JPH0574599B2 - - Google Patents

Info

Publication number
JPH0574599B2
JPH0574599B2 JP27143284A JP27143284A JPH0574599B2 JP H0574599 B2 JPH0574599 B2 JP H0574599B2 JP 27143284 A JP27143284 A JP 27143284A JP 27143284 A JP27143284 A JP 27143284A JP H0574599 B2 JPH0574599 B2 JP H0574599B2
Authority
JP
Japan
Prior art keywords
hbc antigen
acid
hbc
antigen
ion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27143284A
Other languages
Japanese (ja)
Other versions
JPS61148127A (en
Inventor
Keishin Sugawara
Takayuki Imamura
Fukusaburo Hamada
Shinya Ootomo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chemo Sero Therapeutic Research Institute Kaketsuken
Original Assignee
Chemo Sero Therapeutic Research Institute Kaketsuken
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemo Sero Therapeutic Research Institute Kaketsuken filed Critical Chemo Sero Therapeutic Research Institute Kaketsuken
Priority to JP59271432A priority Critical patent/JPS61148127A/en
Priority to CA000498178A priority patent/CA1268437A/en
Priority to AT85116388T priority patent/ATE66679T1/en
Priority to KR1019850009659A priority patent/KR930012113B1/en
Priority to DE8585116388T priority patent/DE3583927D1/en
Priority to EP85116388A priority patent/EP0185391B1/en
Priority to US06/811,399 priority patent/US4839277A/en
Publication of JPS61148127A publication Critical patent/JPS61148127A/en
Publication of JPH0574599B2 publication Critical patent/JPH0574599B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/576Immunoassay; Biospecific binding assay; Materials therefor for hepatitis
    • G01N33/5761Hepatitis B
    • G01N33/5762Hepatitis B core antigen
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2730/00Reverse transcribing DNA viruses
    • C12N2730/00011Details
    • C12N2730/10011Hepadnaviridae
    • C12N2730/10111Orthohepadnavirus, e.g. hepatitis B virus
    • C12N2730/10122New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Urology & Nephrology (AREA)
  • Biochemistry (AREA)
  • Hematology (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Virology (AREA)
  • Communicable Diseases (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、B型肝炎ウイルスの核抗原(以下、
HBc抗原と略称する)の精製方法、とくに組換
えDNA技術を利用した組換え体により産生され
るHBc抗原の精製方法に関する。 発明の技術的背景と産業上の利用分野 B型肝炎は、B型肝炎ウイルス(以下、HBV
と略称する)によつて引き起こされる疾病であ
り、疫学的にも臨床的にも非常に重大な問題を含
むが、いまだ有効な治療対策が見出だされていな
い。この疾病は世界中に広く分布しているが、と
くにアジア、アフリカ地域に多発し、問題となつ
ている。 このB型肝炎の有効な予防にはHBV感染の早
期発見が重要であり、その臨床的な診断方法とし
て、現在、HBs抗原、HBs抗体、HBc抗体、
HBe抗原、HBe抗体などの検出法が採られてお
り、r−PHA法、PHA法、EIA法、RIA法など
が知られ、それらに用いる診断用試薬も市販され
ている。しかしながら、これら診断用試薬、さら
にはその予防用ワクチンの製造に必要な抗原類
は、キヤリアと称されるHBV潜伏持続感染者の
血液や肝臓などに求めねばならず、製造上多くの
制約がある。とくに、HBc抗原は感染性ウイル
スを直接出発材料としなければならず、その調製
にはきわめて危険を伴う。 本発明者らは、さきに、組換えDNA技術を利
用して大腸菌や酵母菌にHBs抗原蛋白質をコー
ドするHBVのDNAを導入、発現させることに成
功し(特願昭57−142460号を参照)、またワクチ
ンの原材料となるHBs抗原舷の工業的精製法も
確率した(特願昭58−186187号を参照)。 本発明者らは、さらに、組換え体によつて
HBcを産生することを試み(細胞工学、第3巻、
4号、367〜370頁、1984年)、それによつて産生
されたHBc抗原を診断用試薬材料となしうる程
度まで高度に精製することに成功し、これによ
り、とくに入手の困難なHBc抗原を多量にかつ
安価に提供できる技術が確率されたのであつて、
B型肝炎の診断用試薬への応用が期待されるもの
である。 従来技術 肝臓由来のHBc抗原の精製法としては、密度
勾配遠心法とゲル濾過を組合わせた方法ブドコワ
スカら(Budkowaska,A.et al.)、ジエイ・イ
ムノロジイ(J.Immunology).118,1300
(1977)、およびオーリら(Ohori,H.et al.)、イ
ンターバイロロジイ(Inter−virology)、13,74
(1980)]、密度勾配遠心法[フエイテルソンら
(Feitelson,M.A.et al.)、ジエイ・バイロロジ
イ(J.Virology)、43,687(1982)]などが報告さ
れている。 血液由来のHBc抗原の精製法としては、HBV
の本体である感染性デイン粒子を遠心法により精
製したのち、界面活性剤などを加えてウイルス粒
子をこわし、さらに密度勾配遠心法により精製す
る方法が報告されている[タカハシら
(Takahashi,K.et al.)、ジエイ・イムノロジイ
(J.Immunology)、122,275(1979)など]。 さらに、組換えDNA技術を利用して大腸菌内
に発現させたHBc抗原の精製法としては、密度
勾配遠心法[ロジエンドルフら(Roggendorf.M.
et al.)、ジエイ・バイロロジカル・メソツズ(J.
Virological Methods)、6,61(1983)]が報告
されている。 しかしながら、これらの方法では、組換え体由
来のHBc抗原の精製における種々の問題点に対
して充分な対処ができない難点を有する。 すなわち、組換え体由来のHBc抗原の精製に
おける重要な課題は、原材料中の夾雑成分、例え
ば宿主由来の蛋白質、脂質類などの成分が、質的
および量的に肝臓由来あるいは血液由来のHBc
抗原とは全く異なつているため、上記従来技術に
よつて充分な精製ができない点である。なお、組
換え体由来のHBc抗原の精製を試みた上記
Roggendorfらの方法でも、単に分析可能な程度
にまで精製したにすぎず、その収率も検討されて
いないため、工業的なHBc抗原の精製法として
応用し得るものではない。 発明の目的 本発明者らは、組換え体に由来するHBc抗原
の安全で実用的な精製法を見出だすべく、種々検
討を重ねた結果、組換え体の培養物から得られる
宿主由来成分などを含有するHBc抗原原材料液
に酸を添加し、PHを酸性側にもつてゆくことによ
り、クロマトグラフイの妨げとなる脂質類や夾雑
蛋白質の大部分を沈澱物としてHBc抗原と分
別・除去できること、および次の工程で陰イオン
交換体によるイオン交換クロマトグラフイ、さら
には密度勾配遠心を行なえば、HBc抗原を高度
に精製できることを見出し、本発明を完成するに
至つた。 すなわち、本発明の目的は、安全で安価は
HBc抗原を安定かつ大量に供給することを可能
ならしめることにあり、本発明はとくに組換え
DNA技術を利用した組換え体により産生される
HBc抗原を工業的に効率よく、大量に、しかも
きわめて高純度に精製する方法を提供するもので
ある。 発明の構成および効果 本発明は、HBc抗原の精製、とくに組換え
DNA技術を利用した組換え体により産生される
HBc抗原を精製するに際し、組換え体の培養物
から得られるHBc抗原および宿主由来成分を含
有する原材料液に、酸を添加してPHを酸性側に移
行せしめ、クロマトグラフイ法の妨げとなる脂質
類や夾雑蛋白質などの大部分を沈澱として除去
し、次いで直接もしくは硫安塩析による精製およ
び濃縮操作を加えたのち、陰イオン交換体による
イオン交換クロマトグラフイを行なうことを特徴
とする。 本発明におけるHBc抗原材料液とは、組換え
DNA技術を利用して、HBc抗原を産生するよう
に形質転換された組換え体、たとえば大腸菌ある
いは酵母菌などを適当な培地および培養条件で培
養してHBc抗原を産生、蓄積させたのちに、こ
の培養物から適当な方法でHBc抗原を粗抽出し
て得られるものである。 このようなHBc抗原を産生し得る組換え体の
例はすでに本発明者らにより発表されており(細
胞工学、第3巻、4号、367〜370頁、1984年およ
び第31回日本ウイルス学会総会、1983年大阪、演
題No.2036を参照)、例えば下記のようにして調製
される。 HBVの全DNA配列を含むプラスミドpHBV
(特願昭57−145093号を参照)を制限酵素、例え
ばRsaIで消化して得られるHBc遺伝子を含む
DNA配列をプラスミドpACYC177のXhoIサイト
に組込んで組換えプラスミドpAHBcを得る。こ
のpAHBCを制限酵素XhoIで消化して得られる
HBc遺伝子を含むDNA配列をシヤトルベクター
pAM82(特願昭57−145093号を参照)のXhoサ
イトに組込んでHBc発現用プラスミドpAC301を
得る。 別法として、5′末端側のプレC領域を除くため
に上記pHBcを制限酵素Xhoで部分消化し、T4
DNA合成酵素で付着末端(cohesive end)を平
滑末端(flush end)にしたのち、EcoRIリンカ
ーをつけてXhoサイトをEcoRIサイトに加え
る。ついで、HBc遺伝子の5′側のXhoサイトが
EcoRサイトにかわつたプラスミドを選ぶ。こ
のようにして得られたプラスミドpHBclをEcoRI
で消化し、さらにBAL3lで消化したのちSalIリン
カーを付け、これを制限酵素XhoI,SalIで消化
して約600bpのプレC領域の除かれたHBc遺伝子
断片を得る。これをシヤトルベクターpAM81(特
願昭57−145093号を参照)のSalサイトに組込
