JPH0574225B2 - - Google Patents

Info

Publication number
JPH0574225B2
JPH0574225B2 JP2064192A JP6419290A JPH0574225B2 JP H0574225 B2 JPH0574225 B2 JP H0574225B2 JP 2064192 A JP2064192 A JP 2064192A JP 6419290 A JP6419290 A JP 6419290A JP H0574225 B2 JPH0574225 B2 JP H0574225B2
Authority
JP
Japan
Prior art keywords
sample
temperature
stage
heater
sample stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2064192A
Other languages
Japanese (ja)
Other versions
JPH02290038A (en
Inventor
Takeo Nemoto
Hisanao Ogata
Kazumasa Fujioka
Naoyuki Tamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6419290A priority Critical patent/JPH02290038A/en
Publication of JPH02290038A publication Critical patent/JPH02290038A/en
Publication of JPH0574225B2 publication Critical patent/JPH0574225B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、試料温度の制御装置に係り、特に、
短時間に試料の温度を可変することのできる試料
温度制御装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a sample temperature control device, and in particular,
The present invention relates to a sample temperature control device that can vary the temperature of a sample in a short time.

〔従来の技術〕 従来の技術は、実開昭59−91734号公報に記載
のように発熱部の上に冷却部が重ねて設けられ、
更に、その冷却部の表面に試料を搭載する構造と
なつたいた。しかし、発熱部のヒータ加熱によつ
て短時間に試料の温度を制御する場合、発熱部と
試料間に冷却部があるため、発熱部の熱が試料に
伝わりにくく、試料の温度制御の応答速度が悪く
なつていた。
[Prior art] In the conventional technology, as described in Japanese Utility Model Application Publication No. 59-91734, a cooling part is provided on top of a heat generating part.
Furthermore, the structure was such that the sample was mounted on the surface of the cooling section. However, when controlling the temperature of the sample in a short time by heating the heater in the heat generating part, since there is a cooling part between the heat generating part and the sample, it is difficult for the heat in the heat generating part to be transferred to the sample, and the response speed of the sample temperature control is was getting worse.

尚、特開昭59−86235号公報、同59−57444号公
報には冷却手段と温度加熱手段とを併存させた装
置が開示されている。
Incidentally, Japanese Unexamined Patent Publications Nos. 59-86235 and 59-57444 disclose devices in which a cooling means and a temperature heating means are combined.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

実開昭59−91734号公報記載の技術は、温度を
制御する試料と発熱部の間に冷却部があるため、
発熱部の熱は、冷却部を介して試料に伝わつてい
く。このため、冷却部の熱容量により発熱部から
試料へ伝わる熱の応答性が悪くなつていた。
The technology described in Japanese Utility Model Application Publication No. 59-91734 has a cooling section between the sample whose temperature is controlled and the heat generating section.
Heat from the heat generating section is transmitted to the sample via the cooling section. For this reason, the responsiveness of heat transmitted from the heat generating part to the sample has deteriorated due to the heat capacity of the cooling part.

また、特開昭59−86235号、同59−57444号公報
記載の技術では、加熱・急冷は円滑に対処できた
としても中間温度の調節は応答性に問題があつ
た。これはヒータを切つてから自然放冷を待つた
めで(冷媒に浸漬したのでは急冷となつてしまう
から)、ガス層による自然対流に依存しているか
らである。
Furthermore, in the techniques described in Japanese Patent Application Laid-Open Nos. 59-86235 and 59-57444, even though heating and rapid cooling could be smoothly handled, there was a problem in the responsiveness of adjusting the intermediate temperature. This is because the heater is turned off and then allowed to cool naturally (if immersed in a refrigerant, it would cool rapidly), and it relies on natural convection due to the gas layer.

