JPH0574662A - Capacitor and manufacture thereof - Google Patents

Capacitor and manufacture thereof

Info

Publication number
JPH0574662A
JPH0574662A JP23438591A JP23438591A JPH0574662A JP H0574662 A JPH0574662 A JP H0574662A JP 23438591 A JP23438591 A JP 23438591A JP 23438591 A JP23438591 A JP 23438591A JP H0574662 A JPH0574662 A JP H0574662A
Authority
JP
Japan
Prior art keywords
layer
capacitor
conductive polymer
electrode
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23438591A
Other languages
Japanese (ja)
Other versions
JP2876843B2 (en
Inventor
Yasuo Kudo
康夫 工藤
Masao Fukuyama
正雄 福山
Toshikuni Kojima
利邦 小島
Satonari Nanai
識成 七井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3234385A priority Critical patent/JP2876843B2/en
Publication of JPH0574662A publication Critical patent/JPH0574662A/en
Application granted granted Critical
Publication of JP2876843B2 publication Critical patent/JP2876843B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To realize a small-sized large capacity capacitor having excellent reliability of small deterioration of capacity, loss and high frequency impedance characteristics at high temperature and high moisture and a method for manufacturing the same in the capacitor having excellent frequency characteristics and reliability characteristics and the method for manufacturing the same. CONSTITUTION:A conductive polymer layer 3 is provided in at least one electrode of a capacitor, and a plurality of metal layers 4a, 4b are so formed that the entire layer 3 is covered with at least one of the layers 4a, 4b to constitute a capacitor. Since gas barrier characteristics of oxygen, water, etc., are improved by the plurality of metal layers provided on an outer layer and deterioration of oxidation of the layer 3 of an inner layer is suppressed, a capacitor having excellent reliability of small deterioration of capacity, loss and high frequency impedance characteristics even at high temperature and high moisture can be realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、コンデンサ特性とりわ
け周波数特性ならびに高温高湿下における信頼性特性の
優れたコンデンサおよびその製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a capacitor having excellent characteristics such as frequency characteristics and reliability characteristics under high temperature and high humidity, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年、電気機器のデジタル化に伴って、
コンデンサも小型大容量で高周波領域でのインピーダン
スの低いものが要求されている。従来、高周波領域で使
用されるコンデンサにはプラスチックコンデンサ、マイ
カコンデンサ、積層セラミックコンデンサがあるが、こ
れらのコンデンサでは形状が大きくなり大容量化が難し
い。一方、大容量コンデンサとしてはアルミニウム乾式
電解コンデンサあるいはアルミニウムまたはタンタル固
体電解コンデンサ等の電解コンデンサがある。これらの
コンデンサでは誘電体となる酸化皮膜は極めて薄いため
に大容量が実現できるのであるが、一方酸化皮膜の損傷
が起こり易いためにそれを修復するための電解質を陰極
との間に設ける必要がある。
2. Description of the Related Art In recent years, with the digitization of electrical equipment,
The capacitors are also required to be small in size, large in capacity, and low in impedance in the high frequency range. Conventionally, capacitors used in the high frequency region include plastic capacitors, mica capacitors, and laminated ceramic capacitors, but it is difficult to increase the capacity of these capacitors due to their large size. On the other hand, as a large-capacity capacitor, there is an electrolytic capacitor such as an aluminum dry electrolytic capacitor or an aluminum or tantalum solid electrolytic capacitor. In these capacitors, the oxide film that serves as a dielectric is extremely thin, so a large capacity can be realized.However, since the oxide film is easily damaged, it is necessary to provide an electrolyte between it and the cathode to repair it. is there.

【0003】アルミニウム乾式コンデンサでは、エッチ
ングを施した陽、陰極アルミニウム箔をセパレータを介
して巻取り、液状の電解質をセパレータに含浸して用い
ている。この液状電解質はイオン伝導性で比抵抗が大き
いため、損失が大きくインピーダンスの周波数特性、温
度特性が著しく劣る、さらに加えて液漏れ、蒸発等が避
けられず、時間経過と共に容量の減少及び損失の増加が
起こるといった問題を抱えていた。
In the aluminum dry type capacitor, an etched positive and negative aluminum foil is wound around a separator and a liquid electrolyte is impregnated into the separator for use. Since this liquid electrolyte is ionic conductive and has a large specific resistance, the loss is large and the impedance frequency characteristic and temperature characteristic are significantly inferior.In addition, liquid leakage, evaporation, etc. are unavoidable, and the capacity decreases and the loss with the passage of time. I had a problem with an increase.

【0004】またタンタル固体電解コンデンサでは二酸
化マンガンを電解質として用いているため、温度特性お
よび容量、損失等の経時変化の問題は改善されるが、二
酸化マンガンの比抵抗が比較的高いため損失、インピー
ダンスの周波数特性が積層セラミックコンデンサあるい
はフィルムコンデンサと比較して劣っていた。
Further, since the manganese dioxide is used as the electrolyte in the tantalum solid electrolytic capacitor, the problems of temperature characteristics and changes with time such as capacity and loss are solved, but since the specific resistance of manganese dioxide is relatively high, the loss and impedance are relatively high. Was inferior in frequency characteristics to the monolithic ceramic capacitor or film capacitor.

【0005】近年、ピロール、チオフェンなどの複素環
式のモノマーを支持電解質を用いて電解酸化重合するこ
とにより、支持電解質のアニオンをドーパントとして含
む導電性高分子を電解質(真の陰極)として用いる周波
数特性及び温度特性の優れた固体電解コンデンサが提案
されている(特開昭60-37114号公報、特開昭60-244017
号公報参照)。
In recent years, a heterocyclic monomer such as pyrrole or thiophene is electrolytically oxidatively polymerized by using a supporting electrolyte, whereby a conductive polymer containing an anion of the supporting electrolyte as a dopant is used as an electrolyte (true cathode). A solid electrolytic capacitor having excellent characteristics and temperature characteristics has been proposed (JP-A-60-37114, JP-A-60-244017).
(See the official gazette).

