JPH0574838B2 - - Google Patents

Info

Publication number
JPH0574838B2
JPH0574838B2 JP59147189A JP14718984A JPH0574838B2 JP H0574838 B2 JPH0574838 B2 JP H0574838B2 JP 59147189 A JP59147189 A JP 59147189A JP 14718984 A JP14718984 A JP 14718984A JP H0574838 B2 JPH0574838 B2 JP H0574838B2
Authority
JP
Japan
Prior art keywords
word
words
distance
syllables
calculating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59147189A
Other languages
Japanese (ja)
Other versions
JPS6126095A (en
Inventor
Yuriko Ishigaki
Yasuo Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP14718984A priority Critical patent/JPS6126095A/en
Publication of JPS6126095A publication Critical patent/JPS6126095A/en
Publication of JPH0574838B2 publication Critical patent/JPH0574838B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、単語間距離の自動算出方法に関し、
音声認識装置の認識対対象語セツトの適否を事前
評価するのに用いて有効なものである。 〔従来の技術〕 音声認識装置には音声入力してよい単語群(認
識対象単語セツトという)を予め定めておくもの
があるが、かゝる音声認識装置の入力単語の認識
率を向上させるには該単語セツトに似ている発音
(読み)のものがないようにしておくことが重要
である。単語セツトに含まれる単語それ自体は装
置使用目的により定まり、変更しにくいことが予
想されるが、単語の読みは変えても格別支障ない
から、単語セツト中の各単語の読みは紛らわしい
ものがないように選定しておくのがよい。 紛らわしいか否かは、簡単に分るものもある。
例えば数字の「7」は「しち」とも「なな」とも
読めるが、これを「しち」と発音すると数字の
「1」即ち「いち」と紛らわしく、両者は誤認識
され易い。そこで「7」は「なな」と発音するよ
うにすれば「いち」との区別が明瞭になり、これ
は経験的にも知られている。しかし音声認識対象
の単語の数が増加するにつれて、紛らわしいのは
どれとどれか簡単には分らなくなり、また紛らわ
しいものを見つけてその一方を他の読みに代える
と今度は他の単語と紛らわしくなるという問題も
ある。そこで音声認識対象の単語セツトは、2様
3様の読みがある単語については適当な1つを選
んで該単語セツトの読みを固定し、それで実際に
音声認識してみて誤認識が生じるか否かをテスト
し、誤認識が生じれば該当単語を他の読みに代え
て再びテストし、といつたカツトアンドトライの
方法をとつて適当な単語セツトを求めている。し
かしこの方法では時間的、労力的負担が非常に大
きい。 そこで実際に音声認識テストをするのではな
く、事前に、まだ文字の段階で、単語セツトの各
単語の読みの適否をチエツクするのが有効であ
る。そして紛らわしいという問題は単語セツト中
の任意の2つの単語間で発生することを考える
と、単語セツト中の全単語につき残りの全単語と
の紛らわしさの程度を全て調べ上げ、誤認識の恐
れがある単語対(の読み)があればその単語セツ
トは不採用とする、のが有効である。単語間の類
似、非類似度を数値で表わすものに単語間距離が
ある。 DPマツチング方法(Velichko et al.Int.J.
Man−Machine Studies、vol.2、p223、1970)
ではこの単語間距離を文字列相互間の距離として
求める。簡単には2つの単語の各音節間のローカ
ル距離を累積しこれらの音節には種々の組合せが
考えられ組合せが異なれば累積値も異なるが、そ
の中の最小値を単語間距離とするものである。 〔発明が解決しようとする問題点〕 しかしながらこのDP法は、各単語の音節数を
反映したものではない。例えば音節数2の単語A
と音節数3の単語Bとの距離が、音節数2の単語
Cと音節数2の単語Dとの距離に等しいという結
果が得られたとすると、単語A,Bの組の単語
C,Dの組の誤認識率は同じであるとされるが、
経験的に言つても音節数の異なる組A,Bの認識
率は文字数の等しい組C,Dの認識率より高いは
ずである。この点が、従来のDPマツチング法に
よる距離計算では反映されていない。 本発明は、上述したDP法の不十分さを補い、
認識対象単語の事前評価をより実用性の高いもの
にしようとするものである。 〔問題点を解決するための手段〕 本発明は、音声認識対象の単語セツトの各単語
間の距離を算出する方法において、各単語を個々
の音節に分解するステツプと、音節数Mの単語と
音節数Nの単語との距離をDPマツチング法で求
めるステツプと、得られた距離に、2つの単語
が同じ音節数を持てば、そうでない場合よりも距
離は小さい、2つの単語が同じ単語長さを持つ
場合には、DP法で求められた終点までの距離を
単語長で割つたものを正規化された距離とする、
距離は2つの距離について常に対称である、の
3条件を満足させる修正を施す正規化定数を乗じ
て単語間距離を求めるステツプを有することを特
徴とするものである。次に実施例を参照しながら
構成及び作用を詳細に説明する。 〔実施例〕 第1図はかな表記された2つの単語A,Bを処
理ブロツク1,2で音節に分解し、処理ブロツク
3でその単語間距離をDP法により求めるシステ
ムの概略図である。4は音節に分解する際に使用
するかなと音節の対応表、5は距離を求める際に
使用する音素距離マトリクスである。 単語A,Bのかな表記は50音(46音)、濁音、
鼻濁音、半濁音、促音、撥音、拗音、外来語の
“スイ”、“テイ”などと、これらの長音のうちの
任意の1つ又は複数の組合せからなる。また処理
ブロツク1,2により分割される音節は子音+母
音からなり、母音はa、i、u、……等、子音は
s、k、t、……等からなる。かなのローマ字表
記表の一部を次に示す。
[Industrial Application Field] The present invention relates to a method for automatically calculating distance between words,
This is effective when used to pre-evaluate the suitability of a target word set for recognition by a speech recognition device. [Prior Art] Some speech recognition devices have a predetermined group of words (referred to as a recognition target word set) that may be input by voice.In order to improve the recognition rate of input words of such speech recognition devices, It is important to ensure that there are no pronunciations (pronunciations) similar to the word set. The words themselves included in the word set are determined by the purpose of use of the device and are expected to be difficult to change, but there is no particular problem in changing the pronunciation of the words, so the pronunciation of each word in the word set is not confusing. It is best to select as follows. Sometimes it's easy to tell whether something is confusing or not.
