型した直後のモルタル成型板の表面に
塗装材をスプレーガンで200μ(ドライ膜厚)塗布
して、室温で1時間放置乾燥後、温度60℃、湿度
80%RHの雰囲気中で8時間蒸気養生を行い、更
に温度160〜165℃の飽和水蒸気中で8時間オート
クレーブ養生を行つて、塗装成型板を作成して各
試験を行つた。 〔セメント−エマルシヨン複合塗装材配合〕 (A) エマルシヨン組成物 合成樹脂エマルシヨン(実施例1〜6、比較例
1〜11) 100部 ブチルカービトールアセテート 6部 ノプコ8034(サンノプコ社製) 0.5部 水道水 10部 (B) 無機質混和材 硅石粉(平均粒径12μ) 32部 ポルトランドセメント 15部 弁柄MM−20(日本弁柄社製) 3部 塗膜試験結果を表2に示す。 この結果から、無機質混和材の混和安定性に優
れ、オートクレーブ養生後の塗膜外観、かつ密着
性、凍結融解性、促進耐候性等の塗膜性能にも優
れたものであることがわかる。
[Industrial Field of Application] The present invention enables painting before curing in the production of ceramic building materials, and also enables curing of the inorganic base material and drying of the paint film at the same time by high-temperature, high-pressure steam curing. This invention relates to a coating material for ceramic building materials that has excellent appearance and coating performance and can be cured in an autoclave. In this specification, ceramic building materials refer to roofing and wall materials mainly made of inorganic materials such as cement, calcium silicate, gypsum, and asbestos. As a roofing material,
As wall materials such as thick slate and asbestos cement board,
Asbestos calcium silicate board, magnesium carbonate board,
There are asbestos cement boards, ALC boards, etc. [Technical background] In recent years, the industrialization (prefabrication) of residential building materials has shown remarkable growth, and industrialized building materials are lightweight,
Increased strength, productivity improvement, and labor saving are being pursued more and more. On the other hand, in terms of the cosmetic properties of industrialized building materials, designs are becoming more complex and sophisticated, and in terms of functionality, demands for durability, livability, etc. are becoming even stronger. For this reason, ceramic building materials are under pressure to improve productivity, including cost, and durability, including coatings. [Prior art and problems] For the purpose of aesthetics and protection, ceramic building materials have traditionally been coated with colored paint on the surface of an inorganic base material molded product that has been cured and cured and then dried, or colored cement is applied to the surface immediately after the inorganic base material is molded. A method is used in which a slurry is applied, cured and then a transparent paint or colored paint is applied and dried. Ceramic building materials obtained by these methods are coated after the inorganic base material molded product or colored cement slurry has cured and hardened, so the adhesion may be insufficient, and after long-term use, there may be a decrease in gloss, discoloration, or There were shortcomings in weather resistance such as the occurrence of cracks. Furthermore, there were problems with production costs and speed. Therefore, after molding the inorganic base material, we immediately applied colored paint, colored cement slurry, then transparent paint, applied a composite coating material of colored cement slurry and synthetic resin emulsion, and cured and dried. It was proposed to shorten the production process, reduce costs, and improve the performance of the coating by painting it before curing. However, ceramic building materials obtained by these methods have problems with the wet film-forming properties of the synthetic resin emulsion due to painting before curing, and deterioration of the paint film due to alkaline content generated during curing, and the expected adhesion is difficult. The consistency of the paint film is poor, and primary efflorescence occurs on the surface.