本発明の目的は、試料の温度の応答性を良くす
ること及び試料として半導体を想定しているため
試料台の材質としてAl2O3やSiC等のセラミツク
スで形成することにより試料と試料台間に発生す
る熱応力を小さくすることにある。
The purpose of the present invention is to improve the temperature response of the sample, and since the sample is assumed to be a semiconductor, the material of the sample stage is made of ceramics such as Al 2 O 3 or SiC, so that the distance between the sample and the sample stage is improved. The aim is to reduce the thermal stress generated in the process.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、薄膜状のヒータを埋め込んだ高熱
伝導率または高温度伝導率のセラミツクスの試料
台を容積可変かつ着脱自在の冷却部に取り付け
て、ヒータ加熱と沸騰冷却の併用によつて温度制
御することにより達成される。こうして試料台上
の試料の温度を制御を速め、また試料に熱応力が
かからない試料温度制御装置が得られる。
The above purpose is to attach a sample stage made of high thermal conductivity or high temperature conductivity ceramics with a thin film heater embedded in it to a variable volume and detachable cooling section, and to control the temperature by combining heating with the heater and boiling cooling. This is achieved by In this way, it is possible to obtain a sample temperature control device that speeds up control of the temperature of the sample on the sample stage and does not apply thermal stress to the sample.

すなわち本発明の試料温度制御装置は、真空容
器内冷媒室27と被温度制御試料1を配置する試
料台2との間を着脱可能な構造とし、前記試料台
2はセラミツクス製とし、この試料台2の前記冷
媒室側の面にはヒータ3を埋め込み、該試料台2
の該ヒータ埋め込み面とは反対側の面に前記試料
1を配置し、更に前記ヒータ埋め込み面側の試料
台表面と密着し得るように冷却ステージ9を設
け、該冷却ステージ9を底面とする容積可変の室
16を形成し、該室16に液体冷媒の供給配管1
2と気化冷媒の吐出配管17とを開口させてなる
ことを特徴とする。
That is, the sample temperature control device of the present invention has a structure in which the refrigerant chamber 27 in the vacuum container and the sample stage 2 on which the temperature-controlled sample 1 is placed can be attached and detached, the sample stage 2 is made of ceramics, and the sample stage 2 is made of ceramics. A heater 3 is embedded in the refrigerant chamber side surface of the sample stage 2.
The sample 1 is placed on the surface opposite to the heater embedded surface, and a cooling stage 9 is provided so as to be in close contact with the sample stage surface on the heater embedded surface side, and a volume with the cooling stage 9 as the bottom surface is provided. A variable chamber 16 is formed, and a liquid refrigerant supply pipe 1 is connected to the chamber 16.
2 and a vaporized refrigerant discharge pipe 17 are opened.

〔作用〕[Effect]

冷却部に取り付けた試料台は、高熱伝導率のセ
ラミツクスで形成され、しかも、試料台に薄膜状
のヒータが埋め込まれている。試料台に取り付け
た試料台の温度は、試料台が熱を伝え易い性質が
あるため冷却部の温度とほぼ等しくなる。
The sample stage attached to the cooling section is made of ceramics with high thermal conductivity, and a thin film heater is embedded in the sample stage. The temperature of the sample stand attached to the sample stand is approximately equal to the temperature of the cooling section because the sample stand has a property of easily transmitting heat.

また、試料の温度と冷却部の温度以上に設定し
たい場合、試料台の温度をモニタとしてヒータの
加熱量を調整すると試料台の温度を任意に設定で
き、試料自体も試料台と熱伝導率の高い材料を介
することで試料台の温度の値とほぼ等しくできる
ことから、試料温度は冷却部からの熱量と試料台
のヒータの熱量のバランスにより任意に設定、制
御が可能となる。
In addition, if you want to set the temperature of the sample higher than the temperature of the cooling part, you can set the temperature of the sample stand arbitrarily by adjusting the heating amount of the heater while monitoring the temperature of the sample stand. Since the temperature can be made almost equal to that of the sample stage by using a high-quality material, the sample temperature can be arbitrarily set and controlled by adjusting the balance between the amount of heat from the cooling section and the amount of heat from the heater of the sample stage.

また、試料と試料台のヒータを隣接して構成す
るため、ヒータ加熱による試料の熱応答は無駄時
間も少なくできることから速応性の温度制御が可
能となる。
Furthermore, since the heaters for the sample and the sample stage are arranged adjacent to each other, the thermal response of the sample due to heating by the heaters can reduce wasted time, making it possible to quickly control the temperature.