【0006】さらにまた、エッチドアルミ箔上に電着ポ
リイミド薄膜からなる誘電体を形成した後電解重合導電
性高分子層を形成して電極とする大容量フィルムコンデ
ンサが提案されている(電気化学会第58会大会講演要
旨集251〜252頁(1991年))。
Furthermore, there has been proposed a large-capacity film capacitor in which a dielectric made of an electrodeposited polyimide thin film is formed on an etched aluminum foil, and then an electrolytically polymerized conductive polymer layer is formed to serve as an electrode (electrochemistry). Pp. 251-252 (1991)).

【0007】従来の電解重合導電性コンデンサの構成の
一例を図3に示す。電極1の上に誘電体層2を形成し、
さらにその上に導電性高分子電極層3を電解重合により
形成する。実際のコンデンサでは電極引出し用の銀ペイ
ント層を、濡れ性向上のためグラファイト層を介在させ
て設けることがある。さらに電極リード5を設けた後、
絶縁樹脂膜6で表面を被覆する。
An example of the structure of a conventional electrolytic polymerization conductive capacitor is shown in FIG. Forming a dielectric layer 2 on the electrode 1,
Further, the conductive polymer electrode layer 3 is formed thereon by electrolytic polymerization. In an actual capacitor, a silver paint layer for drawing out an electrode may be provided with a graphite layer interposed to improve wettability. After further providing the electrode lead 5,
The surface is covered with the insulating resin film 6.

【0008】[0008]

【発明が解決しようとする課題】しかしながらこのよう
な従来の電解重合導電性高分子を電極として用いたコン
デンサでは、高温高湿下において容量の低下、損失の増
加あるいは高周波域のインピーダンスの増加といった特
性の劣化が避けがたかった。
However, in such a capacitor using the conventional electrolytically polymerized conductive polymer as an electrode, characteristics such as a decrease in capacitance, an increase in loss or an increase in impedance in a high frequency range are obtained under high temperature and high humidity. It was hard to avoid the deterioration.

【0009】これは導電性高分子電極層3を形成するポ
リピロールあるいはポリチオフェン等の導電性電解重合
高分子はBF4 -、ClO4 -、PF5 -、AsF5 -等をドー
パントとして用いられているため、高温高湿下でこれら
のドーパントが脱ドープを起こし易く、あるいは分子量
が大きいドーパントを用い脱ドープを防止したとしても
ポリマー骨格が一部が酸化され、共役二重結合の長さが
減じる等の理由により、その電気電導度の低下を来すこ
とに起因している。
This is because the conductive electrolytically polymerized polymer such as polypyrrole or polythiophene forming the conductive polymer electrode layer 3 uses BF 4 , ClO 4 , PF 5 , AsF 5 as a dopant. Therefore, these dopants are likely to cause dedoping under high temperature and high humidity, or even if using a dopant having a large molecular weight to prevent dedoping, a part of the polymer skeleton is oxidized and the length of the conjugated double bond is reduced. The reason is that the electric conductivity is lowered.

【0010】後者の酸化は極めて微量の酸素及び水の存
在下でも進行するため、ディッピング、粉体塗装、ポッ
ティング、射出成形あるいはトランスファー成形に代表
される通常の樹脂外装の場合、それらの拡散浸透を完全
に防止することが難しく、したがって特性の劣化をなく
することは困難であり、耐熱性の高いコンデンサは実現
できなかった。また陽極酸化アルミナ層を誘電体とした
場合には、その耐水性が低いため高温高湿下ではそれ自
体の劣化も避けられなかった。
Since the latter oxidation proceeds even in the presence of an extremely small amount of oxygen and water, in the case of ordinary resin sheathing represented by dipping, powder coating, potting, injection molding or transfer molding, their diffusion and permeation are prevented. It is difficult to completely prevent it, and thus it is difficult to eliminate the deterioration of the characteristics, and a capacitor with high heat resistance could not be realized. In addition, when the anodized alumina layer is made of a dielectric material, its water resistance is low, and therefore deterioration of the anodized alumina layer itself cannot be avoided under high temperature and high humidity.

【0011】本発明は上記従来技術の課題を解決するも
ので、高温高湿下における特性劣化の少ない、信頼性特
性の優れた小型大容量に適するコンデンサおよびその製
造方法を提供することを目的としてなされたものであ
る。
The present invention solves the above-mentioned problems of the prior art, and an object of the present invention is to provide a capacitor suitable for small size and large capacity, which has less deterioration of characteristics under high temperature and high humidity and has excellent reliability characteristics, and a manufacturing method thereof. It was made.

【0012】[0012]

【課題を解決するための手段】この目的を達成するため
の本発明の技術的手段は、誘電体層を介して電極を有す
るコンデンサの少なくとも一方の電極に、導電性高分子
層を含み、前記導電性高分子層の少なくとも一部を被覆
する少なくとも一層の金属層とさらに前記導電性高分子
層の一部または全体を被覆する少なくとももう一層の金
属層を配置したコンデンサ及びその製造方法にある。
The technical means of the present invention for attaining this object comprises a conductive polymer layer on at least one electrode of a capacitor having an electrode through a dielectric layer, A capacitor having at least one metal layer covering at least a part of a conductive polymer layer and at least another metal layer covering at least a part of the conductive polymer layer, and a method for manufacturing the same.