み、HBc発現用ベクターpAC701を得る。 上記発現用ベクターを酵母菌サツカロミセス・
セレビシエAH22[a leu2 his4 canl(Cir+)]
(微工研条寄第312号)に上記日本特許出願に記載
の方法と同様にして形質転換させることにより
HBc抗原産生能を有する形質転換酵母サツカロ
ミセス・セレビシエpAC301およびサツカロミセ
ス・セレビシエpA701が得られる。 これら形質転換酵母を常法により培養して所望
の組換え体培養物が得られる。 上記の培養物からHBc抗原を抽出する方法と
しては、まず培養物から遠心分離により菌体を分
離し、適当な緩衝液中で破砕する。破砕の方法と
しては、超音波破砕、グラスビーズ破砕、マント
ン・ゴーリン破砕、あるいは細胞の細胞壁を酵素
的に溶解せしめてスフエロプラストとしたのち、
これに界面活性剤を作用させて破壊するなどの
種々の方法またはこれらの組み合わせを用いるこ
とができる。この細胞破壊物を低速遠心分離にか
け、細胞壁破片などを分離し、さらに必要に応じ
てメンブランフイルターで濾過してHBc抗原原
材料とする。 本発明において、酸添加処理に用いる酸として
は、塩酸、硫酸、リン酸などの無機酸類および、
酢酸、シユウ酸などの有機酸類などが挙げられ
る。酸添加処理の方法は、原材料液のPHが6以
下、好ましくは5.0〜5.5の範囲に収まるように酸
を加えてPHの調整を行なう。酸処理の温度は20℃
以下、好ましくは4〜10℃とするのがよい。PH調
整後、析出した沈澱物を遠心分離し、HBc抗原
を含む上清液を得る。 つぎに必要であれば、硫安塩析による精製およ
び濃縮の操作を行なう。酸添加処理によつて得ら
れたHBc抗原含有上清液に、適当な濃度のアン
モニア水を加え、上清液のPHを6.0〜8.0の範囲に
保ちながら硫安を添加し、HBc抗原を沈澱させ、
これを遠心分離にかけ上清と分離する。得られた
沈澱をイオン強度が0.001〜1.0程度である中性付
近の適当な緩衝液、例えば、0.1Mリン酸緩衝液
などに溶解し、これを同緩衝液に透析して陰イオ
ン交換体によるクロマトグラフイに付すための材
料とする。 硫安塩析を実施しない場合は、HBc抗原含有
上清液にアンモニア水を加えてPHを約7.0に調整
したのち、前記と同様の緩衝液で希釈あるいは透
析することによりクロマトグラフイ用材料とす
る。 本発明において用いる陰イオン交換体としては
ジエチルアミノエチルを官能基とする陰イオン交
換体が最も有効であり、DEAE−セフアデツクス
A・25,DEAE−セフアデツクスA−50,DEAE
−セフアローズ、DEAE−セフアセル(フアルマ
シア・フアイン・ケミカルズ社製)、DEAEバイ
オ・ゲルA、セレツクスD(バイオ・ラツド社
製)、DEAE−セルロフアイン(生化学工学株式
会社製)の名称で市販されており、これらのもの
がすべて用いられる。この陰イオン交換体を用い
たイオン交換クロマトグラフイは下記の方法で行
なわれる。 陰イオン交換体へのHBc抗原の吸着は、カラ
ム法およびバツチ法の両方法が実施可能である。
カラム法の場合、陰イオン交換体を充填したカラ
ムに、クロマトグラフイ用材料調製時に用いたと
同一の緩衝液を通液して平衡化を行なつたのち、
該材料を通液し、HBc抗原を吸着させることに
より、宿主由来の夾雑物質を分離する。通液終了
後、平衡化緩衝液を通液し、カラムを洗浄して夾
雑物を洗い出したのち、下記溶出操作に付す。 またバツチ法の場合は、緩衝液にて平衡化した
陰イオン交換体を材料液に添加し、緩い速度にて
0.5〜2時間程度撹拌してHBc抗原を吸着させる。
吸着後、濾過器上で陰イオン交換体を濾集し、こ
のゲルに平衡化緩衝液を加えて、洗浄、濾過分離
を数回繰り返したのち溶出操作に付す。なお、こ
のバツチ法による吸着の場合も、溶出に際して
は、HBc抗原を吸着した陰イオン交換体をカラ
ムに充填してカラムによる溶出を実施するのが好
ましい。 溶出は、イオン強度が0.01〜0.5程度であり、
かつ平衡化緩衝液よりイオン強度が大である中性
付近の緩衝液を用いて、段階溶出あるいは濃度勾
配溶出を実施し、吸着夾雑物質とHBc抗原を分
離溶出させ、HBc抗原を含有するフラクシヨン
を分取する。濃度勾配溶出は、例えば、0.01M→
0.5Mのリン酸緩衝液濃度勾配を用いてもよいし、
0.01Mリン酸緩衝液食塩添加0.01→0.5M濃度勾配
を用いてもよく、さらにHBc抗原と夾雑物質と
の分解が良好な他の適当な濃度勾配緩衝液を用い
てもよい。段階溶出の場合は、HBc抗原と夾雑
物質のいずれか一方のみが溶出されるイオン強度
の緩衝液を通液し、続いて、イオン強度の大きい
緩衝液を通液することにより、高度に精製された
HBc抗原を含有するフラクシヨンを分取する。 このようにして得られたHBc抗原を、さらに、
蔗糖ステツプグラデイエント遠心または蔗糖リニ
アグラデイエント遠心、次いで、塩化セシウムを
用いた沈降平衡遠心またはリニアグラデイエント
遠心にかけることにより、高度に精製された
HBc抗原を得ることができる。 なお、イオン交換クロマトグラフイにおいて精
製度を高めるため、あるいはHBc抗原を含有す
るフラクシヨンを幅広くプールした場合の精製度
向上のために、イオン交換クロマトグラフイとハ
イドロキシアパタイトクロマトグラフイの組み合
わせが有用である。ハイドロキシアパタイトと
は、リン酸カルシウムがその成分であるアフイニ
テイクロマトグラフイ用ゲルのことであり、
Hydroxyapatite(生化学工業社、ALBIOCHEM
−BEHRING社)、Hydroxylapatite(Bio−Rsd
社)の名称で市販されている。 すなわち、HBc抗原を含む画分を、イオン強
度が0.01〜0.2程度である中性付近の適当な緩衝
液、例えば0.1Mリン酸緩衝液などに対して透析
するか、または同緩衝液で希釈したのち、同緩衝
液で平衡化を行なつたハイドロキシアパタイカラ
ムに通液すると、HBc抗原は吸着せず素通り画
分に回収される。 なお、本発明者らは、陰イオン交換体に替え
て、CMセルロース、CMセフアロース、リン酸
セルロース、などのクロマトグラフイ用ゲルを
種々条件を変えて、組換え体由来HBc抗原の精
製に用いるべく試みたが、精製効果がほとんど得
られなかつた。 つぎに実施例を挙げて本発明をさらに具体的に
説明する。 実施例 1−1 組換え酵母サツカロミセス・セレビシエ
AH22pho80/pAC.701を培養後、遠心により集
菌した菌体約600gに50mMリン酸緩衝液(PH
7.2)3を加え、これを600Kg/cm2の圧力で約3
時間、マントンゴーリン破砕機にかけ、菌体を破
壊する。菌体破壊物を遠心にかけ、粗大菌体破片
を分離して、HBe抗原活性約30000cpm[400倍希
釈、RIAキツト:HBeRIAキツト(アボツト社
製)]であるHBc抗原粗抽出液を得る。 次いで、PHメーターでチエツクしつつ粗抽出液
に酢酸を滴下し、PHを5.4に調製する。4℃で約
30分間撹拌したのち、遠心により沈澱物を除去す
る。遠心上清にアンモニア水を加えて、PHを約
6.5に保ちつつ、最終濃度2.5Mとなるように硫安
を徐々に加える。4℃で30分間撹拌し、1晩放置
後、遠心によりHBc抗原を含有する沈澱を分離
回収する。 回収した沈澱を、10mMリン酸緩衝液、50mM
塩化カリウム(PH7.3)約300mlに懸濁させ、透析
チユーブにて、約100倍量の同緩衝液に対して透
析する。透析後、10mMリン酸緩衝液、50mM塩
化カリウム(PH7.3)で約3倍に希釈し、同緩衝
液で平衡化しておいたDEAE−セルロースカラム
(ゲル量約1)に添加し、HBc抗原を吸着させ
る。平衡化緩衝液でカラムを充分に洗浄したの
ち、約4.0の50mM→500mM塩化カリウム濃度
勾配リン酸緩衝液を通液して溶出を行ない、
HBc抗原を含むフラクシヨンを集める。 この集めたフラクシヨンをプールし、限外濾過
濃縮装置アミコンTCF−10(アミコン社製)によ
り濃縮を行ない、超遠心チユーブに60%蔗糖溶
液、20%蔗糖溶液、HBc抗原濃縮液をそれぞれ、
10ml、35ml、35ml重層し、30000rpm,4℃で19
時間超遠心を行ない、HBc抗原を蔗糖液層界面
に濃縮、精製する。 得られたHBc抗原画分を50mM Tris−HCl、
150mM塩化ナトリウム、1mMEDTA(PH7.5)に
透析したのち、塩化セシウムを1.32g/mlの濃度
となるように加えて、30000rpm、4℃で60時間
超遠心し、濃縮、精製されたHBc抗原を得る。 各工程までのHBc抗原の回収率および精製度
を第1−1表に示す。
The present invention provides nuclear antigen of hepatitis B virus (hereinafter referred to as
The present invention relates to a method for purifying HBc antigen (abbreviated as HBc antigen), and in particular to a method for purifying HBc antigen produced by a recombinant using recombinant DNA technology. Technical Background and Industrial Application Fields of the Invention Hepatitis B is caused by the hepatitis B virus (hereinafter referred to as HBV).
It is a disease caused by the virus (hereinafter referred to as "abbreviation"), and it involves very serious problems both epidemiologically and clinically, but no effective treatment has yet been found. Although this disease is widely distributed throughout the world, it is particularly prevalent in Asia and Africa, where it is becoming a problem. Early detection of HBV infection is important for effective prevention of hepatitis B, and the current clinical diagnostic methods include HBs antigen, HBs antibody, HBc antibody,
Methods for detecting HBe antigens, HBe antibodies, etc. have been used, and the r-PHA method, PHA method, EIA method, RIA method, etc. are known, and diagnostic reagents used for these methods are also commercially available. However, the antigens necessary to manufacture these diagnostic reagents and their preventive vaccines must be obtained from the blood and liver of people with latent HBV infection, known as carriers, and there are many manufacturing constraints. . In particular, HBc antigen must be prepared directly from an infectious virus, and its preparation is extremely dangerous. The present inventors have previously succeeded in introducing and expressing HBV DNA encoding the HBs antigen protein into Escherichia coli and yeast using recombinant DNA technology (see Japanese Patent Application No. 142,460/1986). ), and also developed an industrial purification method for HBs antigen, which is a raw material for vaccines (see Japanese Patent Application No. 186187/1987). The present inventors further found that by using recombinant
