JPH0573884A - Magnetic recording tape - Google Patents

Magnetic recording tape

Info

Publication number
JPH0573884A
JPH0573884A JP3237721A JP23772191A JPH0573884A JP H0573884 A JPH0573884 A JP H0573884A JP 3237721 A JP3237721 A JP 3237721A JP 23772191 A JP23772191 A JP 23772191A JP H0573884 A JPH0573884 A JP H0573884A
Authority
JP
Japan
Prior art keywords
magnetic
tape
magnetic layer
magnetic recording
recording tape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3237721A
Other languages
Japanese (ja)
Inventor
Kenji Kuwabara
賢次 桑原
Takumi Haneda
匠 羽根田
Yuji Mido
勇治 御堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3237721A priority Critical patent/JPH0573884A/en
Publication of JPH0573884A publication Critical patent/JPH0573884A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To provide the magnetic recording tape which is excellent in preventing deformation of the tape, D.O. increase, lowering of envelope flatness, etc. CONSTITUTION:The surface root-mean-square roughness of a magnetic layer is 8 to 12nm and the projections having the height within a 20 to 40nm range are formed at 20 to 50 pieces per 1mm length on the surface of the magnetic layer. Further, the surface root-mean-square roughness of at least either surfaces of a nonmagnetic base is in a 0.01 to 0.025mum range and the thickness thereof is <=10mum. In addition, the Young's modulus in the longitudinal direction and transverse direction is <=5880MPa and the ratio of the ferromagnetic powder to be incorporated into the magnetic layer is specified to a 73.0 to 78.0wt.% range.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ビデオ、オーディオ機
器あるいはコンピュータ等に用いる磁気記録テープに関
するものであり、さらに詳細には、長時間用に適した薄
手の磁気記録テープおよびその支持体に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording tape for use in video equipment, audio equipment, computers and the like, and more particularly to a thin magnetic recording tape suitable for a long time and its support. Is.

【0002】[0002]

【従来の技術】近年、これらの各種磁気記録媒体は高密
度記録に向い、そのために記録波長は短く、記録トラッ
ク幅は狭く、記録媒体厚は薄くという方向にある。その
結果、S/N比、感度、周波数特性が一般に不利になっ
てくるが、この対策として、磁性粉の微粉末化や磁性層
の高平滑化という方法が採られている。しかし以上の対
策のみでは、磁性層の表面性が上がるために摩擦係数が
増大し、走行性、耐久性の面で不利になることから、一
般に前記の如き高性能磁気記録テープにおいては支持体
上の磁性層面とは反対の面にバックコート層を設けるこ
とが知られている。
2. Description of the Related Art In recent years, these various magnetic recording media have been suitable for high-density recording. Therefore, recording wavelengths are short, recording track widths are narrow, and recording media are thin. As a result, the S / N ratio, sensitivity, and frequency characteristics generally become disadvantageous, but as a countermeasure against this, methods such as making the magnetic powder fine and making the magnetic layer highly smooth are adopted. However, if only the above measures are taken, the surface property of the magnetic layer is increased and the friction coefficient is increased, which is disadvantageous in terms of runnability and durability. It is known to provide a back coat layer on the surface opposite to the surface of the magnetic layer.

【0003】[0003]

【発明が解決しようとする課題】しかしながら上記のよ
うな従来の方法では、耐久性、特に磁気記録テープの変
形やドロップアウト(D.O.)が増加する等の問題が
あった。
However, the conventional method as described above has a problem that durability, particularly deformation of the magnetic recording tape and dropout (DO) increase.

【0004】本発明は上記問題に鑑み、電磁変換特性を
損なうことなく、スチルライフ、走行耐久性、特にテー
プの変形、D.O.の増加、エンベロープ平坦率低下等
に優れた高耐久性の磁気記録テープを提供するものであ
る。
In view of the above problems, the present invention provides a still life, running durability, especially tape deformation, without compromising electromagnetic conversion characteristics. O. The present invention provides a magnetic recording tape having high durability, which is excellent in increase in the magnetic field, decrease in flatness of envelope, and the like.

【0005】[0005]

【課題を解決するための手段】上記問題点を解決するた
めに、本発明は非磁性支持体上に磁性層を設けた磁気記
録テープであって、磁性層の表面自乗平均平方根粗さが
8〜12nmであり、かつ、高さが20〜40nmの範
囲内にある突起が(長さ1mmあたり)20〜50個、
磁性層表面に形成してなるものである。本発明に用いる
非磁性支持体は、表面自乗平均平方根粗さが、少なくと
もいづれか一方の面は0.01〜0.025μmの範囲
にあることが好ましく、さらには、厚さが10μm以下
の薄手の場合、長さ方向および幅方向の引張りヤング率
が5880MPa以上であることが好適である。
In order to solve the above-mentioned problems, the present invention is a magnetic recording tape having a magnetic layer provided on a non-magnetic support, the surface of the magnetic layer having a root mean square roughness of 8 20 to 50 protrusions (per length of 1 mm) having a height of ˜12 nm and a height of 20 to 40 nm,
It is formed on the surface of the magnetic layer. The non-magnetic support used in the present invention preferably has a surface root mean square roughness in the range of 0.01 to 0.025 μm on at least one of the surfaces, and a thin film having a thickness of 10 μm or less. In this case, the tensile Young's modulus in the length direction and the width direction is preferably 5880 MPa or more.

【0006】[0006]

【作用】本発明は上記の構成によって、電磁変換特性を
損なうことなく、スチルライフ、走行耐久性、特にテー
プの変形、D.O.増加、エンベロープ平坦率低下等に
優れた磁気記録テープが得られる。つまり、実使用上、
問題を生じないレベルの走行耐久性を得るには磁性層の
表面自乗平均平方根粗さを13nm以上に設計すること
が好ましいが、この場合、磁性層と磁気ヘッド間の空隙
損失が大きくなり十分なC/N比が得られないことにな
る。反対にC/N比を得るために表面自乗平均平方根粗
さを小さくすると走行耐久性に問題が生じることにな
る。両者は相反する関係にある。そこで磁性層と磁気ヘ
ッド間の空隙損失を小さくし、かつ、磁性層表面と磁気
ヘッド、回転シリンダ、走行メカニズム中のガイドポス
ト等との間の真実接触面積を小さくすることのできる磁
性層表面形状について検討した結果、磁性層の表面自乗
平均平方根粗さが8〜12nmであり、かつ高さが20
〜40nmの範囲内にある突起が長さ1mmあたり20
〜50個磁性層表面に形成することにより、電磁変換特
性を損なうことなく、スチルライフ、走行耐久性に優れ
た磁気記録テープを得ることができる。このような効果
は突起による真実接触面積の減少に基づく走行性の改善
と、摺動痕の軽減、さらに、突起一個あたりにかかる応
力が適当であるがゆえに、突起が適度に弾性変形し、空
隙損失が小さくなるものと考えられる。
The present invention has the above-mentioned structure, and still life, running durability, especially tape deformation, without compromising electromagnetic conversion characteristics. O. It is possible to obtain a magnetic recording tape which is excellent in increase, decrease in envelope flatness and the like. In other words, in actual use,
It is preferable to design the surface root mean square roughness of the magnetic layer to be 13 nm or more in order to obtain a running durability at a level that does not cause a problem, but in this case, the air gap loss between the magnetic layer and the magnetic head becomes large, which is sufficient. The C / N ratio cannot be obtained. On the other hand, if the surface root mean square roughness is reduced in order to obtain the C / N ratio, running durability will be a problem. Both are in a conflicting relationship. Therefore, it is possible to reduce the air gap loss between the magnetic layer and the magnetic head, and to reduce the actual contact area between the magnetic layer surface and the magnetic head, the rotating cylinder, the guide post in the traveling mechanism, etc. As a result, the surface root mean square roughness of the magnetic layer was 8 to 12 nm and the height was 20.
The number of protrusions within the range of -40 nm is 20 per 1 mm in length.
By forming 50 magnetic layers on the surface, it is possible to obtain a magnetic recording tape excellent in still life and running durability without impairing electromagnetic conversion characteristics. Such an effect is due to the improvement of the running property based on the reduction of the true contact area due to the protrusion, the reduction of sliding marks, and the appropriate stress applied to each protrusion, so that the protrusion is appropriately elastically deformed and the gap It is thought that the loss will be small.

【0007】さらに、磁気記録テープ磁性層側とは反対
側の非磁性支持体の表面性が磁性層面に形状転写し、表
面性が低下することによる悪影響を妨げることにより、
電磁変換特性、特にC/N比に優れた磁気記録テープを
得ることができる。また、特に厚さ10μm以下の薄手
テープの場合、磁気記録テープにバランスよく一定以上
の機械的強度を付与するために、非磁性支持体の長手方
向および幅方向の引張りヤング率を限定し、耐久性、特
にテープダメージ、エンベロープ平坦率、オーディオレ
ベル変動等に優れた磁気記録テープを得る。
Further, the surface property of the non-magnetic support on the side opposite to the magnetic layer side of the magnetic recording tape is transferred to the surface of the magnetic layer to prevent adverse effects due to the deterioration of the surface property.
It is possible to obtain a magnetic recording tape having excellent electromagnetic conversion characteristics, particularly C / N ratio. Further, particularly in the case of a thin tape having a thickness of 10 μm or less, the tensile Young's modulus in the longitudinal direction and the width direction of the non-magnetic support is limited in order to impart a well-balanced mechanical strength above a certain level to the magnetic recording tape. To obtain a magnetic recording tape having excellent properties, particularly tape damage, envelope flatness, and audio level fluctuation.

【0008】さらに、磁性層表面に本発明による突起を
形成することにより、テープ走行時における突起以外の
地肌部分からの脱落粉が減少する。そこで、突起を形成
しない場合に比べ、突起を形成すると磁性層中の強磁性
粉末量を相対的に多くすることが可能となり、充填密度
が高くなることから、電磁変換特性、特にC/N比に優
れた磁気記録テープを得ることができる。
Further, by forming the protrusions according to the present invention on the surface of the magnetic layer, the amount of powder falling from the background portion other than the protrusions during tape running is reduced. Therefore, compared to the case where no protrusion is formed, the amount of ferromagnetic powder in the magnetic layer can be relatively increased when the protrusion is formed, and the packing density is increased. An excellent magnetic recording tape can be obtained.

【0009】さらに詳細に説明すると、磁気記録テー
プ、たとえばビデオテープレコーダ用磁気記録テープで
は各種ポストに対して一定の角度で巻き付けられて走行
しているが各種ポストの高さ方向の位置規制をおこなう
ために下側規制や上側規制のポストが設けられている。
その規制ポストに対してテープが離脱せずに安定走行す
るためには、適当な走行特性を必要とし、また、離脱し
て走行しようとする場合には基本的にはテープ自体の剛
性により離脱しないように走行しなければならない。と
ころが、高C/N比を得るための表面性向上による走行
性低下や、テープ全体の厚みが薄くなってくるとテープ
の剛性が小さくなり、結果的にテープが折れたり、テー
プ端部がワカメ状になったり、最悪の場合には、テープ
が破断して重要な情報を損なうといった状況に陥る。本
発明のように非磁性支持体上に磁性層を設けた磁気記録
テープにおいて、磁性層の表面自乗平均平方根粗さが8
〜12nmであり、かつ、高さが20〜40nmの範囲
内にある突起が長さ1mmあたり20〜50個、磁性層
表面に形成し、非磁性支持体の長さ方向および幅方向の
引張りヤング率が5880MPa以上に設計することに
より、良好な走行性が得られ、さらにテープが局部的に
曲げられようとするときに弾性率がバランスよく高いが
ゆえに反力が働き、テープの曲げ剛性やねじり剛性が大
きくなり、両者が相まって耐久性、特にテープダメージ
が大きく改善されることになる。
More specifically, a magnetic recording tape, for example, a magnetic recording tape for a video tape recorder, runs while being wound around various posts at a certain angle, but the positions of the various posts in the height direction are restricted. Therefore, lower regulation posts and upper regulation posts are provided.
In order for the tape to run stably against the regulation post without detaching, appropriate traveling characteristics are required, and when attempting to detach and run, it is basically not detached due to the rigidity of the tape itself. Have to drive like. However, when the running property is reduced due to the improvement of the surface property for obtaining a high C / N ratio, and the rigidity of the tape is reduced as the thickness of the entire tape is reduced, the tape may be broken or the tape end portion may be uneasy. Or in the worst case, the tape breaks and loses important information. In the magnetic recording tape in which the magnetic layer is provided on the non-magnetic support as in the present invention, the surface root mean square roughness of the magnetic layer is 8
20 to 50 nm and a height within the range of 20 to 40 nm are formed on the surface of the magnetic layer at 20 to 50 protrusions per 1 mm in length, and the tensile Young in the length direction and the width direction of the nonmagnetic support is used. By designing the modulus to be 5880 MPa or more, good runnability can be obtained, and when the tape is locally bent, the elastic modulus is well balanced and reaction force acts, resulting in bending rigidity and twisting of the tape. The rigidity is increased, and the two are combined to greatly improve durability, especially tape damage.

【0010】[0010]

【実施例】以下、本発明を説明する。ここで本発明に用
いるバインダ、架橋剤、研摩剤、必要に応じて添加する
分散剤、可塑剤、帯電防止剤、さらにバックコート層等
は従来公知のものを使用することができる。
The present invention will be described below. Here, as the binder, the cross-linking agent, the abrasive, the dispersant optionally added, the plasticizer, the antistatic agent, the back coat layer and the like used in the present invention, conventionally known materials can be used.

【0011】以下、本発明の実施例を挙げて具体的に説
明するが、本発明はこれに限定されるものではない。な
お実施例に示している成分比の「部」は全て「重量部」
を示している。
Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. All "parts" in the component ratios shown in the examples are "parts by weight".
Is shown.

【0012】(実施例1)磁性塗料は次の様にして調製
した。
Example 1 A magnetic coating material was prepared as follows.

【0013】 Fe系合金磁性粉末 100部 [保持力HC =123.3×103A/m、BET比表面積=56×1032/kg、飽和磁化量 =1.6×10-4Wb・m/kg、針状比=9/1] 塩化ビニル樹脂 Tg=60℃ 10部 ポリウレタン樹脂 Tg= 5℃ 10部 研摩剤(Al23)[平均粒径=0.2μm] 7部 カーボンブラック [平均粒径=20nm] 3部 ステアリン酸 1.5部 ミリスチン酸 1部 ステアリン酸ブチル 1.5部 メチルエチルケトン 100部 トルエン 100部 シクロヘキサノン 60部 上記組成物を加圧ニーダーとサンドミルを用いて混練分
散をおこない磁性塗料を調製した。得られた磁性塗料に
ポリイソシアネート化合物[バイエル社製、デスモジュ
ールL]3部を加え、高速撹伴器で十分混合撹伴した
後、平均孔径1μmのフイルタで濾過して磁性塗料の準
備をおこなった。
Fe-based alloy magnetic powder 100 parts [Coercive force H C = 123.3 × 10 3 A / m, BET specific surface area = 56 × 10 3 m 2 / kg, Saturation magnetization amount = 1.6 × 10 -4 Wb · m / kg, acicular ratio = 9/1] Vinyl chloride resin Tg = 60 ° C. 10 parts Polyurethane resin Tg = 5 ° C. 10 parts Abrasive (Al 2 O 3 ) [average particle size = 0.2 μm] 7 parts Carbon black [average particle size = 20 nm] 3 parts Stearic acid 1.5 parts Myristic acid 1 part Butyl stearate 1.5 parts Methyl ethyl ketone 100 parts Toluene 100 parts Cyclohexanone 60 parts The above composition is kneaded using a pressure kneader and a sand mill. A magnetic paint was prepared by dispersion. 3 parts of a polyisocyanate compound [manufactured by Bayer Co., Desmodur L] was added to the obtained magnetic paint, thoroughly mixed and stirred with a high-speed stirrer, and then filtered with a filter having an average pore diameter of 1 μm to prepare the magnetic paint. It was

【0014】次に上記磁性塗料を7.5μm厚で長さ方
向の引張ヤング率が6670MPa、幅方向の引張ヤン
グ率が6080MPa、表面自乗平均平方根粗さが0.
023μmのポリエチレンテレフタレートフイルム支持
体上に塗布、磁場配向、乾燥処理を施した後、スーパー
カレンダーロールによる鏡面加工処理を施し、2.6μ
m厚の磁性層を有する原反ロールを得た。この原反ロー
ルに60℃、24時間硬化処理をおこない、次いで磁性
層の反対面に0.5μm厚のバックコート層を設け、1
/2インチ幅に裁断してビデオテープ試料(250m
長)を作製した。
Next, the above magnetic paint was applied in a thickness of 7.5 μm and a tensile Young's modulus in the length direction of 6670 MPa, a tensile Young's modulus in the width direction of 6080 MPa and a surface root mean square roughness of 0.
After coating, magnetic field orientation and drying treatment on a 023 μm polyethylene terephthalate film support, mirror finishing treatment with a super calender roll was performed to give 2.6 μm.
An original roll having a magnetic layer of m thickness was obtained. This raw roll is cured at 60 ° C. for 24 hours, and then a back coat layer having a thickness of 0.5 μm is provided on the surface opposite to the magnetic layer.
Video tape sample (250 m
Long) was prepared.

【0015】(実施例2) (実施例1)の塩化ビニル樹脂10部とポリウレタン樹
脂10部を各々12部と8部にかえた以外は(実施例
1)と同様にしてビデオテープ試料を作製した。
Example 2 A video tape sample was prepared in the same manner as in Example 1 except that 10 parts of the vinyl chloride resin and 10 parts of the polyurethane resin of Example 1 were replaced with 12 parts and 8 parts, respectively. did.

【0016】(比較例1) (実施例1)のポリウレタン樹脂Tg=5℃をポリウレ
タン樹脂Tg=−20℃のものにかえた以外は(実施例
1)と同様にしてビデオテープ試料を作製した 。 (比較例2) (実施例1)のポリウレタン樹脂Tg=5℃をポリウレ
タン樹脂Tg=30℃のものにかえた以外は(実施例
1)と同様にしてビデオテープ試料を作製した。
Comparative Example 1 A video tape sample was prepared in the same manner as in Example 1 except that the polyurethane resin Tg = 5 ° C. in Example 1 was changed to a polyurethane resin Tg = −20 ° C. .. (Comparative Example 2) A video tape sample was prepared in the same manner as in (Example 1) except that the polyurethane resin Tg = 5 ° C in Example 1 was changed to the polyurethane resin Tg = 30 ° C.

【0017】(実施例3) (実施例1)のポリイソシアネート化合物を加えた磁性
塗料に、さらに塩化ビニル樹脂の硬化促進剤トリアジン
ジチオール0.5部を加えた磁性塗料を準備した以外は
(実施例1)と同様にしてビデオテープ試料を作製し
た。
(Example 3) A magnetic paint was prepared by adding 0.5 part of triazinedithiol, which is a curing accelerator for vinyl chloride resin, to the magnetic paint to which the polyisocyanate compound of Example 1 was added. A video tape sample was prepared in the same manner as in Example 1).

【0018】(比較例3) (実施例1)のスーパーカレンダーロールによる鏡面加
工処理時に、カレンダロール間の接触圧を20%増加し
た以外は(実施例1)と同様にしてビデオテープ (比較例4) (実施例1)の加圧ニーダーとサンドミルによる混練分
散の所用時間を30%削減した以外は(実施例1)と同
様にしてビデオテープ試料を作製した。
(Comparative Example 3) A video tape was prepared in the same manner as in Example 1 except that the contact pressure between the calendar rolls was increased by 20% during the mirror finishing treatment with the super calendar roll of Example 1. 4) A video tape sample was prepared in the same manner as in (Example 1) except that the time required for kneading and dispersing with the pressure kneader and the sand mill in (Example 1) was reduced by 30%.

【0019】(実施例4) (実施例1)の平均粒径=0.2μmの研摩剤(Al2
3)を平均粒径=0.5μmの研摩剤にかえた以外は
(実施例1)と同様にしてビデオテープ試料を作製し
た。
(Example 4) An abrasive (Al 2 having an average particle size of 0.2 μm of Example 1) (Al 2
A video tape sample was prepared in the same manner as in (Example 1) except that O 3 ) was replaced with an abrasive having an average particle size of 0.5 μm.

【0020】(実施例5) (実施例1)のポリエチレンテレフタレートフイルム支
持体を、表面自乗平均平方根粗さが0.013μmのも
のにかえた以外は(実施例1)と同様にしてビデオテー
プ試料を作製した。
(Example 5) A video tape sample was prepared in the same manner as in Example 1 except that the polyethylene terephthalate film support of Example 1 was replaced by one having a surface root mean square roughness of 0.013 µm. Was produced.

【0021】(比較例5) (実施例1)のポリエチレンテレフタレートフイルム支
持体を、表面自乗平均平方根粗さが0.008μmのも
のにかえた以外は(実施例1)と同様にしてビデオテー
プ試料を作製した。
Comparative Example 5 A video tape sample was prepared in the same manner as in (Example 1) except that the polyethylene terephthalate film support of (Example 1) had a surface root mean square roughness of 0.008 μm. Was produced.

【0022】(比較例6) (実施例1)のポリエチレンテレフタレートフイルム支
持体を、表面自乗平均平方根粗さが0.027μmのも
のにかえた以外は(実施例1)と同様にしてビデオテー
プ試料を作製した。
Comparative Example 6 A video tape sample was prepared in the same manner as in (Example 1) except that the polyethylene terephthalate film support of (Example 1) had a surface root mean square roughness of 0.027 μm. Was produced.

【0023】(実施例6) (実施例1)のポリエチレンテレフタレートフイルム支
持体を、長さ方向の引張ヤング率が7850MPa、幅
方向の引張ヤング率が7350MPa、表面自乗平均平
方根粗さが0.018μmの7.3μm厚ポリエチレン
ナフタレートフイルム支持体にかえた以外は(実施例
1)と同様にしてビデオテープ試料を作製した。
(Example 6) The polyethylene terephthalate film support of Example 1 has a tensile Young's modulus in the length direction of 7850 MPa, a tensile Young's modulus in the width direction of 7350 MPa, and a surface root mean square roughness of 0.018 μm. A video tape sample was prepared in the same manner as in (Example 1) except that the polyethylene naphthalate film support having a thickness of 7.3 μm was replaced with the above.

【0024】(比較例7) (実施例1)のポリエチレンテレフタレートフイルム支
持体を、長さ方向の引張りヤング率が5590MPa、
幅方向の引張ヤング率が5590MPaのものにかえた
以外は(実施例1)と同様にしてビデオテープ試料を作
製した。
(Comparative Example 7) The polyethylene terephthalate film support of (Example 1) had a tensile Young's modulus of 5590 MPa in the longitudinal direction.
A video tape sample was prepared in the same manner as in (Example 1) except that the tensile Young's modulus in the width direction was changed to 5590 MPa.

【0025】(実施例7) (実施例1)の磁性層中に含有する強磁性粉末の割合、
73.0重量%を77.0重量%になるように強磁性粉
末を増量した以外は(実施例1)と同様にしてビデオテ
ープ試料を作製した。
(Example 7) The proportion of the ferromagnetic powder contained in the magnetic layer of (Example 1),
A video tape sample was prepared in the same manner as in (Example 1) except that the amount of the ferromagnetic powder was increased from 73.0% by weight to 77.0% by weight.

【0026】(比較例8) (実施例1)の磁性層中に含有する強磁性粉末の割合、
73.0重量%を78.0重量%になるように強磁性粉
末を増量した以外は(実施例1)と同様にしてビデオテ
ープ試料を作製した。
(Comparative Example 8) The ratio of the ferromagnetic powder contained in the magnetic layer of (Example 1),
A video tape sample was prepared in the same manner as in (Example 1) except that the amount of the ferromagnetic powder was increased from 73.0% by weight to 78.0% by weight.

【0027】(比較例9) (実施例1)の磁性層中に含有する強磁性粉末の割合、
73.0重量%を72.0重量%になるように強磁性粉
末を増量した以外は(実施例1)と同様にしてビデオテ
ープ試料を作製した。
(Comparative Example 9) The ratio of the ferromagnetic powder contained in the magnetic layer of (Example 1),
A video tape sample was prepared in the same manner as in (Example 1) except that the amount of the ferromagnetic powder was increased from 73.0% by weight to 72.0% by weight.

【0028】以上の各実施例および比較例で得られたビ
デオテープ試料について、それぞれ以下に示す評価試験
をおこなった。 (1)表面粗さ テーラーホブソン社製タリステップ触針型表面粗さ計を
用いて、縦倍率20×103 倍、横倍率50倍、スタイ
ラス2.5μm×0.1μm、針圧2mg、の条件で表面
粗さを測定し、粗さチャートにおいて3nm以上の高さ
の自乗平均平方根粗さを算出して求めた。また、突起高
さは粗さチャートにおいて12nm以上の高さの平均値
を算出して求めた。 (2)C/N比 記録再生ヘッドにアモルファス合金ヘッドを用いている
VHS方式VTR(NV−FS900、松下電器(株)
製)を用い、記録周波数7MHz におけるC/N比を測定
した。標準テープとしては、MIIフオーマットVTR用
カセットテープ(松下電器(株)製AU−M90L)を
用い、そのC/N比を0dBとした。 (3)スチルライフ 記録再生ヘッドにアモルファス合金ヘッドを用いている
VHS方式VTR(NV−FS900、松下電器(株)
製)を用い、−10℃環境下におけるスチルライフを測
定した。 (4)テープの変形 記録再生ヘッドにアモルファス合金ヘッドを用いている
VHS方式VTR(NV−FS900、松下電器(株)
製)を用い、各ビデオテープ試料を40℃80%RHの
環境下で200パスの走行させた後に、各テープ試料の
変形を目視により状態観察をし、5段階評価をおこなっ
た。評価は実用的に全く問題のないものを5とし、実用
的に問題を発生したものを1とした。 (5)ドロップアウト 上記(4)による試験前後に映像信号の瞬間的な欠落を
ドロップアウトカウンタ((株)シバソク製、VH01
BZ)で測定した。ドロップアウトは試験前に対する試
験後の変化率を倍率で示した。 (6)エンベロープ平坦率 上記(4)による試験後に記録周波数7MHz における再
生出力のエンベロープ平坦率を測定した。 (7)オーディオレベル変動 オーディオヘッド出力を整流し、その出力のレベル変動
を、上記(4)による試験後に測定した。 (8)ヘッド粉付着量 上記(4)による試験後に磁気ヘッドテープ摺動面の粉
付着量を目視により状態観察をし、5段階評価をおこな
った。評価は実用的に全く問題のないものを5とし、実
用的に問題を発生したものを1とした。
The following evaluation tests were carried out on the video tape samples obtained in the above Examples and Comparative Examples. (1) Surface roughness Using a Talystep stylus type surface roughness meter manufactured by Taylor Hobson Co., a longitudinal magnification of 20 × 10 3 times, a lateral magnification of 50 times, a stylus of 2.5 μm × 0.1 μm, and a needle pressure of 2 mg. The surface roughness was measured under the conditions, and the root mean square roughness of a height of 3 nm or more was calculated and obtained in the roughness chart. Further, the protrusion height was obtained by calculating an average value of heights of 12 nm or more in the roughness chart. (2) C / N ratio VHS system VTR (NV-FS900, Matsushita Electric Industrial Co., Ltd.) which uses an amorphous alloy head for the recording / reproducing head.
C./N ratio at a recording frequency of 7 MHz was measured. As the standard tape, a cassette tape for MII format VTR (AU-M90L manufactured by Matsushita Electric Co., Ltd.) was used, and its C / N ratio was set to 0 dB. (3) Still life VHS system VTR (NV-FS900, Matsushita Electric Industrial Co., Ltd.) that uses an amorphous alloy head for the recording / reproducing head.
Manufactured) was used to measure the still life under the environment of -10 ° C. (4) Deformation of tape VHS system VTR (NV-FS900, Matsushita Electric Industrial Co., Ltd.) which uses an amorphous alloy head as a recording / reproducing head.
Each of the video tape samples was run for 200 passes in an environment of 40 ° C. and 80% RH, and the deformation of each tape sample was visually observed to make a 5-step evaluation. The evaluation was rated as 5 when there was practically no problem, and as 1 when there was practically a problem. (5) Dropout A dropout counter (manufactured by Shibasoku Co., Ltd., VH01
BZ). For the dropout, the rate of change after the test with respect to that before the test was shown as a magnification. (6) Envelope flatness ratio After the test according to (4) above, the envelope flatness ratio of the reproduction output at a recording frequency of 7 MHz was measured. (7) Audio level fluctuation The audio head output was rectified, and the level fluctuation of the output was measured after the test according to the above (4). (8) Head powder adhesion amount After the test according to the above (4), the powder adhesion amount on the magnetic head tape sliding surface was visually observed to make a five-level evaluation. The evaluation was rated as 5 when there was practically no problem, and as 1 when there was practically a problem.

【0029】得られた結果を(表1)、(表2)に示
す。
The obtained results are shown in (Table 1) and (Table 2).

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】(表1)、(表2)から明らかなように、
本発明によれば、非磁性支持体上に磁性層を設けた磁気
記録テープであって、磁性層の表面自乗平均平方根粗さ
が8〜12nmであり、かつ、高さが20〜40nmの
範囲内にある突起が(長さ1mmあたり)20〜50
個、磁性層表面に形成し、さらに、非磁性支持体の表面
自乗平均平方根粗さが、少なくともいづれか一方の面は
0.01〜0.025μmの範囲にあり、さらには、非
磁性支持体の厚さが10μm以下で、長さ方向および幅
方向の引張りヤング率が5880MPa以上であり、磁
性層中に含有する強磁性粉末の割合が、73.0〜7
8.0重量%の範囲にすることにより、電磁変換特性を
損なうことなく、スチルライフ、走行耐久性、特にテー
プの変形、D.O.増加、エンベロープ平坦率低下等に
優れた高耐久性の磁気記録テープを得るものである。
As is clear from (Table 1) and (Table 2),
According to the present invention, there is provided a magnetic recording tape having a magnetic layer provided on a non-magnetic support, wherein the magnetic layer has a surface root mean square roughness of 8 to 12 nm and a height of 20 to 40 nm. The protrusion inside is 20-50 (per 1 mm length)
And the surface root mean square roughness of the non-magnetic support is in the range of 0.01 to 0.025 μm, and at least one surface of the non-magnetic support is in the range of 0.01 to 0.025 μm. The thickness is 10 μm or less, the tensile Young's modulus in the length direction and the width direction is 5880 MPa or more, and the ratio of the ferromagnetic powder contained in the magnetic layer is 73.0 to 7
By adjusting the amount to be in the range of 8.0% by weight, the still life, running durability, especially the deformation of the tape, D. O. It is intended to obtain a highly durable magnetic recording tape which is excellent in increase, decrease in envelope flatness and the like.

【0033】[0033]

【発明の効果】以上、詳述したように、本発明によれ
ば、非磁性支持体上に磁性層を設けた磁気記録テープで
あって、磁性層の表面自乗平均平方根粗さが8〜12n
mであり、かつ、高さが20〜40nmの範囲内にある
突起が(長さ1mmあたり)20〜50個、磁性層表面
に形成し、さらに、非磁性支持体の表面自乗平均平方根
粗さが、少なくともいづれか一方の面は0.01〜0.
025μmの範囲にあり、かつ、厚さが10μm以下
で、長さ方向および幅方向の引張りヤング率が5880
MPa以上であり、さらに、磁性層中に含有する強磁性
粉末の割合が、73.0〜78.0重量%の範囲にする
ことにより、電磁変換特性を損なうことなく、スチルラ
イフ、走行耐久性、特にテープの変形、D.O.増加、
エンベロープ平坦率低下、オーディオレベル変動等に優
れた高耐久性の磁気記録テープを得ることができ、その
実用上の価値は大なるものがある。
As described above in detail, according to the present invention, there is provided a magnetic recording tape having a magnetic layer provided on a non-magnetic support having a surface layer root mean square roughness of 8 to 12 n.
m, and 20 to 50 protrusions (per length 1 mm) having a height within the range of 20 to 40 nm are formed on the surface of the magnetic layer, and further, the surface root mean square roughness of the non-magnetic support. However, at least one of the surfaces is 0.01 to 0.
In the range of 025 μm, the thickness is 10 μm or less, and the tensile Young's modulus in the length direction and the width direction is 5880.
Still more than MPa, and the ratio of the ferromagnetic powder contained in the magnetic layer is in the range of 73.0 to 78.0% by weight, the still life and running durability can be maintained without impairing the electromagnetic conversion characteristics. , Especially tape deformation, D.I. O. increase,
It is possible to obtain a highly durable magnetic recording tape that is excellent in envelope flatness reduction, audio level fluctuation, etc., and its practical value is great.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 非磁性支持体上に磁性層を設けた磁気記
録テープであって、磁性層の表面自乗平均平方根粗さが
8〜12nmであり、かつ、高さが20〜40nmの範
囲内にある突起が長さ1mmあたり20〜50個、磁性
層表面に形成されていることを特徴とする磁気記録テー
プ。
1. A magnetic recording tape having a magnetic layer provided on a non-magnetic support, wherein the surface of the magnetic layer has a root mean square roughness of 8 to 12 nm and a height of 20 to 40 nm. The magnetic recording tape is characterized in that 20 to 50 protrusions per 1 mm are formed on the surface of the magnetic layer.
【請求項2】 非磁性支持体の表面自乗平均平方根粗さ
が、少なくともいづれか一方の面は0.01〜0.02
5μmの範囲にあることを特徴とする請求項1に記載の
磁気記録テープ。
2. The surface root mean square roughness of the non-magnetic support is 0.01 to 0.02 on at least one of the surfaces.
The magnetic recording tape according to claim 1, which is in a range of 5 μm.
【請求項3】 非磁性支持体の厚さが10μm以下であ
り、かつ、長さ方向および幅方向の引張りヤング率が5
880MPa以上であることを特徴とする請求項1に記
載の磁気記録テープ。
3. The non-magnetic support has a thickness of 10 μm or less and a tensile Young's modulus of 5 in the length direction and the width direction.
The magnetic recording tape according to claim 1, wherein the magnetic recording tape has a pressure of 880 MPa or more.
【請求項4】 磁性層中に含有する強磁性粉末の割合
が、72.5〜78.0重量%の範囲にあることを特徴
とする請求項1に記載の磁気記録テープ。
4. The magnetic recording tape according to claim 1, wherein the ratio of the ferromagnetic powder contained in the magnetic layer is in the range of 72.5 to 78.0% by weight.
JP3237721A 1991-09-18 1991-09-18 Magnetic recording tape Pending JPH0573884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3237721A JPH0573884A (en) 1991-09-18 1991-09-18 Magnetic recording tape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3237721A JPH0573884A (en) 1991-09-18 1991-09-18 Magnetic recording tape

Publications (1)

Publication Number Publication Date
JPH0573884A true JPH0573884A (en) 1993-03-26

Family

ID=17019514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3237721A Pending JPH0573884A (en) 1991-09-18 1991-09-18 Magnetic recording tape

Country Status (1)

Country Link
JP (1) JPH0573884A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002042559A (en) * 2000-05-19 2002-02-08 Tdk Corp Functional film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002042559A (en) * 2000-05-19 2002-02-08 Tdk Corp Functional film
JP4678097B2 (en) * 2000-05-19 2011-04-27 Tdk株式会社 Conductive film

Similar Documents

Publication Publication Date Title
JP2872227B2 (en) Underlayer for magnetic recording media
US6723415B2 (en) Magnetic recording medium
JP4194450B2 (en) Magnetic recording / reproducing method and magnetic recording medium
JPH0573884A (en) Magnetic recording tape
US20090134260A1 (en) Magnetic recording tape backside having both low friction and low surface roughness
JP3014009B2 (en) Magnetic recording media
US7722969B2 (en) Magnetic tape
JP2831101B2 (en) Magnetic recording media
JPH05307731A (en) Magnetic recording tape
US20040191570A1 (en) Magnetic recording media having increased high density broadband signal-to-noise ratio
US20050277001A1 (en) Magnetic recording medium
AU756079B2 (en) Magnetic recording support with high recording density
US6475613B1 (en) Magnetic recording medium
JPH04362512A (en) Magnetic recording tape
JPS61180927A (en) Magnetic recording medium
JP2001006151A (en) Magnetic recording medium
JPH04362511A (en) Magnetic recording tape
JP3872112B2 (en) Magnetic tape
JPS60177427A (en) Magnetic recording medium
JP2005182966A (en) Magnetic recording tape
JP2002092852A (en) Magnetic recording medium
EP0487334A1 (en) Magnetic recording tape and method for fabricating same
JPH0991695A (en) Production of magnetic recording medium
JPH0489615A (en) Magnetic recording medium
JPH11273058A (en) Magnetic record medium