更に本発明では、試料が所定温度以上に上がつ
た場合でも沸騰冷却により冷却可能である。すな
わち、冷却ステージを底面とする室内に液体冷媒
を流入せしめ、冷却ステージ面で沸騰冷却を行
い、気化した冷媒を排出させる。この際温度調節
は冷媒加熱によるボイド発生で加減できる。
Furthermore, in the present invention, even if the sample temperature rises above a predetermined temperature, it can be cooled by boiling. That is, liquid refrigerant is caused to flow into a chamber with the cooling stage as the bottom surface, evaporative cooling is performed on the surface of the cooling stage, and vaporized refrigerant is discharged. At this time, the temperature can be adjusted by generating voids by heating the refrigerant.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図及び第2図
a,bにより説明する。試料1は、インジユウ
ム、ガリウム、半田等(図示せず)で、高熱伝導
材である炭化けい素(SiC)やアルミナ(Al2O3
等のセラミツクスの試料台2に貼付けている。ま
た、試料1を取り付けてない試料台2の片面に
は、電気的に絶縁された薄膜状のヒータ3が埋め
込まれており、ヒータ3のリード線4は試料台2
の外周まで導かれてリード線の端子5に結線され
ている。ここで、リード線4と端子5は、試料台
2といずれも電気絶縁が施されている。
An embodiment of the present invention will be described below with reference to FIG. 1 and FIGS. 2a and 2b. Sample 1 is made of indium, gallium, solder, etc. (not shown), and silicon carbide (SiC) and alumina (Al 2 O 3 ), which are highly thermally conductive materials.
It is attached to a ceramic sample stand 2 such as. In addition, an electrically insulated thin film heater 3 is embedded in one side of the sample stand 2 to which the sample 1 is not attached, and the lead wire 4 of the heater 3 is connected to the sample stand 2.
The lead wire is led to the outer periphery of the lead wire and connected to the terminal 5 of the lead wire. Here, both the lead wire 4 and the terminal 5 are electrically insulated from the sample stage 2.

試料台2は、試料台2の外周上に溝6が彫つて
あり、バヨネツト7(保持手段)によりブロツク
8に連結される。ブロツク8の下方には室16を
形成するため試料台2と対接する冷却ステージ9
がベローズ10を介して気密に取り付けてある。
冷却ステージ9は、鋼、アルミニウム、しんちゆ
う、ステンレス鋼等の材質でできている。尚、符
号27は冷媒室である。
The sample stage 2 has a groove 6 carved on its outer periphery, and is connected to a block 8 by a bayonet 7 (holding means). Below the block 8 is a cooling stage 9 that is in contact with the sample stage 2 to form a chamber 16.
are airtightly attached via bellows 10.
The cooling stage 9 is made of a material such as steel, aluminum, steel, or stainless steel. In addition, the code|symbol 27 is a refrigerant|coolant chamber.

第1の冷媒11の供給配管12は第2の冷媒1
3を貯めた容器14中のらせん管15、室16を
経て吐出配管17に至る。符号18は、容器14
を保持する支持体で、符号19,20は、冷媒1
3の注入管とガス吐出管である。
The supply pipe 12 of the first refrigerant 11 is connected to the second refrigerant 1
The discharge pipe 17 is reached through a spiral pipe 15 and a chamber 16 in a container 14 in which 3 is stored. Reference numeral 18 indicates the container 14
Reference numerals 19 and 20 indicate the support for holding the refrigerant 1.
No. 3 injection pipe and gas discharge pipe.

第2図a,bは、第1図に示したバヨネツト7
の付近を分解して示す斜視図である。ヒータ3
は、試料台2に熱を均一に伝えるため、試料台2
の全体に薄膜状のヒータ3を取り付けている。ヒ
ータ3への電流供給は、試料台2を本装置に取り
付けたとき外部のリード線と結線されるようにな
つている。つまり、リード線の端子5は、試料台
の端子用溝22の中のバネ21の上部に接触され
ており、試料台2を本装置に取り付けたときバヨ
ネツト7のリード端子23と接触し温度調節器2
4と通電される。
Figures 2a and b show the bayonet 7 shown in Figure 1.
FIG. Heater 3
In order to uniformly transfer heat to the sample stand 2,
A thin film heater 3 is attached to the entire area. Current supply to the heater 3 is connected to an external lead wire when the sample stage 2 is attached to the apparatus. In other words, the terminal 5 of the lead wire is in contact with the upper part of the spring 21 in the terminal groove 22 of the sample stand, and when the sample stand 2 is attached to this apparatus, it comes into contact with the lead terminal 23 of the bayonet 7 and adjusts the temperature. Vessel 2
4 and is energized.