Attempting to produce HBc (Cell Engineering, Vol. 3,
4, pp. 367-370, 1984), succeeded in highly purifying the HBc antigen produced by this method to the extent that it could be used as a diagnostic reagent material. Since the technology that can be provided in large quantities and at low cost has been established,
It is expected that it will be applied as a diagnostic reagent for hepatitis B. Prior Art As a purification method for liver-derived HBc antigen, a method combining density gradient centrifugation and gel filtration has been proposed by Budkowaska et al., J. Immunology. 118, 1300
(1977) and Ohori, H. et al., Inter-virology, 13, 74.
(1980)], density gradient centrifugation [Feitelson, MA et al., J. Virology, 43, 687 (1982)], etc. have been reported. As a purification method for blood-derived HBc antigen, HBV
A method has been reported in which the infectious virus particles, which are the main body of the virus, are purified by centrifugation, then a surfactant is added to break up the virus particles, and the virus particles are further purified by density gradient centrifugation [Takahashi et al. et al.), J. Immunology, 122, 275 (1979), etc.]. Furthermore, density gradient centrifugation is a method for purifying HBc antigen expressed in E. coli using recombinant DNA technology [Roggendorf et al.
et al.), J.
Virological Methods, 6, 61 (1983)]. However, these methods have the disadvantage that various problems in purifying recombinant-derived HBc antigens cannot be adequately addressed. In other words, an important issue in purifying recombinant-derived HBc antigens is that contaminant components in the raw materials, such as host-derived proteins and lipids, are qualitatively and quantitatively higher than liver-derived or blood-derived HBc antigens.
Since they are completely different from antigens, sufficient purification cannot be achieved using the above-mentioned conventional techniques. In addition, the above-mentioned attempt was made to purify recombinant-derived HBc antigen.
Roggendorf et al.'s method simply purifies it to a level that can be analyzed, and the yield has not been studied, so it cannot be applied as an industrial method for purifying HBc antigen. Purpose of the Invention The present inventors have conducted various studies in order to find a safe and practical purification method for HBc antigen derived from recombinant organisms, and as a result, the present inventors have discovered that host-derived components obtained from recombinant culture By adding acid to the HBc antigen raw material solution containing HBc antigen to bring the pH to the acidic side, most of the lipids and contaminant proteins that interfere with chromatography are separated and removed from the HBc antigen as a precipitate. The present inventors have discovered that HBc antigen can be purified to a high degree by performing ion exchange chromatography using an anion exchanger and density gradient centrifugation in the next step, leading to the completion of the present invention. That is, the purpose of the present invention is to create a safe and inexpensive
The purpose of the present invention is to make it possible to supply HBc antigen stably and in large quantities, and the present invention is particularly directed to recombinant HBc antigens.
Produced by recombinants using DNA technology
The object of the present invention is to provide a method for industrially efficiently purifying HBc antigen in large quantities and with extremely high purity. Structure and Effects of the Invention The present invention relates to purification of HBc antigen, particularly recombinant
Produced by recombinants using DNA technology
When purifying HBc antigen, acid is added to the raw material solution containing HBc antigen and host-derived components obtained from a recombinant culture to shift the pH to the acidic side, which interferes with the chromatography method. It is characterized in that most of the lipids and contaminant proteins are removed as precipitates, and then purified and concentrated directly or by salting out ammonium sulfate, followed by ion exchange chromatography using an anion exchanger. The HBc antigen material solution in the present invention refers to recombinant
Using DNA technology, a recombinant transformed to produce HBc antigen, such as Escherichia coli or yeast, is cultured in an appropriate medium and culture conditions to produce and accumulate HBc antigen. The HBc antigen is obtained by crudely extracting the HBc antigen from this culture using an appropriate method. An example of a recombinant that can produce such an HBc antigen has already been published by the present inventors (Cell Engineering, Vol. 3, No. 4, pp. 367-370, 1984 and at the 31st Annual Meeting of the Japanese Society of Virology). General Assembly, Osaka, 1983, Abstract No. 2036), for example, prepared as follows. Plasmid pHBV containing the entire DNA sequence of HBV
(see Japanese Patent Application No. 57-145093) containing the HBc gene obtained by digesting with a restriction enzyme such as RsaI.