It is not possible to overcome these shortcomings by simply focusing on the coating method, such as the occurrence of deterioration or cracking after long-term use, and it is also necessary to pay attention to the composition of the synthetic resin emulsion used as the binder. Ta. On the other hand, as there is a growing demand for lighter weight and higher strength ceramic building materials, studies are underway on curing methods that incorporate high-temperature, high-pressure steam curing (autoclave curing) into the production process, and general-purpose acrylic emulsion However, the wet film forming properties and primary efflorescence prevention properties are poor, and the alkali deterioration of the coating film is significantly accelerated by heating, so it is said that it is impossible to apply the coating before autoclave curing. For example, there is JP-A-57-71884 which allows painting of uncured cement surfaces including autoclave curing, but autoclave curing is not illustrated at all in the examples. As described above, a synthetic resin emulsion that enables painting before curing, including autoclave curing, has not been specifically disclosed. [Object of the invention] The present invention has excellent mixing stability of inorganic admixtures (cement, aggregate, etc.), wet film-forming properties, primary and secondary efflorescence prevention properties, uniform color development, etc. Painting is possible, and autoclave curing allows
To provide an autoclave-curable coating material for ceramic building materials, which simultaneously cures an inorganic base material and dries the coating film, thereby imparting excellent coating appearance and coating performance. [Structure of the Invention] The present invention solves the above-mentioned problems in the production of ceramic building materials, and provides a synthetic resin that is coated before curing, undergoes primary curing by natural curing or steam curing, and then enables autoclave curing. As a result of extensive research into emulsions, we have discovered that through multi-step sequential emulsion polymerization, we have created a continuous polymer particle that contains a specific proportion of unsaturated carboxylic acid on the surface of the relatively hard polymer particle that controls the physical properties of the coating film. The present invention has been completed by discovering that a synthetic resin emulsion having a specific composition and structure, which is coated with a relatively soft polymer that dominates the pores, and whose surface is cross-linked with high density, can fully achieve the objective. That is, the present invention provides (A) an alkyl (meth)acrylate whose alkyl group has 1 to 8 carbon atoms as a main component as a first-stage polymerization component, and which is obtained by copolymerizing a first-stage monomer component. Monomer mixture (B) consisting of a copolymer with a theoretical glass transition temperature of 0° C. or higher; the second stage polymerization component is an alkyl (meth)acrylate whose alkyl group has 1 to 8 carbon atoms; 3-10% by weight of the step monomer component
A monomer mixture containing as an essential component an unsaturated carboxylic acid, and the theoretical glass transition temperature of the copolymer obtained by copolymerizing the second stage monomer component is 20°C or less (C) 3rd As step polymerization components, each step polymerization component comprises a hydrophobic polyfunctional monomer having two or more double bonds in one molecule and an unsaturated monomer containing a hydrolyzable silyl group in the entire polymer. (A) is 60~
80% by weight, (B) 15-35% by weight, (C) 5-15% by weight
The first and second stages are sequentially emulsion polymerized at a ratio of In addition to overlapping some of the
In the presence of the emulsion in which the polymerization rate of the first and second stage polymerization components has reached 90% by weight or more, the second and third stage polymerization components are
An autoclave-curable ceramic building material comprising a multi-step sequential emulsion polymerization emulsion obtained by partially overlapping the steps and having a structure in which the surface of the second-stage polymerization layer is cross-linked with high density. It is a painted material. The synthetic resin emulsion particles of the present invention contain a first-stage polymerization component forming a core layer that is effective for autoclave resistance and durability of a coating film, and an inorganic mixture stability, wet film-forming property, and prevention of primary efflorescence. It is composed of a second stage polymerization component which forms a shell layer which has an effect on properties, and a third stage polymerization component which forms a crosslinking part to promote the mutual effect between the core layer and the shell layer. In the present invention, in order to fully bring out the characteristics of the first and second stage copolymers, the theoretical glass transition temperature of the copolymer obtained by copolymerizing the first stage monomer components is 0. The monomer components are used in such a proportion that the theoretical glass transition temperature of the copolymer obtained by copolymerizing the second stage monomer component is 20°C or less. If the former is below 0℃, the coating film will soften significantly during autoclave curing and the appearance of the coating will deteriorate; if the latter exceeds 20℃, the wet film forming property will be poor.
This is not preferable because it deteriorates the primary efflorescence prevention property. Note that the theoretical glass transition temperature (Tg) of the copolymer obtained by copolymerizing the monomers used here is calculated by the following formula. 1/Tg=W 1 /Tg 1 +W 2 /Tg 2 +...+Wn/Tgn [However, Tg 1 , Tg 2 ,...Tgn is 1, 2,...n The glass transition temperature (K°) of the homopolymer of each component ), W 1 ,
W 2 ,...Wn is the weight fraction of each component of 1, 2,...n] Also, the proportion of each stage of polymerization in the entire polymer is (A)
60-80% by weight, (B) 15-35% by weight, (C) 5-15%
Used in percentage by weight. The first layer forming the core layer
If the stepwise polymerization component (A) is less than 60% by weight, paint film deterioration (paint whitening, softening and swelling, loss of gloss) will occur during autoclave curing, whereas if (A) exceeds 80% by weight, inorganic substances including cement will occur. This is not preferable because the mixing stability of the admixture deteriorates. It also forms a shell layer.