【0013】[0013]

【作用】本発明は、コンデンサの少なくとも一方の電極
を、導電性高分子層と複数の金属層から構成することに
より、金属層で酸素、水等のガスの透過拡散を防止し、
その内層の導電性高分子の酸化による電気伝導度の低下
及び誘電体の皮膜の劣化等が起こらないようにしている
ため、高温高湿下においてもコンデンサ特性の劣化の少
ない信頼性特性の高いコンデンサが得られる。
According to the present invention, at least one electrode of the capacitor is composed of a conductive polymer layer and a plurality of metal layers to prevent permeation and diffusion of gas such as oxygen and water in the metal layer,
Capacitors with high reliability characteristics with little deterioration of the capacitor characteristics even under high temperature and high humidity because the deterioration of the electrical conductivity and the deterioration of the dielectric film due to the oxidation of the conductive polymer in the inner layer are prevented. Is obtained.

【0014】[0014]

【実施例】以下に本発明の実施例について図面を用いて
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0015】図1は本発明の1実施例におけるコンデン
サの断面図を示す。図1において、電極1上の一部に誘
電体層2を設け、この誘電体層2の少なくとも一部を覆
って導電性高分子層3が形成されている。またこの導電
性高分子層3を覆って金属層4a設け、さらに絶縁樹脂
層6を介してもう一層の金属層4bが形成されている。
導電性高分子層3と電極1の一部から電極リード5a、
5bが取り出されている。
FIG. 1 shows a sectional view of a capacitor according to an embodiment of the present invention. In FIG. 1, a dielectric layer 2 is provided on a part of an electrode 1, and a conductive polymer layer 3 is formed so as to cover at least a part of the dielectric layer 2. A metal layer 4a is provided so as to cover the conductive polymer layer 3, and another metal layer 4b is formed with an insulating resin layer 6 interposed therebetween.
From the conductive polymer layer 3 and a part of the electrode 1 to the electrode lead 5a,
5b is taken out.

【0016】本実施例は誘電体層2により隔てられた少
なくとも一方の電極に導電性高分子層3を含むコンデン
サにおいて、導電性高分子層3全体を被覆する金属層4
aとさらに絶縁樹脂膜6を介して前述の導電性高分子層
3の一部または全部被覆する少なくとももう一層の金属
層4bを配置することにより、ガスバリア性を高め、導
電性高分子の高温高湿下における酸化を防止し、さらに
誘電体皮膜の水和劣化等を防止し、信頼性の優れたコン
デンサを実現できるようにしたものである。
In this embodiment, in a capacitor including a conductive polymer layer 3 on at least one electrode separated by a dielectric layer 2, a metal layer 4 covering the conductive polymer layer 3 as a whole.
By disposing at least another metal layer 4b which covers a part or all of the above-mentioned conductive polymer layer 3 via the insulating resin film 6 and a, the gas barrier property is enhanced and the high temperature of the conductive polymer is increased. This is to prevent oxidation under humid conditions and further prevent hydration deterioration of the dielectric film, thereby realizing a highly reliable capacitor.

【0017】複数層の金属層を設けるようにしたのは次
のような理由による。すなわち図1に示すように、同一
表面に導電性高分子層3からなる電極(電極リード5
a)と誘電体層2の形成されない部分にもう一方の電極
リード5bを設けたような構造の場合、導電性高分子層
3上のみを金属層4aで被覆しても端面部分通じて外気
が浸透することが避けられないためである。このような
場合には端面部分をも被覆するように前述の金属層4a
とオーバラップしてさらに金属層4bを設けることによ
り、外気の導電性高分子層3への浸透が防止できる。オ
ーバラップして設ける金属層4bのオーバラップ部分は
導電性高分子層3の1部分を覆うようにすれば足りる
が、金属層4aに生じる可能性のある微細な欠陥を通じ
ての外気の浸透を防止する意味から全面を覆うように設
けることがなお望ましい。
The reason why a plurality of metal layers are provided is as follows. That is, as shown in FIG. 1, an electrode (electrode lead 5) formed of the conductive polymer layer 3 on the same surface.
In the case of a) and the structure in which the other electrode lead 5b is provided in the portion where the dielectric layer 2 is not formed, even if only the conductive polymer layer 3 is covered with the metal layer 4a, the outside air is exposed through the end face portion. This is because penetration is inevitable. In such a case, the above-mentioned metal layer 4a is formed so as to cover the end face portion as well.
By further providing the metal layer 4b so as to overlap with, it is possible to prevent outside air from permeating into the conductive polymer layer 3. It suffices that the overlapping part of the metal layer 4b provided so as to be overlapped covers a part of the conductive polymer layer 3, but it prevents the permeation of outside air through minute defects that may occur in the metal layer 4a. Therefore, it is more desirable to provide it so as to cover the entire surface.

【0018】なお内層に設ける金属層4aは電極の1部
を形成するように設けることが望ましいが、必要に応じ
て電極と電気的に絶縁させて設けることもできる。外層
の金属層4bはショートを防止するため両電極リード5
a、5bから電気的に絶縁して設けることが望ましい。
The metal layer 4a provided as the inner layer is preferably provided so as to form a part of the electrode, but it may be provided so as to be electrically insulated from the electrode if necessary. The outer metal layer 4b has two electrode leads 5 to prevent short circuit.
It is desirable to be electrically insulated from a and 5b.

【0019】金属層4a、4bは必要なガスバリア性が
得られれば良く、例えば少なくとも1層が導電性高分子
層3を全面的に被覆しておれば良く、2層とするほか3
層以上設けることもできる。
The metal layers 4a and 4b need only have the required gas barrier properties. For example, at least one layer should cover the conductive polymer layer 3 over the entire surface.
It is also possible to provide more than one layer.