次に動作について説明すると、ヒータ3、試料
1を高温に加熱したいとき、容器14内の冷媒1
3を空にした状態で温度調節器24の温度設定を
任意の温度にセツトすることで、試料台2の表面
温度(感熱素子位置図示せず)の信号を温度調節
器24が受け、温度調節器24内部で自動的にヒ
ータ3の電流がコントロールされて任意の試料台
2の温度が得られる。
Next, to explain the operation, when it is desired to heat the heater 3 and the sample 1 to a high temperature, the refrigerant 1 in the container 14
By setting the temperature setting of the temperature controller 24 to an arbitrary temperature with the sample stage 3 empty, the temperature controller 24 receives a signal of the surface temperature of the sample stage 2 (thermal element position not shown) and adjusts the temperature. The current of the heater 3 is automatically controlled inside the container 24 to obtain an arbitrary temperature of the sample stage 2.

試料1の温度は、試料1と試料台2の間のイン
ジユウム(図示せず)が試料台2の熱を受け更に
試料1へと伝えられて試料台2の温度と等しくな
る。従つて試料1の温度も任意の温度に設定する
ことができる。
The temperature of the sample 1 becomes equal to the temperature of the sample holder 2 because an indium (not shown) between the sample 1 and the sample holder 2 receives heat from the sample holder 2 and further transfers it to the sample 1. Therefore, the temperature of the sample 1 can also be set to any desired temperature.

試料1は、薄膜状ヒータ3を埋め込んだ試料台
2にインジユウムで接着されているため、無駄時
間もなく、しかも熱容量が小さくできることから
熱応答性も良い。また、外部から試料へ電子ビー
ムのような熱照射による熱的外乱を受けた場合に
おいても、熱容量が小さいことと、試料1に最も
近い試料台2に薄膜状ヒータ3を直接取り付けて
いるため熱的外乱に強くなつているので設定温度
に回復するのが早くなつている。
Since the sample 1 is bonded with indium to the sample stage 2 in which the thin film heater 3 is embedded, there is no wasted time, and the heat capacity can be reduced, so that the thermal response is good. In addition, even if the sample is subjected to thermal disturbance due to thermal irradiation such as an electron beam from the outside, the heat capacity is small and because the thin film heater 3 is directly attached to the sample stage 2 closest to the sample 1, the heat Since it is more resistant to external disturbances, the temperature returns to the set temperature faster.

これとは逆に、試料1の温度を常温以下の低温
にしたい場合、例えば試料1の温度を液体窒素温
度にするときは、第1図に示した装置の温度調器
24をのぞいた部分を真空容器(図示せず)に入
れて行う。これは、冷媒13として液体窒素を使
用するため、真空断熱により液体窒素の蒸発量を
少なくする目的である。
On the contrary, if you want to lower the temperature of sample 1 to below room temperature, for example, if you want to lower the temperature of sample 1 to liquid nitrogen temperature, use the part of the apparatus shown in FIG. 1 except for the temperature regulator 24. It is carried out in a vacuum container (not shown). This is because liquid nitrogen is used as the refrigerant 13, so the purpose is to reduce the amount of evaporation of liquid nitrogen through vacuum insulation.

冷媒11として窒素ガスを供給配管12より注
入する。窒素ガスは、途中のらせん管15で冷却
されらせん管15出口では液化し、液体窒素とな
る。その液体窒素は、ブロツク8と冷却ステージ
9で形成された室16を通過するとき高温のブロ
ツク8と冷却ステージ9の熱を奪い冷却ステージ
9を低温に冷却する。液体窒素は、冷却ステージ
の熱を受けて蒸発し、ガス化して、吐出配管17
から大気中に出る。
Nitrogen gas is injected as the refrigerant 11 from the supply pipe 12 . The nitrogen gas is cooled in the helical tube 15 in the middle and liquefied at the outlet of the helical tube 15 to become liquid nitrogen. When the liquid nitrogen passes through a chamber 16 formed by the block 8 and the cooling stage 9, it removes heat from the high temperature block 8 and the cooling stage 9 and cools the cooling stage 9 to a low temperature. The liquid nitrogen receives heat from the cooling stage, evaporates, becomes gas, and flows through the discharge pipe 17.
into the atmosphere.