If (B) exceeds 15 to 35% by weight, the desired coating film appearance and coating performance will not be achieved. Furthermore, if the third stage polymerization component (C) is less than 5% by weight, mixing stability will be poor, resulting in poor coating performance such as autoclave resistance, adhesion, and water resistance, and if it exceeds 15% by weight, alkaline swelling of the shell layer will occur. Since the properties are significantly inhibited, the continuity becomes poor and primary efflorescence is likely to occur on the surface of the coating film, which also causes cracks in the coating film. Furthermore, unreacted double bonds remain, and coagulation is likely to occur accompanied by side reactions such as hydrolysis-condensation reactions, which is undesirable. Examples of the alkyl (meth)acrylates in which the alkyl group has 1 to 8 carbon atoms to be used in the first and second stage polymerization components of the present invention include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, and propyl (meth)acrylate. ) acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, tert-butyl (meth)acrylate
Acrylate, amyl(meth)acrylate, hexyl(meth)acrylate, octyl(meth)acrylate
There are acrylates, 2-ethylhexyl (meth)acrylates, etc., and one type or a mixture of two or more types selected from these groups may be used. Most preferred are 2-ethylhexyl acrylate and methyl methacrylate. Note that throughout this specification, "(meth)acrylate" means "acrylate" or "methacrylate." Alkyl (meth)acrylates directly affect autoclave resistance and coating performance, and are selected depending on the desired physical properties. Alkyl (meth)acrylates whose alkyl group has more than 8 carbon atoms solidify during emulsion polymerization. It is unsuitable because it generates substances and the polymerization reaction deteriorates significantly. Furthermore, in some cases, aromatic vinyls such as styrene, vinyl esters such as vinyl versatate, amides of αβ unsaturated mono- or dicarboxylic acids, N-methylolamides, glycidyl esters, ethylene glycol esters, etc. May be used in combination. These are used to replace a part of the alkyl (meth)acrylate and improve coating film performance.The amount is preferably less than 40% by weight of the entire polymer, and if used in excess of 40% by weight, polymerization reaction will occur. properties may deteriorate, and a large amount of unreacted monomer may remain.
The emulsion thickens and becomes a gel. Moreover, it is not preferable because the durability of the coating film decreases. In the present invention, the second stage polymerization component contains an unsaturated carboxylic acid as an essential component in an amount of 3 to 10% by weight of the second stage monomer component. Examples of the unsaturated carboxylic acid include methacrylic acid, acrylic acid, crotonic acid, itaconic acid, maleic acid, etc., and one type or a mixture of two or more types selected from these groups may be used. Most preferred is methacrylic acid. The unsaturated carboxylic acid necessary for the second stage polymerization component contributes to the alkali swelling property of the shell layer and improves the wet film-forming property of the polymer particles . It has the effect of preventing primary efflorescence that precipitates on the surface due to the movement of moisture immediately after painting or during curing and drying, and the effect of improving the mixing stability of inorganic admixtures. If this amount is less than 3% by weight, the primary efflorescence prevention property and mixing stability will be poor, and if it exceeds 10% by weight, the mixing stability will be poor, and 2
It is not preferred because it causes secondary efflorescence. Hydrophobic polyfunctional monomers having two or more double bonds in one molecule (hereinafter simply referred to as polyfunctional monomers) used as the third-stage polymerization component of the present invention include, for example, ethylene Glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, trimethylolpropane tri(meth)
Acrylate, 1.6 hexanediol di(meth)