【0020】金属層4a、4bの形成は、緻密なガスバ
リア性の高い薄膜が形成できればどのような方法で行っ
てもいいが、特にその形成速度が速く容易にできるた
め、電解または無電解鍍金が好的である。
The metal layers 4a and 4b may be formed by any method as long as a dense thin film having a high gas barrier property can be formed. In particular, since the forming speed is fast and easy, electrolytic or electroless plating can be used. It is favorable.

【0021】本発明は導電性高分子層と金属層があれば
よく、その他金属層の下地層として、密着性向上、濡れ
性向上あるいは鍍金皮膜形成促進等を目的としたグラフ
ァイト層または鍍金下地層等を導電性高分子層と金属層
の間に介在させることもできる。 金属層はコンデンサ
の電極あるいは電極引出し用として実質的に機能する電
気伝導度を有するものであればどのようなものでも使用
できるが、そのような金属として、銅、ニッケル、クロ
ム、コバルト、銀、金、亜鉛、錫、ロジウム、ルテニウ
ム等が挙げられる。またこれらの合金またはこれらの金
属と他の非金属から成る化合物も所望する電気伝導度を
有する有するものであればまた同様に使用することがで
きる。
The present invention only needs to have a conductive polymer layer and a metal layer, and as a base layer for the other metal layers, a graphite layer or a plating base layer for the purpose of improving adhesion, wettability or accelerating plating film formation. Etc. may be interposed between the conductive polymer layer and the metal layer. Any metal layer can be used as long as it has an electric conductivity that substantially functions as an electrode of a capacitor or for drawing out an electrode. Examples of such a metal include copper, nickel, chromium, cobalt, silver, Examples include gold, zinc, tin, rhodium, ruthenium and the like. Further, these alloys or compounds composed of these metals and other non-metals can be similarly used as long as they have the desired electric conductivity.

【0022】導電性高分子は複素環式化合物を繰り返し
単位とし、コンデンサ電極として所望される電気伝導度
を有するものであればどのようなものでも使用できる
が、ピロールまたはその誘導体を繰り返し単位とする導
電性高分子がその形成が容易なため好的に使用される。
As the conductive polymer, a heterocyclic compound is used as a repeating unit, and any compound having a desired electric conductivity as a capacitor electrode can be used, but pyrrole or its derivative is used as a repeating unit. Conducting polymers are preferably used because of their ease of formation.

【0023】ドーパントは150℃程度まで脱ドープを
起こさないものであればどのようなものでも使用できる
が、そのようなドーパントの一例としてナフタレンスル
フォネート、アルキルナタレンスルフォネート、アント
ラキノンスルフォネート、スルフォン化ポルフィリン、
スルフォン化フタロシアニン、ポリビニルスルフォネー
ト、ポリスチレンスルフォネート等が上げられる。
Any dopant can be used as long as it does not cause dedoping up to about 150 ° C. As an example of such a dopant, naphthalene sulfonate, alkyl natalene sulfonate, anthraquinone sulfonate, Sulfonated porphyrin,
Examples thereof include sulfonated phthalocyanine, polyvinyl sulfonate, polystyrene sulfonate and the like.

【0024】導電性高分子の重合はどのような方法でも
よいが、薄膜化が容易でかつ例えばエッチングにより拡
面化されたような表面においても高い被覆率で被覆が可
能なため、好的には電解重合による方法が用いられる。
なお誘電体上に電解重合高分子を容易に成長させるため
適当な方法で誘電体表面を一部または全部導電化するこ
ともできる。
Any method may be used for the polymerization of the conductive polymer, but it is preferable because it is easy to form a thin film and a high coverage can be applied even to a surface expanded by etching, for example. The method by electrolytic polymerization is used.
In order to easily grow the electrolytically polymerized polymer on the dielectric, the surface of the dielectric may be partially or entirely made conductive by an appropriate method.

【0025】誘電体層はアルミニウムまたはタンタルの
陽極酸化皮膜で構成する他例えば電着ポリイミドのよう
な高分子薄膜で構成することもでき、またエッチング等
の手段で拡面化した高分子薄膜で構成することもでき
る。
The dielectric layer may be composed of an anodized film of aluminum or tantalum, or may be composed of a polymer thin film such as electrodeposited polyimide, or composed of a polymer thin film whose surface is expanded by means such as etching. You can also do it.

【0026】対向するもう一方の電極はどのように構成
してもいいが、誘電体層2をアルミニウムまたはタンタ
ル等の弁金属の陽極酸化皮膜で構成した場合その弁金属
自体で構成する他、エッチング等により拡面化された高
分子薄膜を誘電体層として使用する場合、図2に示すよ
うに両電極に導電性高分子層3を形成し、さらに両電極
導電性高分子層3上に同様に複数の金属層4a、4bを
形成してコンデンサを構成することもできる。
The other electrode facing each other may have any structure, but when the dielectric layer 2 is composed of an anodic oxide film of a valve metal such as aluminum or tantalum, it is composed of the valve metal itself and etching. When the polymer thin film surface-enlarged by the above is used as the dielectric layer, the conductive polymer layer 3 is formed on both electrodes as shown in FIG. It is also possible to form a capacitor by forming a plurality of metal layers 4a and 4b.

【0027】以下に更に詳細に述べる。 (実施例1)以下、本発明の第1の実施例について説明
する。
Further details will be described below. (Embodiment 1) Hereinafter, a first embodiment of the present invention will be described.