The DNA sequence is integrated into the XhoI site of plasmid pACYC177 to obtain recombinant plasmid pAHBc. Obtained by digesting this pAHBC with the restriction enzyme XhoI.
Shuttle vector DNA sequence containing HBc gene
It is inserted into the Xho site of pAM82 (see Japanese Patent Application No. 145093/1982) to obtain HBc expression plasmid pAC301. Alternatively, the above pHBc was partially digested with the restriction enzyme Xho to remove the 5' pre-C region, and T4
After turning the cohesive end into a flush end using DNA synthase, attach an EcoRI linker and add the Xho site to the EcoRI site. Next, the Xho site on the 5′ side of the HBc gene
Select the plasmid that replaced the EcoR site. The plasmid pHBcl thus obtained was incubated with EcoRI
After further digestion with BAL3l, a SalI linker is attached, and this is digested with restriction enzymes XhoI and SalI to obtain an HBc gene fragment from which the pre-C region of approximately 600 bp has been removed. This is inserted into the Sal site of shuttle vector pAM81 (see Japanese Patent Application No. 145093/1983) to obtain HBc expression vector pAC701. The above expression vector was transferred to the yeast fungus Saccharomyces
Cerevisiae AH22 [a leu2 his4 canl (Cir + )]
(Feikoken Jokyo No. 312) by transforming it in the same manner as described in the above Japanese patent application.
Transformed yeast Saccharomyces cerevisiae pAC301 and Saccharomyces cerevisiae pA701 capable of producing HBc antigen are obtained. A desired recombinant culture can be obtained by culturing these transformed yeast according to a conventional method. As a method for extracting HBc antigen from the above culture, first, bacterial cells are separated from the culture by centrifugation, and then disrupted in an appropriate buffer. The disruption methods include ultrasonic disruption, glass bead disruption, Manton-Gorlin disruption, or enzymatic dissolution of cell walls to form spheroplasts.
Various methods can be used, such as destroying it by acting on it with a surfactant, or a combination thereof. This cell destruction product is subjected to low-speed centrifugation to separate cell wall debris, and if necessary, is further filtered through a membrane filter to provide the HBc antigen raw material. In the present invention, the acids used in the acid addition treatment include inorganic acids such as hydrochloric acid, sulfuric acid, and phosphoric acid;
Examples include organic acids such as acetic acid and oxalic acid. In the acid addition treatment, the pH of the raw material liquid is adjusted by adding an acid so that the pH is 6 or less, preferably within the range of 5.0 to 5.5. Acid treatment temperature is 20℃
Hereinafter, the temperature is preferably 4 to 10°C. After adjusting the pH, the precipitate is centrifuged to obtain a supernatant containing the HBc antigen. Next, if necessary, purification and concentration operations are performed by salting out ammonium sulfate. Add aqueous ammonia at an appropriate concentration to the HBc antigen-containing supernatant obtained by acid addition treatment, and add ammonium sulfate while maintaining the pH of the supernatant in the range of 6.0 to 8.0 to precipitate the HBc antigen. ,
This is centrifuged to separate it from the supernatant. The obtained precipitate is dissolved in a suitable neutral buffer solution with an ionic strength of about 0.001 to 1.0, such as 0.1M phosphate buffer, and dialyzed against the same buffer solution using an anion exchanger. Use as material for chromatography. If ammonium sulfate precipitation is not performed, add aqueous ammonia to the HBc antigen-containing supernatant to adjust the pH to approximately 7.0, then dilute or dialyze with the same buffer as above to use as a material for chromatography. . As the anion exchanger used in the present invention, anion exchangers having diethylaminoethyl as a functional group are most effective, including DEAE-Sephadex A-25, DEAE-Sephadex A-50, DEAE
- Commercially available under the names of Cepharose, DEAE-Sefacel (manufactured by Pharmacia Fine Chemicals), DEAE Bio-Gel A, Selex D (manufactured by Bio-Rad), and DEAE-Cellofine (manufactured by Biochemical Engineering Co., Ltd.). , all of these are used. Ion exchange chromatography using this anion exchanger is performed by the following method. Adsorption of HBc antigen to an anion exchanger can be carried out by both a column method and a batch method.
In the column method, equilibration is performed by passing the same buffer solution used in preparing the chromatography material through a column packed with an anion exchanger.
Contaminant substances derived from the host are separated by passing liquid through the material and adsorbing the HBc antigen. After the completion of the liquid passage, the equilibration buffer is passed through the column, and the column is washed to wash out impurities, and then subjected to the elution procedure described below. In addition, in the batch method, an anion exchanger equilibrated with a buffer solution is added to the material solution, and the anion exchanger is added at a slow rate.
Stir for about 0.5 to 2 hours to adsorb HBc antigen.