For example, the number ``7'' can be read as ``shichi'' or ``nana,'' but when pronounced as ``shichi,'' it is confusingly pronounced as the number ``1,'' or ``ichi,'' and both are easily misrecognized. Therefore, if "7" is pronounced as "nana", it will be clearly distinguished from "ichi", and this is known from experience. However, as the number of words targeted for speech recognition increases, it becomes difficult to tell which words are confusing, and when one finds a confusing word and substitutes another pronunciation, it becomes confusing with the other word. There are also problems. Therefore, for the word set to be used for speech recognition, for words that have two or three different pronunciations, select an appropriate one and fix the pronunciation of the word set, and then try actually performing speech recognition to see if there are any misrecognitions. We use a cut-and-try method to find an appropriate set of words. However, this method requires an extremely large amount of time and labor. Therefore, rather than conducting an actual speech recognition test, it is effective to check the pronunciation of each word in the word set in advance, while it is still in the character stage. Considering that the problem of confusion occurs between any two words in a word set, it is necessary to investigate the degree of confusion between every word in the word set and all the remaining words to eliminate the risk of misrecognition. It is effective to reject a word set if there is a certain word pair (pronunciation). Word distance is a numerical expression of the degree of similarity and dissimilarity between words. DP matching method (Velichko et al.Int.J.
Man-Machine Studies, vol.2, p223, 1970)
Now, find this distance between words as the distance between character strings. Simply put, the local distance between each syllable of two words is accumulated, and there are various possible combinations of these syllables, and the cumulative value differs depending on the combination, but the minimum value among them is taken as the distance between words. be. [Problem to be solved by the invention] However, this DP method does not reflect the number of syllables in each word. For example, word A with 2 syllables
Suppose that the distance between and word B with 3 syllables is equal to the distance between word C with 2 syllables and word D with 2 syllables, then the distance between words C and D in the pair of words A and B is It is said that the false recognition rate for the pairs is the same, but
From experience, the recognition rate for sets A and B, which have different numbers of syllables, should be higher than the recognition rate for sets C and D, which have the same number of characters. This point is not reflected in distance calculations using the conventional DP matching method. The present invention compensates for the insufficiencies of the DP method described above,
This is an attempt to make the prior evaluation of recognition target words more practical. [Means for Solving the Problems] The present invention provides a method for calculating the distance between each word in a word set to be speech recognized, which includes a step of decomposing each word into individual syllables, and a step of dividing each word into individual syllables. The step of calculating the distance to a word with the number of syllables N using the DP matching method, and the distance obtained, if the two words have the same number of syllables, the distance is smaller than if the two words have the same word length. In the case where the distance to the end point determined by the DP method is divided by the word length, the normalized distance is
This method is characterized by a step of determining the distance between words by multiplying it by a normalization constant that makes corrections that satisfy three conditions: the distance is always symmetrical with respect to the two distances. Next, the structure and operation will be explained in detail with reference to embodiments. [Embodiment] Fig. 1 is a schematic diagram of a system in which two words A and B written in kana are decomposed into syllables in processing blocks 1 and 2, and the distance between the words is determined in processing block 3 by the DP method. 4 is a correspondence table between kana and syllables used when decomposing into syllables, and 5 is a phoneme distance matrix used when calculating distances. The kana notation of words A and B is 50 sounds (46 sounds), voiced sounds,
It consists of nasal duplication, semi-voiced consonance, consonant consonant, consonant consonant, consonant consonant, consonant consonant, loanword "sui", "tei", etc., and any combination of one or more of these long consonants. Further, the syllables divided by processing blocks 1 and 2 consist of consonants and vowels, where the vowels consist of a, i, u, . . . , etc., and the consonants consist of s, k, t, . . . . A part of the romaji notation table for kana is shown below.