供給配管12からの窒素ガスの注入を続けると
冷却ステージ9の温度は、徐々に低温になり、最
終的に液体窒素温度となる。更に、試料1も冷却
ステージ9に接触している試料台2を介して冷た
い熱が伝わつて液体窒素温度となる。
As the nitrogen gas is continued to be injected from the supply pipe 12, the temperature of the cooling stage 9 gradually decreases and finally reaches the temperature of liquid nitrogen. Furthermore, cold heat is transferred to the sample 1 via the sample stage 2 which is in contact with the cooling stage 9, and the sample 1 reaches the temperature of liquid nitrogen.

ここで、冷却ステージ9と試料台2の接触面圧
は、本装置内の真空(10-5Torr以下)と室16
の圧力(大気圧)の圧力差により冷却ステージ9
上面に1atmの圧力が加わり、そして、ベローズ
10が伸びて、冷却ステージ9と試料台2の接触
する構造となつている。
Here, the contact surface pressure between the cooling stage 9 and the sample stage 2 is the vacuum inside this device (10 -5 Torr or less) and the pressure in the chamber 16.
Cooling stage 9 due to the pressure difference between (atmospheric pressure)
A pressure of 1 atm is applied to the upper surface, and the bellows 10 is extended, so that the cooling stage 9 and the sample stage 2 are in contact with each other.

試料1の冷却機構は、この冷却ステージ9がベ
ローズの伸縮によつて試料台2と接触することに
より冷たい熱を試料台2に伝えるものである。試
料1は、更に試料台2中の伝導によつて熱が伝わ
り、冷えてくる。
The cooling mechanism for the sample 1 is such that the cooling stage 9 contacts the sample stage 2 through expansion and contraction of the bellows, thereby transmitting cold heat to the sample stage 2. Heat is further transferred to the sample 1 by conduction in the sample stage 2, and the sample 1 cools down.

液体窒素温度より温度を上げるときは、冷媒1
1を供給している状態で試料台2に埋め込まれて
いるヒータに、温度調節器24で任意の温度に設
定し、熱負荷をかければよい。例えば、試料1を
80Kから150Kにしたいときには、感温素子(図
示せず)を試料台2に取り付けておき、その感温
素子の信号を温度調節器24に入力すれば、試料
台2の任意の温度が得られる。更に試料1も試料
台からの熱を受け、試料台2と等しい温度とな
る。
When raising the temperature above liquid nitrogen temperature, use refrigerant 1.
1 may be supplied to the heater embedded in the sample stage 2 by setting it to an arbitrary temperature using the temperature controller 24 and applying a thermal load. For example, sample 1
If you want to change the temperature from 80K to 150K, attach a temperature sensing element (not shown) to the sample stage 2 and input the signal from the temperature sensing element to the temperature controller 24 to obtain the desired temperature of the sample stage 2. . Furthermore, the sample 1 also receives heat from the sample stage, and has the same temperature as the sample stage 2.

従来問題とされていた試料温度の可変速度もヒ
ータを試料1の最も近い試料台に埋め込んでいる
ため、温度の応答速度も高く、任意の温度に速く
設定できる特徴をもつている。また、試料1に外
部からふく射熱等の熱的外乱が入つた場合におい
ても試料台2に取り付けた感温素子(図示せず)
がその熱を感知し温度調節器24でヒータの熱量
を自動制御するため、試料1の温度は、長時間に
わたり一定の温度を維持する特徴ももつている。
The variable speed of the sample temperature, which has been a problem in the past, is resolved because the heater is embedded in the sample stage closest to the sample 1, so the temperature response speed is high and any temperature can be set quickly. In addition, even if thermal disturbance such as radiated heat enters the sample 1 from the outside, the temperature sensing element (not shown) attached to the sample stage 2
senses the heat and automatically controls the amount of heat from the heater with the temperature controller 24, so the temperature of the sample 1 also has the characteristic of maintaining a constant temperature for a long time.