After adsorption, the anion exchanger is collected on a filter, an equilibration buffer is added to the gel, and washing and filtration separation are repeated several times, followed by an elution operation. In addition, even in the case of adsorption by this batch method, it is preferable to perform elution using a column filled with an anion exchanger that has adsorbed the HBc antigen. For elution, the ionic strength is about 0.01 to 0.5,
Then, step elution or concentration gradient elution is performed using a near-neutral buffer solution with higher ionic strength than the equilibration buffer solution to separate and elute adsorbed contaminants and HBc antigen, and to obtain a fraction containing HBc antigen. Separate. Concentration gradient elution is, for example, 0.01M→
A 0.5M phosphate buffer concentration gradient may be used;
A 0.01 to 0.5M concentration gradient of 0.01M phosphate buffer with saline added may be used, or other suitable concentration gradient buffers that can effectively decompose the HBc antigen and contaminants may also be used. In the case of stepwise elution, the HBc antigen or contaminants are highly purified by passing through a buffer with an ionic strength that elutes only one, followed by a buffer with a higher ionic strength. Ta
Fractions containing HBc antigen are collected. The HBc antigen obtained in this way is further
Highly purified by sucrose step gradient centrifugation or sucrose linear gradient centrifugation, followed by sedimentation equilibrium centrifugation or linear gradient centrifugation using cesium chloride.
HBc antigen can be obtained. In addition, a combination of ion exchange chromatography and hydroxyapatite chromatography is useful for increasing the degree of purification in ion exchange chromatography, or for improving the degree of purification when a wide range of fractions containing HBc antigens are pooled. be. Hydroxyapatite is a gel for affinity chromatography whose component is calcium phosphate.
Hydroxyapatite (Seikagaku Kogyo Co., Ltd., ALBIOCHEM)
- BEHRING), Hydroxylapatite (Bio-Rsd
It is marketed under the name of ``Company''. That is, the fraction containing the HBc antigen was dialyzed against a suitable near-neutral buffer with an ionic strength of about 0.01 to 0.2, such as 0.1M phosphate buffer, or diluted with the same buffer. When the solution is then passed through a hydroxyapatite column that has been equilibrated with the same buffer, the HBc antigen is not adsorbed and is collected in the flow-through fraction. The present inventors used chromatography gels such as CM cellulose, CM sepharose, and phosphate cellulose in place of anion exchangers under various conditions to purify recombinant-derived HBc antigen. However, the purification effect could hardly be obtained. Next, the present invention will be explained in more detail with reference to Examples. Example 1-1 Recombinant yeast Satucharomyces cerevisiae
After culturing AH22pho80/pAC.701, approximately 600 g of bacterial cells collected by centrifugation were added with 50 mM phosphate buffer (PH
7.2) Add 3 and apply this at a pressure of 600Kg/cm 2 to about 3
The microbial cells are destroyed by passing through a Manton-Gorlin crusher for some time. The bacterial cell debris is centrifuged to separate coarse bacterial cell fragments to obtain a crude HBc antigen extract with an HBe antigen activity of about 30,000 cpm [400-fold dilution, RIA kit: HBeRIA kit (manufactured by Abbott)]. Next, add acetic acid dropwise to the crude extract while checking with a PH meter to adjust the PH to 5.4. Approximately at 4℃
After stirring for 30 minutes, remove the precipitate by centrifugation. Add ammonia water to the centrifuged supernatant and adjust the pH to approximately
6.5, gradually add ammonium sulfate to a final concentration of 2.5M. After stirring at 4°C for 30 minutes and standing overnight, the precipitate containing the HBc antigen was separated and collected by centrifugation. The collected precipitate was added to 10mM phosphate buffer, 50mM
Suspend in approximately 300 ml of potassium chloride (PH7.3) and dialyze against approximately 100 times the volume of the same buffer in a dialysis tube. After dialysis, the HBc antigen was diluted approximately 3 times with 10mM phosphate buffer and 50mM potassium chloride (PH7.3) and added to a DEAE-cellulose column (gel volume approximately 1) that had been equilibrated with the same buffer. to be adsorbed. After thoroughly washing the column with equilibration buffer, elution is carried out by passing a 50mM to 500mM potassium chloride concentration gradient phosphate buffer of approximately 4.0.
Collect the fraction containing HBc antigen. The collected fractions were pooled and concentrated using an ultrafiltration concentrator Amicon TCF-10 (manufactured by Amicon), and 60% sucrose solution, 20% sucrose solution, and HBc antigen concentrated solution were placed in ultracentrifuge tubes.
10ml, 35ml, 35ml layered, 19 at 30000 rpm, 4℃
Ultracentrifugation is performed for hours to concentrate and purify the HBc antigen at the sucrose liquid layer interface. The obtained HBc antigen fraction was mixed with 50mM Tris-HCl,
After dialyzing against 150mM sodium chloride and 1mMEDTA (PH7.5), cesium chloride was added to a concentration of 1.32g/ml, and the mixture was ultracentrifuged at 30,000 rpm and 4°C for 60 hours to obtain concentrated and purified HBc antigen. obtain. The recovery rate and degree of purification of HBc antigen up to each step are shown in Table 1-1.