Acrylate, Tetraethylene glycol di(meth)acrylate, 1.3butanediol di(meth)
Examples include acrylate, neopentyl glycol di(meth)acrylate, divinylbenzene, and allyl(meth)acrylate, and one or more selected from these groups may be used in combination. Most preferred are ethylene glycol dimethacrylate and divinylbenzene. It is important that the polyfunctional monomer is hydrophobic, and a sea-island structure of highly cross-linked parts is created on the surface of the shell layer formed by the second-stage polymerization component, and even though the content is large, the core layer There is a synergistic effect between the coating performance of the coating film and the film forming property of the shell layer, and significant improvements in inorganic mixing stability, autoclave resistance, and coating performance are observed. When used in combination with a hydrophilic polyfunctional monomer or a hydrophilic monomer, the monomer is uniformly distributed on the surface of the second stage polymerization layer to form a third stage polymerization layer on the particle surface. The desired coating film appearance and coating performance cannot be obtained. In addition, examples of unsaturated monomers containing a hydrolyzable silyl group (hereinafter simply referred to as organosilicon monomers) include vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris(2-methoxyethoxy)silane, and vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris(2-methoxyethoxy)silane, and acetoxysilane,
Vinylpropoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropylmethyldimethoxysilane, etc., and one type selected from these groups or a mixture of two or more types are used. You may. Most preferred is γ-methacryloxypropyltrimethoxysilane. It is essential to use organosilicon monomers as a third-stage polymerization component in combination with polyfunctional monomers, which improves autoclave resistance, coating film adhesion,
It is particularly effective in improving adhesion after water resistance and freeze-thaw tests. If this monomer is used alone, the stability of the inorganic admixture and the prevention of primary efflorescence will be significantly deteriorated, and cracks will occur in the coating film, which is not preferable. In the present invention, in order to produce a multistage sequential emulsion polymerization emulsion, the first stage polymerization components are continuously added and added dropwise in portions to carry out emulsion copolymerization using a conventionally known method. Examples of emulsifiers used in this case include nonionic surfactants such as polyoxyethylene alkyl ether, polyoxyethylene alkyl phenol ether, polyethylene oxide polypropylene oxide block copolymer, and polyoxyethylene sorbitan ester, or higher alcohol sulfuric esters. Anionic surfactants such as sodium alkylbenzine sulfonate, sodium dialkyl sulfosuccinate, sodium polyoxyethylene alkyl ether sulfate, sodium polyoxyethylene alkyl phenyl ether sulfate are used, and reactive surfactants such as sodium allyl alkyl sulfosuccinate are used. It is more preferable to use an agent in terms of water resistance and adhesion. As a polymerization initiator, for example, persulfates such as ammonium persulfate, sodium persulfate, and sodium persulfate, hydrogen peroxide, etc. are used, and if necessary, redox catalysts such as sodium bisulfite, ascorbic acid, and sodium thiosulfate are used. Using a buffer such as sodium bicarbonate, ammonium carbonate, or disodium phosphate, emulsion copolymerization is carried out at a polymerization temperature of 50°C to 95°C until the polymerization rate of the first stage polymerization component is 90% by weight or more. At this time, if the polymerization rate is less than 90% by weight, the appearance of the coating film will be poor and the desired coating performance will not be obtained. Subsequently, polymerization of the second stage polymerization components is started in the presence of the emulsion, and the first stage and second stage polymerization are carried out in exactly the same manner as the first stage emulsion polymerization.