更にまた、試料としてSiの半導体部品を想定す
ると試料台の材質にはSiと同程度の熱膨脹係数を
もつAl2O3セラミツクスが熱歪を緩和する上で良
好である。
Furthermore, assuming that the sample is a semiconductor component made of Si, Al 2 O 3 ceramics, which has a coefficient of thermal expansion comparable to that of Si, is suitable for the material of the sample stage in terms of alleviating thermal strain.

第3図a,bは他の実施例に係り、セラミツク
スヒータ25を利用したものである。このセラミ
ツクスヒータは、セラミツクスの面上に薄膜のヒ
ータを取り付け、更に上面には電気絶縁膜が施さ
れている。
3a and 3b relate to another embodiment, in which a ceramic heater 25 is used. This ceramic heater has a thin film heater attached to the surface of the ceramic, and an electrically insulating film is further applied to the upper surface.

セラミツクスヒータ25の取り付け方法は、試
料台2にセラミツクスと同じ大きさの溝か穴26
を彫り、更にヒータと試料台とが熱的に接続され
るようにインジウム膜で薄く溝穴表面を覆い、そ
の上にセラミツクスヒータ25を取り付ける。こ
の方法によれば、セラミツクスヒータ25を取り
付けた場合においても、第1図及び第2図を使つ
て説明してきた薄膜状ヒータ埋め込み試料台と同
じ効果を得ることができる。
The method for installing the ceramic heater 25 is to install a groove or hole 26 in the sample stage 2 that is the same size as the ceramic.
Further, the surface of the slot is thinly covered with an indium film so that the heater and the sample stage are thermally connected, and a ceramic heater 25 is attached thereon. According to this method, even when the ceramic heater 25 is attached, it is possible to obtain the same effect as the sample stage with the thin film heater embedded, which has been explained using FIGS. 1 and 2.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、セラミツクスの試料台中に、
ヒータを埋め込むことにより、試料台上の基板に
速く熱を伝える効果がある。加えて、基板(Si等
の半導体部品)の熱膨張係数に近い焼結体を試料
台として用いたことにより熱歪を緩和する副次的
効果がある。
According to the present invention, in the ceramic sample stage,
Embedding the heater has the effect of quickly transmitting heat to the substrate on the sample stage. In addition, the use of a sintered body with a coefficient of thermal expansion close to that of the substrate (semiconductor component such as Si) as a sample stage has the secondary effect of alleviating thermal strain.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る試料温度制御
装置の縦断面図、第2図は第1図の試料台の解体
斜視図、第3図は本発明の他の実施例の説明図で
ある。 1…試料、2…試料台、3…ヒータ、4…リー
ド線、5…端子、6…溝、7…バヨネツト、8…
ブロツク、9…冷却ステージ、10…ベローズ、
11…第1の冷媒、12…供給配管、13…第2
の冷媒、14…容器、15…らせん管、16…
室、17…吐出配管、18…支持体、19…流入
管、20…ガス吐出管、21…バネ、22…端子
用溝、23…リード端子、24…温度調節器、2
5…セラミツクスヒータ、26…溝、27…冷媒
室。
FIG. 1 is a longitudinal sectional view of a sample temperature control device according to an embodiment of the present invention, FIG. 2 is an exploded perspective view of the sample stage of FIG. 1, and FIG. 3 is an explanatory diagram of another embodiment of the present invention. It is. 1...Sample, 2...Sample stage, 3...Heater, 4...Lead wire, 5...Terminal, 6...Groove, 7...Bayonet, 8...
Block, 9...Cooling stage, 10...Bellows,
11...First refrigerant, 12...Supply pipe, 13...Second
refrigerant, 14...container, 15... spiral tube, 16...
Chamber, 17...Discharge pipe, 18...Support, 19...Inflow pipe, 20...Gas discharge pipe, 21...Spring, 22...Terminal groove, 23...Lead terminal, 24...Temperature regulator, 2
5...Ceramics heater, 26...Groove, 27...Refrigerant chamber.