【0028】4×10mmのアルミニウムエッチド箔を
3mmと6mmの部分に仕切るように両面に渡って幅1
mmのポリイミドテープを貼付け前者の側に陽極リード
を取り付け、後者の4×6mmの部分を3%アジピン酸
アンモニウム水溶液を用い、約70℃で50V印加して
陽極酸化により誘電体被膜を形成後、硝酸マンガン30
%水溶液に浸しさらに250℃で10分加熱し熱分解マ
ンガン酸化物を表面に付着させて陽極を作製した。
A 4 × 10 mm aluminum etched foil is divided into 3 mm and 6 mm portions so that the width is 1 across both sides.
mm polyimide tape is attached, an anode lead is attached to the former side, and the latter 4 × 6 mm portion is applied with 50% V at about 70 ° C. using a 3% ammonium adipate aqueous solution to form a dielectric film by anodic oxidation. Manganese nitrate 30
% Aqueous solution and further heated at 250 ° C. for 10 minutes to deposit pyrolytic manganese oxide on the surface to prepare an anode.

【0029】この陽極箔にステンレス製の電解重合用電
極を接触させ、ピロールモノマー(0.25M)、トリ
イソプロピルナフタレンスルフォン酸ナトリウム(0.
1M)水からなる電解液に浸し、電解重合電極と離隔し
て設けた電解重合用第二の電極の間に3Vの電圧を印加
してポリピロールからなる電解重合膜を形成した。
A stainless electrolytic electrode for electrolytic polymerization was brought into contact with this anode foil, and pyrrole monomer (0.25M), sodium triisopropylnaphthalene sulfonate (0.
1M) It was immersed in an electrolytic solution composed of water, and a voltage of 3 V was applied between the electrolytic polymerization second electrode provided separately from the electrolytic polymerization electrode to form an electrolytic polymerization film composed of polypyrrole.

【0030】電解重合電極を取り外し水を用いて洗浄乾
燥し、電解重合膜部分を塩化第1錫2水塩(30g/
l)と濃塩酸(15ml/l)を含む水溶液から成るセ
ンシタイザに常温で2分間、さらに塩化パラジウム
(0.5g/l)、濃塩酸(0.5ml/l)を含む水
溶液から成るアクチベータに常温で3分間それぞれ浸漬
した後、60℃のニッケル無電解鍍金液(奥野製薬製ト
ップケミアロイB−1)に30分間浸し、ニッケル層を
形成した。
The electropolymerized electrode was removed, washed with water and dried, and the electropolymerized membrane part was treated with stannous chloride dihydrate (30 g /
l) and concentrated hydrochloric acid (15 ml / l) in an aqueous solution for 2 minutes at room temperature, and an activator composed of an aqueous solution containing palladium chloride (0.5 g / l) and concentrated hydrochloric acid (0.5 ml / l) in normal temperature. After being dipped for 3 minutes respectively, it was dipped in a nickel electroless plating solution (Top Chemialoy B-1 manufactured by Okuno Seiyaku) at 60 ° C. for 30 minutes to form a nickel layer.

【0031】これを水洗乾燥後エポキシ銀ペイントで陰
極リードを取り出し、16.2Vでエージングを行っ
た。この後電極箔全面に渡ってエポキシ樹脂を塗布し絶
縁皮膜を形成し、さらに上述のセンシタイザ浸漬以後の
処理をもう一度繰り返して全面にニッケル層を形成して
10個のコンデンサを完成させた。。
After this was washed with water and dried, the cathode lead was taken out with epoxy silver paint and aged at 16.2V. After that, an epoxy resin was applied over the entire surface of the electrode foil to form an insulating film, and the treatment after the above-mentioned sensitizer immersion was repeated once more to form a nickel layer on the entire surface to complete 10 capacitors. ..

【0032】初期の120Hz における容量、損失、さ
らにこれを125℃及び85℃/85%の条件下に10
00時間保持した後の容量、損失の平均値を(表ー1)
に示した。比較のため、比較例1として第1層目のニッ
ケル鍍金に代えてエポキシ銀ペイント層を設けさらに第
2層目のニッケル層を設けなかった以外同様の条件で1
0個のコンデンサを完成させ、上述と同様の特性評価を
行い、その結果を(表1)に示した。
The initial capacity and loss at 120 Hz, and the loss at 10 ° C under the conditions of 125 ° C and 85 ° C / 85%.
Average value of capacity and loss after holding for 00 hours (Table-1)
It was shown to. For comparison, Comparative Example 1 was prepared under the same conditions except that an epoxy silver paint layer was provided in place of the first nickel plating and the second nickel layer was not provided.
Zero capacitors were completed and the same characteristic evaluation as described above was performed, and the results are shown in (Table 1).

【0033】この(表1)から明らかなように、本実施
例によるコンデンサは125℃及び85℃/85%とい
う条件下で容量及び損失の劣化を小さくできるという点
で優れた効果が得られる。
As is clear from (Table 1), the capacitor according to the present embodiment has an excellent effect in that the deterioration of capacity and loss can be reduced under the conditions of 125 ° C. and 85 ° C./85%.

【0034】以上のように本実施例によれば、陽極酸化
アルミナ誘電体層上に形成された導電性高分子のポリピ
ロール電極上にニッケル複数の鍍金層を設けることによ
り、高温高湿下における容量及び損失の劣化の小さい、
信頼性の優れたコンデンサを得ることができる。
As described above, according to this embodiment, by providing a plurality of nickel plating layers on the conductive polymer polypyrrole electrode formed on the anodized alumina dielectric layer, the capacity under high temperature and high humidity is increased. And small loss deterioration,
It is possible to obtain a highly reliable capacitor.

【0035】(実施例2)2層目のニッケル層を陽極取
付け側を含み6mmの幅すなわち導電性高分子層上で2
mmの幅で第1層めのニッケル層とオーバラップさせる
ように設けた以外実施例1と同様にしてコンデンサを完
成させた。それらについて実施例1と同様の特性評価を
行った。その結果を(表1)に示した。
(Example 2) A second nickel layer was formed on the conductive polymer layer with a width of 6 mm including the anode attachment side.
A capacitor was completed in the same manner as in Example 1 except that the capacitor was provided so as to have a width of mm and overlap with the first nickel layer. The same characteristic evaluation as in Example 1 was performed for them. The results are shown in (Table 1).