Emulsion copolymerization is carried out until the polymerization rate of the step polymerization components is 90% by weight or more. At this time, if the polymerization rate is less than 90% by weight, the film forming properties of the shell layer and the coating performance of the core layer cannot be obtained. Subsequently, polymerization of the third stage polymerization component is initiated in the presence of the emulsion, and emulsion polymerization is carried out in the same manner. In this way, each stage is sequentially emulsion polymerized in the presence of the polymer emulsion formed before the emulsion copolymerization is completed, and the first stage and the second stage, and the second stage and the third stage are formed. A multi-stage sequential emulsion polymerization emulsion is obtained, which has a structure in which the surface of the second stage polymerization layer is crosslinked with high density. In this case, it is necessary to conduct the polymerization without adding new surfactant from the second stage polymerization onwards in order to overlap the surface of the polymer particles at each stage without creating new polymer particles. Furthermore, if the polymerizable radicals have completely disappeared, it is necessary to newly start the polymerization reaction by adding a polymerization initiator. That is, in the second step, a relatively large amount of hydrophilic unsaturated carboxylic acid is coated on the surface layer, and in the third step, only a hydrophobic crosslinkable monomer is used to crosslink the surface with high density to form a polymer. A feature of the present invention is an acrylic emulsion in which the particle surface has a heterogeneous structure. [Effects of the Invention] The autoclave-curable coating material for ceramic building materials of the present invention has excellent mixing stability of inorganic admixtures, wet film forming properties, primary and secondary efflorescence prevention properties, and uniform color development. As a colored paint, transparent paint, and cement-emulsion composite coating material, it is possible to paint ceramic building materials before curing, and autoclave curing allows drying of the curing coating on inorganic base materials at the same time. can be used to create lightweight, high-strength ceramic building materials. The coating film created in this way has excellent durability such as adhesion, freeze-thaw resistance, and weather resistance, and is effective in strengthening the surface layer of ceramic building materials and improving their fragility. At the same time, it functions not only as a sealer but also as a top coat, and is also effective as a thick film paint that does not require a sealer. [Examples and Comparative Examples] Next, the present invention will be specifically explained, but it is not limited to these Examples. It should be noted that all percentages in the description represent percentages by weight, and parts represent parts by weight. Example 1 200 parts of deionized water and 2 polyoxyethylene octyl phenol ether surfactants were placed in a separable flask (1) equipped with a stirring bar, thermometer, monomer dropping funnel, nitrogen gas introduction tube, and cooling tube.
1 part, 0.2 part of sodium polyoxyethylene lauryl ether sulfate (20% of the total amount of surfactant), and 1 part of sodium bicarbonate, and the temperature was raised to 75°C in a water bath while purging with nitrogen. Next, as the first step, the first step monomer mixture shown in 1.
5% of ammonium persulfate aqueous solution
The polymerization reaction was carried out for 30 minutes. While controlling the internal temperature to 78-80℃, add the remaining 90% of the first stage monomer mixture for 3 hours.
At the same time, 5 parts of 10% ammonium persulfate was continuously added over 4 hours and 20 minutes, and the remaining surfactant (80% of the total amount) was continuously added over 2 hours and 30 minutes to advance the polymerization reaction. After the first step monomer mixture was added dropwise (at this point, the polymerization rate was 98%), the second step monomer mixture shown in the table was continuously added dropwise for 50 minutes as the second step. The polymerization reaction was allowed to proceed. After the second step monomer mixture was added dropwise (at this point, the polymerization rate was 98%), the third step monomer mixture shown in the table was continuously added dropwise for 20 minutes to polymerize. The reaction was carried out. After the addition, the internal temperature was raised to 85℃, and the temperature was maintained for another 2 hours to ripen. After cooling to room temperature, the pH was adjusted to 8.5 with aqueous ammonia.
A stable synthetic resin emulsion was obtained by filtration through a mesh wire mesh. Examples 2 to 5 According to the emulsion manufacturing method described in Example 1, the monomer mixture at each stage was shown in Table 1,
A stable synthetic resin emulsion was obtained. Example 6 According to the emulsion manufacturing method described in Example 1, the monomer mixture at each stage was shown in Table 1,
A stable synthetic resin emulsion was obtained by continuously dropping the first stage monomer mixture over 2 hours and 40 minutes and the second stage monomer mixture over 1 hour and 20 minutes. Comparative Examples 1 and 2 200 parts of deionized water, surfactant polyoxyethylene octyl phenol ether 2 were placed in a separable flask (1) equipped with a stirring bar, thermometer, monomer dropping funnel, nitrogen gas introduction tube, and cooling tube.