【表】 あ【table】 a

Claims (1)

【特許請求の範囲】 1 音声認識対象の単語セツトの各単語間の距離
を算出する方法において、 各単語を個々の音節に分解するステツプと、 音節数Mの単語と音節数Nの単語との距離を
DPマツチング法で求めるステツプと、 得られた距離に、2つの単語が同じ音節数を
持てば、そうでない場合よりも距離は小さい、
2つの単語が同じ単語長さを持つ場合には、DP
法で求められた終点までの距離を単語長で割つた
ものを正規化された距離とする、距離は2つの
距離について常に対称である、の3条件を満足さ
せる修正を施す正規化定数を乗じて単語間距離を
求めるステツプを有することを特徴とする単語間
距離の自動算出方法。
[Scope of Claims] 1. A method for calculating the distance between each word of a word set to be speech recognized, comprising the steps of decomposing each word into individual syllables, and dividing a word with M syllables into a word with N syllables. distance
If two words have the same number of syllables, the distance is smaller than if the two words have the same number of syllables.
If two words have the same word length, DP
The normalized distance is the distance to the end point calculated by the word length divided by the word length, and the distance is always symmetric about the two distances. 1. A method for automatically calculating distances between words, comprising the step of calculating distances between words.
JP14718984A 1984-07-16 1984-07-16 Automatic calculation of word-to-word distance Granted JPS6126095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14718984A JPS6126095A (en) 1984-07-16 1984-07-16 Automatic calculation of word-to-word distance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14718984A JPS6126095A (en) 1984-07-16 1984-07-16 Automatic calculation of word-to-word distance

Publications (2)

Publication Number Publication Date
JPS6126095A JPS6126095A (en) 1986-02-05
JPH0574838B2 true JPH0574838B2 (en) 1993-10-19

Family

ID=15424576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14718984A Granted JPS6126095A (en) 1984-07-16 1984-07-16 Automatic calculation of word-to-word distance

Country Status (1)

Country Link
JP (1) JPS6126095A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0839757A (en) * 1994-05-04 1996-02-13 Man Roland Druckmas Ag Printing press for printing with blanket cylinders in contact with each other

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5276610B2 (en) * 2010-02-05 2013-08-28 日本放送協会 Language model generation apparatus, program thereof, and speech recognition system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0839757A (en) * 1994-05-04 1996-02-13 Man Roland Druckmas Ag Printing press for printing with blanket cylinders in contact with each other

Also Published As

Publication number Publication date
JPS6126095A (en) 1986-02-05

Similar Documents

Publication Publication Date Title
Shipman et al. Properties of large lexicons: Implications for advanced isolated word recognition systems
KR20010096490A (en) Spelling speech recognition apparatus and method for mobile communication
Picone et al. Automatic text alignment for speech system evaluation
Lamel et al. Continuous speech recognition at LIMSI
JPH0574838B2 (en)
Ishihara et al. Automatic transformation of environmental sounds into sound-imitation words based on Japanese syllable structure.
Kasparaitis Transcribing of the Lithuanian text using formal rules
El Méliani et al. New efficient fillers for unlimited word recognition and keyword spotting
Delgado-Díaz et al. Sociolinguistic implications on perception
JPS617890A (en) Word inspection system for voice to be recognized
Pitt et al. Using pronunciation data as a starting point in modeling word recognition
Tohkura Speaker‐independent recognition of isolated digits using a weighted cepstral distance
Massaro et al. Phonological constraints in speech perception
KR19980065481A (en) Phoneme Separation Based on Rhyme Analysis
US20090125297A1 (en) Automatic generation of distractors for special-purpose speech recognition grammars
McCormick et al. A new approach to English text‐to‐phoneme conversion using Delta, version 2
Ahmad et al. Towards designing a high intelligibility rule based standard malay text-to-speech synthesis system
JPS6146995A (en) Voice recognition system
Meloni et al. A knowledge-based system for speaker-independent recognition of letters.
JPS6126096A (en) Preliminary evaluation system for voice recognition word
Banner Simulating an acoustic recognizer
Gagnon et al. Gaining insight into the representational unit for spoken words with a naming task
Méloni et al. Representation of acoustic and phonetic knowledge for speaker-independent recognition of small vocabularies
JPS6011898A (en) Voice recognition equipment
Tartter et al. Pig latin remembered: Test of a recoding explanation for modality/recency effects in short‐term recall