【0036】この(表1)から明らかなように、本実施
例によるコンデンサは125℃及び85℃/85%とい
う条件下で容量及び損失の劣化を小さくできるという点
で優れた効果が得られる。
As is clear from (Table 1), the capacitor according to the present embodiment has an excellent effect in that the deterioration of the capacity and loss can be reduced under the conditions of 125 ° C. and 85 ° C./85%.

【0037】以上のように本実施例によれば、陽極酸化
アルミナ誘電体層上に形成された導電性高分子のポリピ
ロール電極上に1部分複数層のニッケル鍍金層を設ける
ことにより、高温高湿下における容量及び損失の劣化の
小さい、信頼性の優れたコンデンサを得ることができ
る。
As described above, according to the present embodiment, by providing the nickel-plated layer of a plurality of portions on the polypyrrole electrode of the conductive polymer formed on the anodized alumina dielectric layer, high temperature and high humidity can be obtained. It is possible to obtain a highly reliable capacitor with less deterioration in capacitance and loss under the capacitor.

【0038】この(表1)から明らかなように、本実施
例による固体電解コンデンサは125℃という条件下で
容量及び損失の劣化を小さくできるという点で優れた効
果が得られる。
As is clear from (Table 1), the solid electrolytic capacitor according to the present embodiment has an excellent effect in that the deterioration of capacity and loss can be reduced under the condition of 125 ° C.

【0039】(実施例3)トップケミアロイB−1に代
えてOPCカッパーT(無電解銅鍍金液商品名:奥野製
薬製)を用いて無電解銅鍍金層を形成した以外実施例1
と同様にして、10個のコンデンサを完成させた。それ
らについて実施例1と同様の特性評価を行った。その結
果を(表1)に示した。
(Example 3) Example 1 except that an electroless copper plating layer was formed using OPC copper T (electroless copper plating solution trade name: Okuno Seiyaku Co., Ltd.) instead of the top chemi-alloy B-1.
In the same manner as described above, 10 capacitors were completed. The same characteristic evaluation as in Example 1 was performed for them. The results are shown in (Table 1).

【0040】この(表1)から明らかなように、本実施
例によるコンデンサは125℃及び85℃/85%とい
う条件下で容量及び損失の劣化を小さくできるという点
で優れた効果が得られる。
As is clear from (Table 1), the capacitor according to the present embodiment has an excellent effect in that the deterioration of capacity and loss can be reduced under the conditions of 125 ° C. and 85 ° C./85%.

【0041】以上のように本実施例によれば、陽極酸化
アルミナ誘電体層上に形成された導電性高分子のポリピ
ロール電極上に複数層のニッケル鍍金層を設けることに
より、高温高湿下における容量及び損失の劣化の小さ
い、信頼性の優れたコンデンサを得ることができる。
As described above, according to this embodiment, by providing a plurality of nickel plating layers on the conductive polymer polypyrrole electrode formed on the anodized alumina dielectric layer, a plurality of nickel plating layers are formed under high temperature and high humidity. It is possible to obtain a highly reliable capacitor with little deterioration in capacity and loss.

【0042】この(表1)から明らかなように、本実施
例による固体電解コンデンサは125℃という条件下で
容量及び損失の劣化を小さくできるという点で優れた効
果が得られる。
As is clear from (Table 1), the solid electrolytic capacitor according to the present embodiment has an excellent effect in that the deterioration of capacity and loss can be reduced under the condition of 125 ° C.

【0043】(実施例4)トップケミアロイB−1に代
えてOPCムデンゴールド(無電解金鍍金液商品名:奥
野製薬製)を用いて無電解金鍍金層を形成した以外実施
例1と同様にして、10個のコンデンサを完成させた。
それらについて実施例1と同様の特性評価を行った。そ
の結果を(表1)に示した。
(Example 4) Example 1 except that an electroless gold plating layer was formed by using OPC muden gold (electroless gold plating liquid trade name: Okuno Seiyaku) instead of the top chemi-alloy B-1. In the same manner, 10 capacitors were completed.
The same characteristic evaluation as in Example 1 was performed for them. The results are shown in (Table 1).

【0044】この(表1)から明らかなように、本実施
例によるコンデンサは125℃及び85℃/85%とい
う条件下で容量及び損失の劣化を小さくできるという点
で優れた効果が得られる。
As is clear from this (Table 1), the capacitor according to this embodiment has an excellent effect in that the deterioration of the capacity and loss can be reduced under the conditions of 125 ° C. and 85 ° C./85%.

【0045】以上のように本実施例によれば、陽極酸化
アルミナ誘電体層上に形成された導電性高分子のポリピ
ロール電極上に複数層のニッケル鍍金層を設けることに
より、高温高湿下における容量及び損失の劣化の小さ
い、信頼性の優れたコンデンサを得ることができる。
As described above, according to this embodiment, by providing a plurality of nickel plating layers on the conductive polymer polypyrrole electrode formed on the anodized alumina dielectric layer, a plurality of nickel plating layers can be formed under high temperature and high humidity. It is possible to obtain a highly reliable capacitor with little deterioration in capacity and loss.

【0046】なお実施例では金属層を無電解鍍金により
形成した場合についてのみ述べたが、電解鍍金を用いて
も同様の効果が得られることが明らかである。
In the examples, only the case where the metal layer is formed by electroless plating has been described, but it is clear that the same effect can be obtained by using electrolytic plating.