1 part, 0.2 part of sodium polyoxyethylene lauryl ether sulfate (20% of the total amount), and 1 part of sodium bicarbonate were added, and the temperature was raised to 75°C in a water bath while purging with nitrogen. Next, as the first stage, 10% of the total amount of the first stage monomer mixture shown in
%, 5 parts of 10 ammonium persulfate aqueous solution was added to start polymerization, and the charging polymerization reaction was carried out for 30 minutes. While controlling the internal temperature to 78-80℃,
Remaining first stage weight monomer mixture 90% and 10%
5 parts of an aqueous ammonium persulfate solution was continuously added dropwise over 4 hours, and at the same time, the remaining surfactant (80% of the total amount) was added over 3 hours and 30 minutes to carry out a polymerization reaction. After the first stage polymerization monomer mixture was added dropwise, the internal temperature was raised to 85°C, and after aging while maintaining the temperature for another 2 hours, it was cooled to room temperature and adjusted to pH 8.5 with aqueous ammonia. , and filtered through a 100-mesh wire mesh to obtain a synthetic resin emulsion. Comparative Examples 3 to 8 According to the emulsion manufacturing method described in Example 1, the monomer mixture at each stage was shown in Table 1,
A synthetic resin emulsion was obtained. Comparative Example 9 According to the emulsion manufacturing method described in Example 1, the monomer mixtures for each stage of polymerization were shown in Table 1, and the first stage monomer mixture was continuously added dropwise over 2 hours and 10 minutes. Remaining surfactant (total amount
80%) was continuously added over a period of 2 hours, followed by continuous dropwise addition of the second stage monomer mixture over a period of 1 hour and 50 minutes to obtain a synthetic resin emulsion. Comparative Example 10 According to the emulsion manufacturing method described in Example 1, the monomer mixture of each stage was shown in Table 1, and the first stage monomer mixture was continuously added dropwise over 2 hours and 10 minutes, and at the same time the remaining monomer mixture was added dropwise. surfactant (80% of total amount)
was continuously added over 2 hours, followed by continuous dropwise addition of the second stage monomer mixture over 1 hour and 30 minutes, and then continuous dropwise addition of the third stage monomer mixture for 40 minutes to form a synthetic resin emulsion. Obtained. Comparative Example 11 200 parts of deionized water, surfactant polyoxyethylene octyl phenol ether 2 were placed in a separable flask (1) equipped with a stirring bar, thermometer, monomer dropping funnel, nitrogen gas introduction tube, and cooling tube.
1 part, 0.2 part of sodium polyoxyethylene lauryl ether sulfate (20% of the total amount), and 1 part of sodium bicarbonate were added, and the temperature was raised to 75°C in a water bath while purging with nitrogen. Next, as the first step, 10% of the total amount of the first step monomer mixture shown in No. 1 was charged, 5 parts of 10 ammonium persulfate aqueous solution was added to start polymerization, and the charging polymerization reaction was carried out for 30 minutes. While controlling the internal temperature to 78-80℃ and adding 10% of the first stage monomer mixture in portions every 25 minutes, at the same time 5 parts of a 10% ammonium persulfate aqueous solution was added for 4 hours and the remaining surfactant. (80% of the total amount) was continuously added over 2 hours and 30 minutes to advance the polymerization. After the final addition of the first-stage monomer mixture (at this point, the polymerization rate was 89%), 50% of the second-stage monomer mixture shown in the table was added as a second stage. After 25 minutes, the remaining 50% was added to allow the polymerization reaction to proceed. After the addition of the second stage monomer mixture (at this point the polymerization rate was 87%),
Subsequently, as a third step, the third step monomer mixture shown in the same table was continuously added dropwise for 20 minutes to carry out a polymerization reaction. After dropping, raise the internal temperature to 85℃, and then
After aging while maintaining the temperature, cool to room temperature and adjust the pH to 8.5 with ammonia water.
It was filtered through a 100-mesh wire mesh to obtain a synthetic resin emulsion. Coating Film Test Using the synthetic resin emulsions obtained in Examples and Comparative Examples, A and B were dispersed and mixed using a stirrer according to the following formulation to obtain a cement-emulsion composite coating material. 100 parts of Portland cement, 200 parts of No. 8 silica sand,
Place mortar paste containing 95 parts of water on the mold, 100Ks/
Apply a coating material of 200μ (dry film thickness) with a spray gun to the surface of the mortar molded plate immediately after pressure molding at cm 2 , leave it to dry at room temperature for 1 hour, then dry at a temperature of 60℃ and humidity.