Claims (1)

【特許請求の範囲】[Claims] 1 真空容器内冷媒室27と被温度制御試料1を
配置する試料台2との間を着脱可能な構造とし、
前記試料台2はセラミツクス製とし、この試料台
2の前記冷媒室側の面にはヒータ3を埋め込み、
該試料台2の該ヒータ埋め込み面とは反対側の面
に前記試料1を配置し、更に前記ヒータ埋め込み
面側の試料台表面と密着し得るように冷却ステー
ジ9を設け、該冷却ステージ9を底面とする容積
可変の室16を形成し、該室16に液体冷媒の供
給配管12と気化冷媒の吐出配管17とを開口さ
せてなることを特徴とする試料温度制御装置。
1. A removable structure is provided between the refrigerant chamber 27 in the vacuum container and the sample stage 2 on which the temperature-controlled sample 1 is placed,
The sample stand 2 is made of ceramics, and a heater 3 is embedded in the surface of the sample stand 2 on the refrigerant chamber side.
The sample 1 is placed on the surface of the sample stage 2 opposite to the heater-embedded surface, and a cooling stage 9 is provided so as to be in close contact with the surface of the sample stage on the heater-embedded surface. A sample temperature control device characterized in that a chamber 16 having a variable volume is formed as a bottom surface, and a liquid refrigerant supply pipe 12 and a vaporized refrigerant discharge pipe 17 are opened in the chamber 16.
JP6419290A 1990-03-16 1990-03-16 Specimen temperature controlling device Granted JPH02290038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6419290A JPH02290038A (en) 1990-03-16 1990-03-16 Specimen temperature controlling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6419290A JPH02290038A (en) 1990-03-16 1990-03-16 Specimen temperature controlling device

Publications (2)

Publication Number Publication Date
JPH02290038A JPH02290038A (en) 1990-11-29
JPH0574225B2 true JPH0574225B2 (en) 1993-10-18

Family

ID=13250958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6419290A Granted JPH02290038A (en) 1990-03-16 1990-03-16 Specimen temperature controlling device

Country Status (1)

Country Link
JP (1) JPH02290038A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3331038B2 (en) * 1994-03-01 2002-10-07 小松エレクトロニクス株式会社 Temperature control device
CN111855736B (en) * 2020-03-18 2022-02-18 同济大学 Electricity card performance test system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5986235A (en) * 1982-11-09 1984-05-18 Shimada Phys & Chem Ind Co Ltd Method for measuring electric characteristics of semiconductor device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855602Y2 (en) * 1978-01-14 1983-12-20 京セラ株式会社 Heating element for measuring thermal resistance of semiconductor device storage packages

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5986235A (en) * 1982-11-09 1984-05-18 Shimada Phys & Chem Ind Co Ltd Method for measuring electric characteristics of semiconductor device

Also Published As

Publication number Publication date
JPH02290038A (en) 1990-11-29

Similar Documents

Publication Publication Date Title
US6949722B2 (en) Method and apparatus for active temperature control of susceptors
JP4768906B2 (en) Method and apparatus for temperature control of a semiconductor substrate
US6214121B1 (en) Pedestal with a thermally controlled platen
CN102105253B (en) High temperature electrostatic chuck and using method
JP5249937B2 (en) Temperature controlled substrate holder with non-uniform thermal insulation layer for substrate processing system
US6558508B1 (en) Processing apparatus having dielectric plates linked together by electrostatic force
CN102308380A (en) Electrocstatic chuck system and process for radially tuning the temperature profile across the surface of a substrate
US6653604B2 (en) Heater member for mounting heating object and substrate processing apparatus using the same
US4609035A (en) Temperature gradient furnace for materials processing
EP1770759A2 (en) Substrate thermal management system
TW469339B (en) A furnace assembly for heating a plurality of substrates, a system for heating a plurality of substrates and a method for heating a plurality of substrates
JPH0574225B2 (en)
JPH10206246A (en) Non-contact measuring device and method for object temperature
JPH07324991A (en) Apparatus for measuring thermoelectric characteristic
TWI404117B (en) Method and apparatus for heating a substrate
JPH0792037A (en) Thermometer calibrating device
US5944903A (en) Effusion cell crucible with thermocouple
JPH0997830A (en) Electrostatic chuck holder, wafer holding mechanism and using method thereof
JPH0594865A (en) Ceramic heater
KR100932619B1 (en) Substrate heating method and apparatus
CN220306221U (en) Refrigeration carrier disc device and semiconductor device
JP2719332B2 (en) Plasma processing method
JPH07106317A (en) Specimen stand
SU1370804A1 (en) Arrangement for varying heat resistance
JP2000314731A (en) Gas chromatograph device