【0047】なお実施例では銀ペイント層を導電性高分
子層に設けない場合についてのみ述べたが、銀ペイント
層があってもよく、また銀ペイント層の銀を無電解鍍金
の触媒とすることもできる。また銀ペイント層を設ける
場合その下地層としてコロイダルグラファイト層をもう
けることもできる。
In the examples, only the case where the silver paint layer is not provided on the conductive polymer layer has been described. However, a silver paint layer may be provided, and silver in the silver paint layer may be used as a catalyst for electroless plating. You can also When a silver paint layer is provided, a colloidal graphite layer can be provided as an underlying layer.

【0048】なお実施例ではもう一方の電極としてエッ
チドアルミニウム箔また誘電体として陽極酸化アルミナ
皮膜を用いた場合についてのみ述べたが、タンタル焼結
体及び陽極酸化5酸化タンタルをそれぞれ電極及び誘電
体として用いることもできる。さらに弁金属の陽極酸化
皮膜を用いず、例えば高分子薄膜を誘電体として用い、
もう一方の電極も導電性高分子で構成したようなコンデ
ンサにおいてもまた本発明が適用できる。
Although only the case where an etched aluminum foil is used as the other electrode and an anodized alumina film is used as the dielectric in the embodiment, the tantalum sintered body and the anodized tantalum pentaoxide are used as the electrode and the dielectric, respectively. Can also be used as Furthermore, without using the anodic oxide film of the valve metal, for example using a polymer thin film as a dielectric,
The present invention can also be applied to a capacitor in which the other electrode is also made of a conductive polymer.

【0049】なお実施例では導電性高分子を構成する繰
り返し単位として、ピロールを用いた場合についてのみ
述べたが、所望の電気伝導度を有する高分子が得られれ
ば他のピロール誘導体及びチオフェンあるいはチオフェ
ン誘導体を繰り返し単位とするものでもよく、本発明は
その種類に限定されない。
In the examples, only the case where pyrrole was used as the repeating unit constituting the conductive polymer was described, but if a polymer having a desired electric conductivity is obtained, another pyrrole derivative and thiophene or thiophene can be obtained. The derivative may be used as a repeating unit, and the present invention is not limited to that type.

【0050】なお実施例では支持電解質としてアルキル
ナフタレンスルフォネートが使用された場合についての
み述べたが、導電性高分子に所望の電気電気伝導度を与
え、かつ使用温度範囲で実質的に脱ドープしないもので
あれば他のもの使用してもよく、本発明はその種類に限
定されない。
In the examples, only the case where the alkylnaphthalene sulfonate was used as the supporting electrolyte was described. However, the conductive polymer was given a desired electric / electrical conductivity and substantially dedoped in the operating temperature range. Other materials may be used as long as they are not, and the present invention is not limited to the kind.

【0051】[0051]

【表1】 [Table 1]

【0052】[0052]

【発明の効果】以上のように本発明は、誘電体層を介し
て電極を有するコンデンサの少なくとも一方の電極に導
電性高分子層を含み、前記導電性高分子層を被覆する少
なくても一層の金属層とさらに前記導電性高分子層の一
部または全体を被覆する少なくてももう一層の金属層を
配置した構成のコンデンサおよびその製造方法を提供す
るもので、金属層により酸素及び水等が導電性高分子層
に拡散透過することを防止し、導電性高分子層の劣化を
抑制することににより高温高湿下においても容量、損失
及び高周波インピーダンス特性の劣化の少ない、優れた
信頼性を有する小型大容量のコンデンサを実現できるよ
うにしたものである。
As described above, the present invention includes a conductive polymer layer on at least one electrode of a capacitor having an electrode via a dielectric layer, and at least one layer covering the conductive polymer layer is provided. The present invention provides a capacitor having a structure in which at least one metal layer covering at least one of the metal layer and the conductive polymer layer is further disposed, and a method for producing the same. By preventing diffusion and permeation of the conductive polymer layer into the conductive polymer layer and suppressing deterioration of the conductive polymer layer, there is little deterioration in capacity, loss and high frequency impedance characteristics even under high temperature and high humidity, and excellent reliability. It is possible to realize a small-sized and large-capacity capacitor having

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における、一方の電極に用い
た導電性高分子層を複数層の金属層で被覆したコンデン
サを示す断面図
FIG. 1 is a cross-sectional view showing a capacitor in which a conductive polymer layer used for one electrode is covered with a plurality of metal layers in an embodiment of the present invention.

【図2】本発明の他の実施例における、両方の電極に用
いた導電性高分子層を複数層の金属層で被覆したコンデ
ンサを示す断面図
FIG. 2 is a cross-sectional view showing a capacitor in which a conductive polymer layer used for both electrodes is covered with a plurality of metal layers in another embodiment of the present invention.

【図3】従来の、導電性高分子を一方の電極に用いたコ
ンデンサの一例を示す断面図
FIG. 3 is a sectional view showing an example of a conventional capacitor using a conductive polymer for one electrode.