Steam curing was carried out for 8 hours in an atmosphere of 80% RH, and further autoclave curing was carried out for 8 hours in saturated steam at a temperature of 160 to 165°C to prepare painted molded plates and each test was conducted. [Cement-emulsion composite coating material formulation] (A) Emulsion composition Synthetic resin emulsion (Examples 1 to 6, Comparative Examples 1 to 11) 100 parts Butyl carbitol acetate 6 parts Nopco 8034 (manufactured by San Nopco) 0.5 part tap water 10 parts (B) Inorganic admixture silica powder (average particle size 12μ) 32 parts Portland cement 15 parts Bengara MM-20 (manufactured by Nihon Bengara Co., Ltd.) 3 parts The coating film test results are shown in Table 2. From these results, it can be seen that the inorganic admixture has excellent mixing stability, and the coating film appearance after autoclave curing and coating film performance such as adhesion, freeze-thaw property, and accelerated weather resistance.

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 (A) 第1段階重合成分として、アルキル基の
炭素数が1〜8のアルキル(メタ)アクリレー
トを主成分とし、かつ第1段階単量体成分を共
重合して得られる共重合体の理論的ガラス転移
温度が0℃以上から成る単量体混合物 (B) 第2段階重合成分として、アルキル基の炭素
数が1〜8アルキル(メタ)アクリレートを主
成分とし、第2段階単量体全体の3〜10重量%
の不飽和カルボン酸を必須成分として含み、か
つ第2段階単量体成分を共重合して得られる共
重合体の理論的ガラス転移温度が20℃以下から
成る単量体混合物 (C) 第3段階重合成分として、1分子中に2個以
上の二重結合を有する疎水性の多官能性単量体
および加水分解性シリル基含有の不飽和単量体 を重合体全体に占める各段階重合成分が(A)を60〜
80重量%、(B)を15〜35重量%、(C)を5〜15重量%
の割合で逐次乳化重合させ、第1段階重合成分の
重合率が90重量%以上に達した該乳化物の存在下
に第2段階重合成分の重合を開始させるように第
1段階と第2段階の一部を重複させるとともに、
第1段階および第2段階重合成分の重合率が90重
量%以上に達した該乳化物の存在下に第3段階重
合成分の重合を開始させるように第2段階と第3
段階の一部を重複させて得た、第2段階重合層の
表面が高密度に架橋された構造を有する多段階逐
次乳化重合エマルシヨンを含有することを特徴と
するオートクレーブ養生可能な窯業系建材用塗装
材。
[Scope of Claims] 1 (A) The first step polymerization component is an alkyl (meth)acrylate whose alkyl group has 1 to 8 carbon atoms as the main component, and the first step monomer component is copolymerized. A monomer mixture (B) in which the theoretical glass transition temperature of the resulting copolymer is 0° C. or higher; as a second-stage polymerization component, the main component is an alkyl (meth)acrylate in which the alkyl group has 1 to 8 carbon atoms; 3-10% by weight of total second stage monomers
A monomer mixture containing as an essential component an unsaturated carboxylic acid, and the theoretical glass transition temperature of the copolymer obtained by copolymerizing the second stage monomer component is 20°C or less (C) 3rd As step polymerization components, each step polymerization component comprises a hydrophobic polyfunctional monomer having two or more double bonds in one molecule and an unsaturated monomer containing a hydrolyzable silyl group in the entire polymer. (A) is 60~
80% by weight, (B) 15-35% by weight, (C) 5-15% by weight
The first and second stages are carried out in such a way that the emulsion polymerization is carried out sequentially at a ratio of In addition to overlapping some of the
In the presence of the emulsion in which the polymerization rate of the first and second stage polymerization components has reached 90% by weight or more, the second and third stage polymerization components are
An autoclave-curable ceramic building material comprising a multi-stage sequential emulsion polymerization emulsion obtained by partially overlapping the stages and having a structure in which the surface of the second stage polymerization layer is cross-linked with high density. Painting material.
JP20466486A 1986-08-29 1986-08-29 Acrylic emulsion for aging in autoclave Granted JPS6361011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20466486A JPS6361011A (en) 1986-08-29 1986-08-29 Acrylic emulsion for aging in autoclave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20466486A JPS6361011A (en) 1986-08-29 1986-08-29 Acrylic emulsion for aging in autoclave

Publications (2)

Publication Number Publication Date
JPS6361011A JPS6361011A (en) 1988-03-17
JPH0575003B2 true JPH0575003B2 (en) 1993-10-19

Family

ID=16494237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20466486A Granted JPS6361011A (en) 1986-08-29 1986-08-29 Acrylic emulsion for aging in autoclave

Country Status (1)

Country Link
JP (1) JPS6361011A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2525238B2 (en) * 1989-02-23 1996-08-14 三洋化成工業株式会社 Method for producing highly weather-resistant coated base material
PT1185568E (en) 1999-04-21 2003-04-30 Ppg Ind Lacke Gmbh POLYMERS
DE19918136A1 (en) * 1999-04-21 2000-10-26 Ppg Ind Lacke Gmbh Polymer for coating materials, e.g. basecoats for cars, made by multi-stage polymerisation of ethylenic monomers in presence of polyester-polyol, polyurethane or polyacrylate, followed by reaction with crosslinker
CN102260363B (en) * 2011-02-17 2014-07-09 湖南晟通科技集团有限公司 Aqueous crylic acid hydrophobic emulsion and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS532590A (en) * 1976-06-17 1978-01-11 Rohm & Haas Heterogeneous acrylic polymer latex and fibrous goods processed thereby
JPS57102976A (en) * 1980-12-17 1982-06-26 Nitto Electric Ind Co Ltd Water dispersion-type pressure-sensitive adhesive composition
JPS617360A (en) * 1984-06-22 1986-01-14 Nippon Shokubai Kagaku Kogyo Co Ltd Coating composition for aluminum
JPS619463A (en) * 1984-06-25 1986-01-17 Nippon Shokubai Kagaku Kogyo Co Ltd Coating agent for inorganic building material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS532590A (en) * 1976-06-17 1978-01-11 Rohm & Haas Heterogeneous acrylic polymer latex and fibrous goods processed thereby
JPS57102976A (en) * 1980-12-17 1982-06-26 Nitto Electric Ind Co Ltd Water dispersion-type pressure-sensitive adhesive composition
JPS617360A (en) * 1984-06-22 1986-01-14 Nippon Shokubai Kagaku Kogyo Co Ltd Coating composition for aluminum
JPS619463A (en) * 1984-06-25 1986-01-17 Nippon Shokubai Kagaku Kogyo Co Ltd Coating agent for inorganic building material

Also Published As

Publication number Publication date
JPS6361011A (en) 1988-03-17

Similar Documents

Publication Publication Date Title
JP4956398B2 (en) Concrete processing method
HU223264B1 (en) Process for preserving a mineral moulding
US7445849B2 (en) Concrete moldings with a high gloss, their production and use
JPH0575003B2 (en)
JP4345511B2 (en) Polymer cement composition for waterproofing
US6472024B1 (en) Process of coating a mineral molding with an aqueous preparation comprising, as film-forming constituent, at least one polymer P
JPH01121351A (en) Aqueous synthetic dispersion
JPH0545539B2 (en)
JP2728505B2 (en) Curing method for concrete surfaces
JP3602180B2 (en) Emulsion for finishing paint of ceramic cement exterior material
JPH1036617A (en) Primer composition and method for using the same
JPS6221375B2 (en)
JPH09137080A (en) Composition based on dicyclopentenyloxyalkyl ester of (meth)acrylic acid and use thereof in field of construction
JP4045719B2 (en) Protecting inorganic building materials
AU2003204028B2 (en) Polymer-modified fiber-cement composition
EP1260553B1 (en) Aqueous polymer blend composition
JPH0215503B2 (en)
JPS62116B2 (en)
CN113881374A (en) Bi-component adhesive for adhering soft stone material and preparation method thereof
JPS62256751A (en) Manufacture of cement set body
JPH03131553A (en) Improved cement composition and production thereof
JPH10218653A (en) Polymer cement-based composition for finishing, and production of cement-based formed product by using the same
JPS63295489A (en) Film forming curing agent for cement
CN112166132A (en) Polymer dispersions, their preparation and use
EP1942086A1 (en) Method for treating concrete

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term