【表】 実施例 1−2 実施例1−1と全く同一条件でHBc抗原を蔗
糖液層界面に濃縮、精製する。 えられたHBc抗原画分を0.1Mリン酸緩衝液
(PH7.3)に対して透析した後、同緩衝液で平衡化
しておいたハイドロキシアパタイトカラムに通液
する。素通り画分に回収されたHBc抗原を含む
画分をプールしたのち、塩化セシウムを1.32g/
mlの濃度になるように加えて、30000rpm、4℃
で60時間超遠心し、濃縮、精製されたHBc抗原
を得る。 このときのHBc抗原の回収率および精製度は
第1−2表に示すとおりである。
[Table] Example 1-2 HBc antigen was concentrated and purified at the sucrose liquid layer interface under exactly the same conditions as in Example 1-1. The obtained HBc antigen fraction is dialyzed against 0.1M phosphate buffer (PH7.3), and then passed through a hydroxyapatite column equilibrated with the same buffer. After pooling the HBc antigen-containing fractions collected in the flow-through fraction, cesium chloride was added at 1.32 g/
ml concentration, 30000 rpm, 4℃
Ultracentrifuge for 60 hours to obtain concentrated and purified HBc antigen. The recovery rate and degree of purification of the HBc antigen at this time are as shown in Table 1-2.

【表】 実施例 2 組換え酵母サツカロミセス・セレビシエ
AH22pho80/pAC701を培養後、遠心により集菌
した菌体(100g)に50mMリン酸緩衝液(PH
7.2)500mlを加え、これを約90分間、4℃で超音
波処理にかけ、菌体を破壊する。これを実施例1
と同様にして遠心により菌体破片を除き、粗抽出
液を得る。 この粗抽出液について実施例1と同様に精製処
理してHBc抗原を得る。各工程までのHBc抗原
の回収率および精製度を第2表に示す。
[Table] Example 2 Recombinant yeast Satucharomyces cerevisiae
After culturing AH22pho80/pAC701, the cells (100g) collected by centrifugation were added to 50mM phosphate buffer (PH
7.2) Add 500ml and subject it to ultrasonication at 4℃ for about 90 minutes to destroy the bacterial cells. Example 1
In the same manner as above, remove bacterial cell debris by centrifugation to obtain a crude extract. This crude extract is purified in the same manner as in Example 1 to obtain HBc antigen. Table 2 shows the recovery rate and degree of purification of HBc antigen up to each step.

【表】 実施例 3 組換え酵母サツカロミセス・セレビシエ
AH22pho80/pAC701を培養後、遠心により集菌
した菌体(200g)に100μg/mlのザイモリエー
ス(生化学工業製)を含む50mMリン酸カリウム
緩衝液(PH7.2)600mlを加え、30℃で30分間撹拌
し、遠心してスフエロプラスト化した酵母を沈澱
として得る。この沈澱に0.1%トリトンX100を含
む50mMリン酸緩衝液(PH7.2)200mlを加え、室
温で1時間撹拌し、溶菌液を得、これを遠心して
菌体破片を除き、粗抽出液を得る。 この粗抽出液に40%(w/w)ポリエチレング
リコール6000を加えて、ポリエチレングリコール
最終濃度3%とする。4℃で1時間撹拌後、遠心
により上清を除き、沈澱に10mMリン酸カリウム
緩衝液、50mM塩化カリウム(PH7.2)80mlを加
えて、懸濁する。この懸濁液を5分間超音波処理
して可溶化する。これを10mMリン酸カリウム緩
衝液、50mMKCl(PH7.2)に対して4℃1晩透析
後、DEAE−セルロースに添加する。以下、実施
例1と同様にして精製処理してHBc抗原を得る。
各工程までのHBc抗原の回収率および精製度を
第3表に示す。
[Table] Example 3 Recombinant yeast Satucharomyces cerevisiae
After culturing AH22pho80/pAC701, 600ml of 50mM potassium phosphate buffer (PH7.2) containing 100μg/ml of Zymolyase (Seikagaku Corporation) was added to the bacterial cells (200g) collected by centrifugation, and incubated at 30°C for 30 minutes. Stir for a minute and centrifuge to obtain spheroplasted yeast as a precipitate. Add 200ml of 50mM phosphate buffer (PH7.2) containing 0.1% Triton . Add 40% (w/w) polyethylene glycol 6000 to this crude extract to give a final polyethylene glycol concentration of 3%. After stirring at 4°C for 1 hour, remove the supernatant by centrifugation, and suspend the precipitate by adding 80 ml of 10 mM potassium phosphate buffer and 50 mM potassium chloride (PH7.2). This suspension is solubilized by sonication for 5 minutes. This is dialyzed overnight at 4°C against 10mM potassium phosphate buffer and 50mM KCl (PH7.2), and then added to DEAE-cellulose. The HBc antigen is then purified in the same manner as in Example 1 to obtain the HBc antigen.
Table 3 shows the recovery rate and degree of purification of HBc antigen up to each step.

【表】【table】

Claims (1)

【特許請求の範囲】 1 組換えDNA技術によつて得られるHBc抗原
産生能を有する形質転換体で発現生成される
HBc抗原を含有するHBc抗原原材料を、PHが6
を越えない範囲で酸処理し、沈澱した脂質及び夾
雑蛋白質を除去したのち、該酸処理された溶液を
陰イオン交換体によるイオン交換クロマトグラフ
イーにかけることを特徴とするHBc抗原の精製
方法。 2 該酸処理後、酸処理された溶液を硫安塩析
し、ついでイオン交換クロマトグラフイーに付す
前記第1項記載の方法。 3 HBc抗原を含有するHBc抗原原材料が、形
質転換細胞を超音波破砕、グラスビーズ破砕、マ
ントン・ゴーリン破砕、界面活性処理またはそれ
らの組み合わせにより破壊して得られるHBc抗
原粗抽出物である前記第1項記載の方法。 4 酸処理に用いる酸が、塩酸、硫酸、リン酸、
酢酸、シユウ酸から選ばれる少なくとも1種であ
る前記第1項記載の方法。 5 イオン交換クロマトグラフイーにおける陰イ
オン交換体としてジエチルアミノエチル基を官能
基とする陰イオン交換体を用いる前記第1項記載
の方法。 6 イオン交換クロマトグラフイーが、HBc抗
原をイオン交換体に吸着させるためにHBc抗原
含有溶液を少なくとも0.001のイオン強度を有す
る緩衝液で平衡化された陰イオン交換体に接触さ
せ、ついでイオン交換体の平衡化に用いた緩衝液
よりも高い0.01から0.5のイオン強度を有する緩
衝液で溶出させる工程からなる前記第1項記載の
方法。 7 イオン交換クロマトグラフイーをバツチ法あ
るいはカラム法で行なう前記第1項記載の方法。 8 イオン交換クロマトグラフイーとハイドロキ
シアパタイトクロマトグラフイーとを組み合わせ
て行なう前記第1項記載の方法。
[Claims] 1. Expressed and produced in a transformant having the ability to produce HBc antigen obtained by recombinant DNA technology
HBc antigen raw material containing HBc antigen has a pH of 6.
1. A method for purifying HBc antigen, which comprises treating with an acid to remove precipitated lipids and contaminant proteins, and then subjecting the acid-treated solution to ion exchange chromatography using an anion exchanger. 2. The method according to item 1, wherein after the acid treatment, the acid-treated solution is salted out with ammonium sulfate and then subjected to ion exchange chromatography. 3. The HBc antigen raw material containing the HBc antigen is an HBc antigen crude extract obtained by disrupting transformed cells by ultrasonic disruption, glass bead disruption, Manton-Gorlin disruption, surfactant treatment, or a combination thereof. The method described in Section 1. 4 The acid used for acid treatment is hydrochloric acid, sulfuric acid, phosphoric acid,
The method according to item 1 above, wherein at least one selected from acetic acid and oxalic acid is used. 5. The method according to item 1 above, in which an anion exchanger having a diethylaminoethyl group as a functional group is used as an anion exchanger in ion exchange chromatography. 6 Ion exchange chromatography involves contacting the HBc antigen-containing solution with an anion exchanger equilibrated with a buffer having an ionic strength of at least 0.001 in order to adsorb the HBc antigen onto the ion exchanger; 2. The method according to item 1, comprising the step of eluting with a buffer solution having an ionic strength of 0.01 to 0.5 higher than that of the buffer solution used for equilibration. 7. The method according to item 1 above, wherein the ion exchange chromatography is carried out by a batch method or a column method. 8. The method according to item 1 above, wherein ion exchange chromatography and hydroxyapatite chromatography are carried out in combination.
JP59271432A 1984-12-21 1984-12-21 Purification of hbc antigen Granted JPS61148127A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP59271432A JPS61148127A (en) 1984-12-21 1984-12-21 Purification of hbc antigen
CA000498178A CA1268437A (en) 1984-12-21 1985-12-19 Method for purification of hbc antigen and method for measurement of hbc antibody by using said purified hbc antigen
AT85116388T ATE66679T1 (en) 1984-12-21 1985-12-20 METHODS FOR PURIFYING HBC ANTIGEN AND METHODS FOR MEASURING HBC ANTIBODIES WITH SUCH PURIFIED HBC ANTIGEN.
KR1019850009659A KR930012113B1 (en) 1984-12-21 1985-12-20 Method for purification of hbc antigen and method for measurement of hbc antibody
DE8585116388T DE3583927D1 (en) 1984-12-21 1985-12-20 METHOD FOR CLEANING HBC ANTIQUE AND METHOD FOR MEASURING HBC ANTIBODY WITH THIS CLEANED HBC ANTIQUE.
EP85116388A EP0185391B1 (en) 1984-12-21 1985-12-20 Method for the purification of the hbc antigen and method for the measurement of hbc antibodies by using said purified hbc antigen
US06/811,399 US4839277A (en) 1984-12-21 1985-12-20 Method for purification of HBc antigen and method for measurement of HBc antibody by using said purified HBc antigen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59271432A JPS61148127A (en) 1984-12-21 1984-12-21 Purification of hbc antigen

Publications (2)

Publication Number Publication Date
JPS61148127A JPS61148127A (en) 1986-07-05
JPH0574599B2 true JPH0574599B2 (en) 1993-10-18

Family

ID=17499948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59271432A Granted JPS61148127A (en) 1984-12-21 1984-12-21 Purification of hbc antigen

Country Status (1)

Country Link
JP (1) JPS61148127A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0256499A (en) * 1988-08-19 1990-02-26 Rikagaku Kenkyusho Purification of tenascins
KR100312534B1 (en) * 1993-04-28 2002-05-13 성재갑 Immunoblot kit for simultaneous detecting antibodies to hepatitis c virus and hepatitis b virus and immunoblot analysis

Also Published As

Publication number Publication date
JPS61148127A (en) 1986-07-05

Similar Documents

Publication Publication Date Title
JP2721699B2 (en) Purification of hepatitis protein
CA1272457A (en) Process for the extraction and purification of proteins from culture media producing them
JPS63105693A (en) Extraction of oleophilic protein from cell
KR880002586B1 (en) Method for purification of hepatitis b virus surface antigen
JPH0450294B2 (en)
JPS60197629A (en) Method of purification of hbs antigen
JPH051280B2 (en)
JPH0585526B2 (en)
RU2122430C1 (en) Method of purification of hepatitis b surface antigen containing pre-s2-peptide from recombinant yeast cells, vaccine for immunization against hepatitis b
JPH0574599B2 (en)
JPH01258627A (en) Purification of recombinant hepatisis antigen
JPH10101696A (en) Removal of contaminants included in protein expressed in transformant and purified protein therefrom
KR100194247B1 (en) Method for Purifying Recombinant Hepatitis B Surface Antigen
KR100251015B1 (en) Method for purification of hepatitis b virus surface antigen
KR0159716B1 (en) Process for the purification of hepatitis b surface antigen
JP3508149B2 (en) Human serum albumin and method for producing the same
JPH0548240B2 (en)
KR100307186B1 (en) Purification method of ubns4e12-ii
EP0408742B1 (en) Method for production and purification of hepatitis b vaccine
KR930012108B1 (en) Method for purification of korea type hcv antigen khcv ub 897 protein
KR0122431B1 (en) A process for preparing hepatitis b surface antigen particles containing low sugars
JPS61209357A (en) Measurement of hbc antibody
JPS59164727A (en) Purification of surface antigen of hepatitis virus b
JPH0235726B2 (en)
JPS62209099A (en) Isolation of alpha 2-antiplasmin and preparation of product sterilized at low temperature

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term