【符号の説明】[Explanation of symbols]

1 電極 2 誘電体層 3 導電性高分子層 4a 金属層 4b 金属層 5a 電極リード 5b 電極リード 6 絶縁樹脂層 1 Electrode 2 Dielectric Layer 3 Conductive Polymer Layer 4a Metal Layer 4b Metal Layer 5a Electrode Lead 5b Electrode Lead 6 Insulating Resin Layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 七井 識成 神奈川県川崎市多摩区東三田3丁目10番1 号 松下技研株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shigenari Nanai 3-10-1 Higashisanda, Tama-ku, Kawasaki-shi, Kanagawa Matsushita Giken Co., Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】誘電体層を介して電極を有するコンデンサ
の少なくとも一方の電極に導電性高分子層を含み、前記
導電性高分子層の少なくとも一部を被覆する少なくとも
一層の金属層とさらに前記導電性高分子層の一部または
全体を被覆する少なくとももう一層の金属層を配置した
コンデンサ。
1. At least one electrode of a capacitor having an electrode via a dielectric layer includes a conductive polymer layer, at least one metal layer covering at least a part of the conductive polymer layer, and further A capacitor in which at least another metal layer covering a part or the whole of a conductive polymer layer is arranged.
【請求項2】導電性高分子の繰り返し単位がピロール、
チオフェンあるいはこれらの誘導体を少なくとも一種を
含む複素員環化合物から選ばれる請求項1記載のコンデ
ンサ。
2. The repeating unit of the conductive polymer is pyrrole,
The capacitor according to claim 1, which is selected from hetero member ring compounds containing at least one of thiophene and derivatives thereof.
【請求項3】誘電体層が弁金属の酸化物である請求項1
記載のコンデンサ。
3. The dielectric layer is an oxide of a valve metal.
The listed capacitors.
【請求項4】弁金属がアルミニウムもしくはタンタルか
ら選ばれる一種である請求項3記載のコンデンサ。
4. The capacitor according to claim 3, wherein the valve metal is one selected from aluminum and tantalum.
【請求項5】誘電体層を介して導電性高分子層を電解重
合で形成し、かつ前記導電性高分子層の少なくとも一部
を被覆して少なくとも一層の金属層を鍍金で形成するコ
ンデンサの製造方法。
5. A capacitor in which a conductive polymer layer is formed by electrolytic polymerization through a dielectric layer, and at least a part of the conductive polymer layer is coated to form at least one metal layer by plating. Production method.
【請求項6】鍍金が電解鍍金あるいは無電解鍍金の手段
で行われる請求項5記載のコンデンサの製造方法。
6. The method for manufacturing a capacitor according to claim 5, wherein the plating is performed by electrolytic plating or electroless plating.
【請求項7】導電性高分子の繰り返し単位がピロール、
チオフェンあるいはこれらの誘導体を少なくとも一種を
含む複素員環化合物から選ばれる請求項5記載のコンデ
ンサの製造方法。
7. A repeating unit of a conductive polymer is pyrrole,
The method for manufacturing a capacitor according to claim 5, wherein the compound is selected from the group consisting of thiophene and heterocyclic compounds containing at least one of these derivatives.
JP3234385A 1991-09-13 1991-09-13 Capacitor and method of manufacturing the same Expired - Fee Related JP2876843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3234385A JP2876843B2 (en) 1991-09-13 1991-09-13 Capacitor and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3234385A JP2876843B2 (en) 1991-09-13 1991-09-13 Capacitor and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0574662A true JPH0574662A (en) 1993-03-26
JP2876843B2 JP2876843B2 (en) 1999-03-31

Family

ID=16970172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3234385A Expired - Fee Related JP2876843B2 (en) 1991-09-13 1991-09-13 Capacitor and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2876843B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1398807A3 (en) * 2002-08-28 2006-08-30 Nec Tokin Corporation Solid electrolytic capacitor
JP2008076086A (en) * 2006-09-19 2008-04-03 Fujitsu Ltd Polymer membrane and environmental component evaluation sensor
JP2008235907A (en) * 2007-03-21 2008-10-02 Avx Corp Solid electrolytic capacitor containing protective barrier layer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0346212A (en) * 1989-07-13 1991-02-27 Omron Corp Capacitor
JPH03109712A (en) * 1989-09-25 1991-05-09 Kao Corp Solid-state electrolytic capacitor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0346212A (en) * 1989-07-13 1991-02-27 Omron Corp Capacitor
JPH03109712A (en) * 1989-09-25 1991-05-09 Kao Corp Solid-state electrolytic capacitor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1398807A3 (en) * 2002-08-28 2006-08-30 Nec Tokin Corporation Solid electrolytic capacitor
JP2008076086A (en) * 2006-09-19 2008-04-03 Fujitsu Ltd Polymer membrane and environmental component evaluation sensor
JP2008235907A (en) * 2007-03-21 2008-10-02 Avx Corp Solid electrolytic capacitor containing protective barrier layer

Also Published As

Publication number Publication date
JP2876843B2 (en) 1999-03-31

Similar Documents

Publication Publication Date Title
US5473503A (en) Solid electrolytic capacitor and method for manufacturing the same
US6413282B1 (en) Electrolytic capacitor and method for manufacturing the same
JPH09293639A (en) Solid electrolytic capacitor and manufacture thereof
KR100279098B1 (en) Manufacturing method of solid electrolytic capacitor
JP3416053B2 (en) Electrolytic capacitor and method of manufacturing the same
JPH05159987A (en) Solid electrolytic capacitor
JP3319501B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP2876843B2 (en) Capacitor and method of manufacturing the same
JPH0362298B2 (en)
JP2001110685A (en) Solid electrolytic capacitor
JP3399515B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0521279A (en) Capacitor and its manufacture
JP3030054B2 (en) Method for manufacturing solid electrolytic capacitor
JP2696982B2 (en) Solid electrolytic capacitors
JP2853376B2 (en) Manufacturing method of capacitor
JP2811915B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0446446B2 (en)
JPH05159979A (en) Manufacture of solid electrolytic capacitor
JPH05304056A (en) Manufacture of solid electrolytic capacitor
JP2694454B2 (en) Solid electrolytic capacitors
KR0148613B1 (en) Solid electrolytic capacitor & manufacturing method thereof
JP2775762B2 (en) Solid electrolytic capacitors
JPH02219211A (en) Manufacture of solid electrolytic capacitor
JPH01119012A (en) Solid electrolytic capacitor
JPH0453117A (en) Solid electrolytic capacitor and its manufacture

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees