JPH0573835B2 - - Google Patents

Info

Publication number
JPH0573835B2
JPH0573835B2 JP59124705A JP12470584A JPH0573835B2 JP H0573835 B2 JPH0573835 B2 JP H0573835B2 JP 59124705 A JP59124705 A JP 59124705A JP 12470584 A JP12470584 A JP 12470584A JP H0573835 B2 JPH0573835 B2 JP H0573835B2
Authority
JP
Japan
Prior art keywords
plating
chromium
bath
liter
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59124705A
Other languages
Japanese (ja)
Other versions
JPS613895A (en
Inventor
Tomohiro Minegishi
Matsufumi Takatani
Keiichi Terajima
Nobukuni Ko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP12470584A priority Critical patent/JPS613895A/en
Publication of JPS613895A publication Critical patent/JPS613895A/en
Publication of JPH0573835B2 publication Critical patent/JPH0573835B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)

Description

【発明の詳細な説明】 この発明はクロムめつき方法に係わり、特に
は、硫酸根を含有し、フツ化物イオンを含まな
い、いわゆる非フツ化物系クロムめつき浴を用い
たクロムめつき方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a chromium plating method, and particularly to a chromium plating method using a so-called non-fluoride chromium plating bath that contains sulfate radicals and does not contain fluoride ions. Regarding improvements.

クロムめつきは、硬度が高いこと、耐摩耗性お
よび耐腐食性に優れていることなどから工業的め
つきとして有用である。しかしながら、クロム酸
を使用するため、大気汚染の問題や排水処理の困
難性、さらにはエネルギー収支が低いことなどの
理由により、必ずしも好ましいめつきとはされて
いない。
Chrome plating is useful as an industrial plating because of its high hardness and excellent wear resistance and corrosion resistance. However, due to the use of chromic acid, it is not necessarily considered to be a desirable plating due to problems such as air pollution, difficulty in treating wastewater, and low energy balance.

ところで、排水処理の問題は、近年の公害処理
技術の発展に伴ない、他の排水処理よりは繁雑と
はいえ、その処理技術としては確立したといえ
る。しかし、エネルギー収支の低いことはかなり
宿命的であつて、現在のようにサージエント浴を
基本とする硫酸含有非フツ化物系クロムめつき浴
を用いる限りある程度やむえないことである。従
来、クロムめつきにおける電流効率が10ないし20
%と低かつたその主な原因は、めつき中に発生す
る水素にあることは周知の通りである。電流効率
を改善するためにこれまで種々の提案がなされて
きているが、従来の高電流効率クロムめつき方法
にあつては、めつき被膜の光沢の点でなお満足で
きるものではなかつた。
Incidentally, with the recent development of pollution treatment technology, the problem of wastewater treatment can be said to be established as a treatment technology, although it is more complicated than other types of wastewater treatment. However, the low energy balance is quite fateful and is unavoidable to some extent as long as the current sulfuric acid-containing non-fluoride chromium plating bath based on a sergeant bath is used. Conventionally, the current efficiency in chrome plating was 10 to 20.
It is well known that the main reason for the low plating rate is hydrogen generated during plating. Although various proposals have been made to improve current efficiency, conventional high current efficiency chrome plating methods are still unsatisfactory in terms of the gloss of the plating film.

ところで、クロムめつきが硬度が高く、光沢に
優れているその主な原因は、めつき中において水
素が発生することにある。したがつて電流効率の
向上と、光沢の向上とは相反する要求事項であ
る。
By the way, the main reason why chrome plating has high hardness and excellent gloss is that hydrogen is generated during plating. Therefore, improvements in current efficiency and improvements in gloss are contradictory requirements.

従来のサージエント浴において、実用領域以外
の低温・低電流密度領域で、その電流効率が20〜
35%になることが知られている。しかしながら、
この領域におけるクロムめつき被膜は灰色で、光
沢がないこともよく知られている。
In conventional sergeant baths, the current efficiency is 20~20 in the low temperature and low current density area outside the practical range.
It is known that the percentage is 35%. however,
It is also well known that chrome plating in this area is gray and lacks luster.

これまで、クロムめつきにおいては、他のめつ
きにおけるような光沢剤の添加は必要とされてい
なかつた。それは、上に述べたようにめつき中に
おける水素の発生が光沢に寄与するからであると
ともに、めつき浴における高いクロム酸濃度およ
び著しく低いPHに対して安定な光沢剤がなかつた
ことにもよる。すなわち、これまでのクロムめつ
きは、光沢剤を必要としない自然の狭い光沢範囲
を最適電解条件としておこなわれていたにすぎ
ず、光沢剤の開発は全く未知の分野であつたとい
える。
Hitherto, chrome plating has not required the addition of brighteners as in other platings. This is because, as mentioned above, the generation of hydrogen during plating contributes to gloss, and also because there is no brightening agent that is stable against the high chromic acid concentration and extremely low pH in the plating bath. evening. In other words, chrome plating up until now has only been carried out under optimal electrolytic conditions within a narrow range of natural gloss that does not require brighteners, and the development of brighteners can be said to be a completely unknown field.

本発明者らは、従来のクロムめつきにおける低
電流効率の原因となつている水素発生に注目し
た。
The present inventors focused on hydrogen generation, which is the cause of low current efficiency in conventional chrome plating.

すなわち、第1図に示すように、クロム酸を主
成分とするサージエント浴(第1図中、実線で示
す)を用いたクロム電析の陰極分極曲線(陰極電
位−電流密度曲線)を取ると、クロム析出領域に
相当する第4枝(−1.2V以上(対飽和カロメル
電極(SCE);以下同じ)に現われる電流急上昇
域:クロム析出電流が流れ、金属クロムの析出を
みる領域)の手前の−0.7〜−1.2Vの範囲では、
電流の上昇と下降を示すピークを示し、これを第
3枝という。この領域は、水素発生領域であると
同時に、6価クロムが3価クロムに還元される領
域でもある。水素の発生電位は、その過電圧か
ら、0Vではなく−0.3V付近から水素発生が始ま
り、これを第1枝という。ついで、電極の酸素の
還元、および一部6価クロムの放電に起因すると
される電流の増加部分があり、これを第2枝とい
う。この第1枝、第2枝の電流値は小さく明確に
区別できないことが多い。これに対して、第3
枝、第4枝は、クロム電析機構に重要な領域とさ
れている。
That is, as shown in Figure 1, if we take the cathodic polarization curve (cathode potential-current density curve) of chromium electrodeposition using a sergeant bath containing chromic acid as the main component (indicated by the solid line in Figure 1), , in front of the 4th branch corresponding to the chromium precipitation region (the current rapidly increasing region that appears at -1.2 V or higher (versus saturated calomel electrode (SCE); the same applies hereinafter: the region where the chromium deposition current flows and the precipitation of metallic chromium is observed). In the range of −0.7 to −1.2V,
It shows peaks indicating the rise and fall of the current, and this is called the third branch. This region is a region where hydrogen is generated, and at the same time, it is also a region where hexavalent chromium is reduced to trivalent chromium. Due to the overvoltage, hydrogen generation starts from around -0.3V rather than 0V, and this is called the first branch. Next, there is an increase in current that is said to be caused by the reduction of oxygen in the electrode and the discharge of hexavalent chromium, and this is called the second branch. The current values of the first branch and the second branch are often small and cannot be clearly distinguished. On the other hand, the third
The branch and the fourth branch are considered to be important regions for the chromium electrodeposition mechanism.

そこで、本発明者らは、上記サージエント浴の
電位−電流密度曲線の第3枝に相当する大きな電
位ピークに影響を与えることのできる物質を見出
すべく研究を重ねた。
Therefore, the present inventors conducted extensive research in order to find a substance that can influence the large potential peak corresponding to the third branch of the potential-current density curve of the surgent bath.

その結果、本発明者らに、クロムめつき浴に希
土類元素またはその化合物を添加することによつ
て、上記ピークが著しく小さくなるか、ピークの
形をとらなくなることを見出した(第1図中、点
線で示す)。この結果、電解時の水素発生が著し
く減少したようには思われなかつた(電流効率が
ほとんど変化しないことから)が、6価クロムの
3価クロムへの還元が順調に進行し、従来無光沢
であるとされていた電解条件(例えば、金属表面
技術便覧(改訂新版)第2版(日刊工業新聞社、
昭和52年12月25日発行)第295頁の図4,33に
見られるような30℃、10〜50A/dm2)でもクロ
ム析出物の光沢が著しく高いことがわかつた。
As a result, the present inventors found that by adding a rare earth element or its compound to the chromium plating bath, the above peak becomes significantly smaller or loses its shape (see Figure 1). , shown by the dotted line). As a result, hydrogen generation during electrolysis did not seem to have significantly decreased (as the current efficiency remained almost unchanged), but the reduction of hexavalent chromium to trivalent chromium progressed smoothly, and Electrolytic conditions (for example, metal surface technology handbook (revised new edition) 2nd edition (Nikkan Kogyo Shimbun,
It was found that the gloss of the chromium precipitates was extremely high even at 30° C. and 10 to 50 A/dm 2 ) as shown in Figures 4 and 33 on page 295 (published on December 25, 1978).

ところで、従来、ニツケル、銅、金、銀などの
電解めつきではよく知られている複合めつきは、
クロムにおいては実用が困難であるとされてい
た。これは、主に、上記した水素の発生が複合め
つきの析出を妨害していたものである。しかしな
がら、上に述べたように、クロムめつき浴に希土
類元素またはその化合物を添加することによつ
て、クロム複合めつきが可能となるという事実を
も見出した。
By the way, composite plating, which is well known for electrolytic plating of nickel, copper, gold, silver, etc.
It was considered difficult to put it into practical use with chromium. This is mainly due to the above-mentioned generation of hydrogen interfering with the precipitation of the composite plating. However, as mentioned above, we have also discovered that chromium composite plating becomes possible by adding a rare earth element or a compound thereof to the chromium plating bath.

したがつて、この発明の目的は、非フツ化物系
クロムめつき浴を用いた通常のクロムめつきにあ
つては光沢の向上を計ることができ、かつ複合め
つきをも可能とするクロムめつき方法を提供する
ことにある。
Therefore, the object of the present invention is to provide a chrome plate that can improve the gloss in ordinary chrome plating using a non-fluoride chromium plating bath and also enables composite plating. The goal is to provide a method for achieving this goal.

すなわち、この発明のクロムめつき方法は、ク
ロムめつき処理に当り、硫酸根を含有し、フツ化
物イオンを含まない非フツ化物系クロムめつき浴
であつて希土類元素およびその化合物からなる群
の中から選ばれた少なくとも1種の希土類系物質
を金属として少なくとも約0.01グラム/リツトル
の割合で含有させた非フツ化物系クロムめつき浴
を用いることを特徴とするものである。
That is, the chromium plating method of the present invention uses a non-fluoride chromium plating bath that contains sulfate radicals and does not contain fluoride ions, and that contains rare earth elements and their compounds. It is characterized by using a non-fluoride chromium plating bath containing at least one rare earth material selected from among them as a metal in a proportion of at least about 0.01 g/liter.

複合めつきをおこなう場合は、上記めつき浴に
セラミツク微粉末を分散・含有させる。
When performing composite plating, fine ceramic powder is dispersed and contained in the plating bath.

以下、この発明をさらに詳しく説明すると、非
フツ化物系クロムめつき浴に添加する希土類系物
質は、元素の形態にあるスカンジウム、イツトリ
ウム、セリウム、ランタン、プラセオジム、ネオ
ジム、プロメチウム、サマリウム、ユーロピシウ
ム、ガドリニウム、テルビウム、ジスプロシウ
ム、ホルミウム、エルビウム、ツリウム、イツテ
ルビウム、および(または)ルテチウム、並びに
その化合物である。希土類元素の化合物として
は、硫酸塩、塩酸塩、硝酸塩等の無機酸塩;酢酸
塩、酒石酸塩等の有機酸塩;酸化物;窒化物;炭
化物;ホウ化物がある。これら希土類系物質は混
合物の形態で用いてもよく、あるいは合金、例え
ば、いわゆるミツシユメタルの形態で用いてもよ
い。
To explain this invention in more detail below, the rare earth substances added to the non-fluoride chromium plating bath include scandium, yttrium, cerium, lanthanum, praseodymium, neodymium, promethium, samarium, europysium, and gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and/or lutetium, and compounds thereof. Compounds of rare earth elements include inorganic acid salts such as sulfates, hydrochlorides, and nitrates; organic acid salts such as acetates and tartrates; oxides; nitrides; carbides; and borides. These rare earth materials may be used in the form of a mixture or in the form of an alloy, for example, so-called Mitsushimetal.

上記希土類系化合物の添加量は、金属に換算し
て少なくとも約0.01グラム/リツトル(浴)の割
合である。好ましい添加量は、0.1グラム/リツ
トルないし10グラム/リツトルである。希土類系
化合物の量が0.01グラム/リツトル未満である
と、低温、高電流密度条件下で、クロム析出物の
光沢が得られなくなる。
The amount of the rare earth compound added is at least about 0.01 g/liter (bath) in terms of metal. The preferred amount added is 0.1 g/liter to 10 g/liter. If the amount of the rare earth compound is less than 0.01 g/liter, the gloss of the chromium precipitate cannot be obtained under low temperature, high current density conditions.

上記希土類系物質が添加される水性非フツ化物
系クロムめつき浴は、それ自体公知のものが使用
でき、代表的なものはサージエント浴等六価のク
ロム(無水クロム酸)を主体とするものである。
しかしながら、三価のクロムを主体としたもので
あつてもよい。そのようなクロムめつき浴として
は、硫酸クロムを主体としこれに硫酸アンモニウ
ム、尿素等を配合したもの、三価塩化クロムを主
成分とする公知の浴、あるいは特公昭55−38435
号に記載されているもの等がある。この後者のク
ロムめつき浴は、無水クロム酸溶液に、硫化水
素、亜硫酸塩、次亜硫酸塩またはチオ硫酸塩のよ
うな硫黄含有塩を無水クロム酸重量の5〜15%の
割合で配合したものである。
As the aqueous non-fluoride chromium plating bath to which the above-mentioned rare earth substances are added, any publicly known aqueous plating bath can be used, and typical baths are those mainly containing hexavalent chromium (chromic anhydride) such as Sargent bath. It is.
However, it may be made mainly of trivalent chromium. Such chromium plating baths include baths containing chromium sulfate as a main component and ammonium sulfate, urea, etc., known baths containing trivalent chromium chloride as a main component, or baths containing chromium plating baths containing trivalent chromium chloride as a main component, or baths containing chromium plating baths containing trivalent chromium chloride as a main component, or chromium plating baths containing chromium sulfate as a main component and containing ammonium sulfate, urea, etc.
There are things listed in the issue. This latter chromium plating bath consists of a chromic anhydride solution containing sulfur-containing salts such as hydrogen sulfide, sulfites, hyposulfites or thiosulfates in proportions of 5 to 15% by weight of chromic anhydride. It is.

なお、この発明で使用するめつき浴にフツ化物
を添加すると、希土類元素がフツ素と反応するこ
とにより多くの場合不溶性のフツ化物を作り、こ
の発明の効果を充分達成できない。
Note that when fluoride is added to the plating bath used in the present invention, the rare earth element reacts with fluorine to produce insoluble fluoride in most cases, making it impossible to achieve the effects of the present invention sufficiently.

この発明においてクロム複合めつきをおこなう
場合は、上記クロムめつき浴にセラミツク微粉末
を分散させ、撹拌しながらめつき処理をおこな
う。セラミツクとしては、ケイ素、アルミニウ
ム、タングステン等の酸化物、炭化物、窒化物、
ホウ化物、ケイ化物、硫化物などがある。これら
セラミツクの粒径は、目的により細かければ細か
い程よいが、現在入手できるものは、通常、粒径
0.2μmないし250μmであり、浴に対して、1ない
し800グラム/リツトルの割合で添加配合すると
よい。このめつき処理により、クロムめつき被膜
にセラミツク微粉末が分散固定された複合めつき
被膜が得られる。
When chromium composite plating is performed in the present invention, fine ceramic powder is dispersed in the chromium plating bath and the plating process is performed while stirring. Ceramics include oxides, carbides, nitrides of silicon, aluminum, tungsten, etc.
These include borides, silicides, and sulfides. The finer the particle size of these ceramics, the better depending on the purpose, but the ones currently available usually have a particle size of
It has a diameter of 0.2 μm to 250 μm, and is preferably added to the bath at a rate of 1 to 800 g/liter. Through this plating process, a composite plating film is obtained in which fine ceramic powder is dispersed and fixed in the chrome plating film.

めつき処理条件は、一般におこなわれているク
ロムめつき条件に従う。通常、電流密度は5ない
し100A/dm2であり、浴温度は−10℃ないし70
℃である。
The plating conditions follow the commonly used chrome plating conditions. Typically, the current density is between 5 and 100 A/ dm2 , and the bath temperature is between -10°C and 70°C.
It is ℃.

既に述べたように、この発明のめつき方法によ
れば、通常のクロムめつきにおいて従来無光沢領
域の電解条件においてもめつき被膜の光沢が著し
い。その原理は未だ充分に解明されてはいない
が、上記の希土類系物質がめつき浴中において反
応して希土類のクロム酸塩を形成し、微細な浮遊
物となつて析出核となり、物理的に陰極析出クロ
ムの微細構造化に寄与し、光沢クロム析出物を析
出させるが、あるいは僅かに溶解した希土類イオ
ンが陰極反応に作用し、水素過電圧やクロム析出
反応に電気化学的な作用をすることが予測され
る。
As already mentioned, according to the plating method of the present invention, the gloss of the plating film is remarkable even under electrolytic conditions in the conventional non-glossy range in normal chrome plating. Although the principle has not yet been fully elucidated, the above-mentioned rare earth materials react in the plating bath to form rare earth chromates, which become fine floating particles and become precipitation nuclei, which physically act as a cathode. It is predicted that it contributes to the fine structure of the precipitated chromium and precipitates bright chromium precipitates, or that slightly dissolved rare earth ions act on the cathode reaction and have an electrochemical effect on the hydrogen overvoltage and chromium precipitation reaction. be done.

また、複合めつきにあつては、セラミツク微粉
末が共析する結果、クロムの優れた物性すなわち
高硬度、耐摩耗、耐腐食、耐熱等の諸特性をそれ
らセラミツクによつてさらに向上させることがで
きる。したがつて、めつきとしては極限に近いと
され、かつクロムめつきの機能の限界ともされる
物性をさらに向上させ、より高度の要求に対応で
きるため、工業的に殊に有用であるといえる。
In addition, in the case of composite plating, as a result of eutectoid ceramic fine powder, the excellent physical properties of chromium, such as high hardness, wear resistance, corrosion resistance, and heat resistance, can be further improved by these ceramics. can. Therefore, it can be said to be particularly useful industrially because it further improves the physical properties that are considered to be close to the limit for plating and is also considered to be the functional limit of chrome plating, and can meet more advanced requirements.

以下、この発明を実施例によつてさらに説明す
る。
This invention will be further explained below with reference to Examples.

実施例 1 通常サージエント浴、すなわち無水クロム酸
250グラム/リツトルおよび硫酸2.5グラム/リツ
トルよりなる浴に、硫酸ランタンを0.1〜10グラ
ム/リツトルの割合で添加し、陰極として黄銅、
陽極として鉛を用いて、電流密度10〜50A/d
m2、浴温30〜40℃で10分間電解処理をおこなつ
た。
Example 1 Normal sergeant bath, i.e. chromic anhydride
To a bath consisting of 250 g/liter and 2.5 g/liter of sulfuric acid, lanthanum sulfate was added at a rate of 0.1 to 10 g/liter, and brass and sulfuric acid were added as cathodes.
Using lead as the anode, current density 10-50A/d
m 2 , electrolytic treatment was performed for 10 minutes at a bath temperature of 30 to 40°C.

硫酸ランタンを添加しない通常浴の場合、電流
密度が50A/dm2のとき、陰極周囲のみ光沢のあ
る灰色のクロムめつき被膜が得られた。他の条件
下では、灰色ないし黒灰色の粗いめつき被膜とな
つた。
In the case of a normal bath without addition of lanthanum sulfate, a glossy gray chrome plating film was obtained only around the cathode when the current density was 50 A/dm 2 . Under other conditions, it resulted in a rough plated coating of gray to black-gray color.

一方、この発明の浴を用いた場合、硫酸ランタ
ンを0.1グラム/リツトルの割合で添加した浴に
おいては、電流密度10A/dm2の条件を除き、全
条件の下でほぼ完全に光沢クロムめつき被膜を得
た。硫酸ランタンを0.2グラム/リツトル以上添
加した浴においては、全ての電解条件の下でも完
全に光沢クロムめつき被膜を得ることができた。
電流効率は、27.0〜33.5%と通常浴の場合とほぼ
同等かそれよりもやや高かつた。
On the other hand, when using the bath of this invention, in a bath to which lanthanum sulfate was added at a rate of 0.1 g/liter, bright chrome plating was almost completely formed under all conditions except for the condition of current density of 10 A/ dm2 . A coating was obtained. In the bath containing 0.2 g/liter or more of lanthanum sulfate, a completely bright chrome plated film could be obtained under all electrolytic conditions.
The current efficiency was 27.0 to 33.5%, which was about the same as or slightly higher than that of the normal bath.

また、クロムめつき被膜の硬さは、通常浴を用
いた場合は、Hv(ビツカース硬さ)が680〜740で
あつたが、この発明の浴を用いた場合、硫酸ラン
タンを0.1グラム/リツトル含むものにおいてHv
が850〜1240であり、特に硫酸ランタンを0.5グラ
ム/リツトル以上含むものにおいてはHvが1450
にも達する硬質クロムめつき被膜を得ることがで
きた。
In addition, the hardness of the chromium plating film was 680 to 740 Hv (Vickers hardness) when a normal bath was used, but when the bath of this invention was used, 0.1 g/liter of lanthanum sulfate was used. Including Hv
Hv is 850 to 1240, especially in those containing 0.5 g/liter or more of lanthanum sulfate, Hv is 1450.
We were able to obtain a hard chromium plating film that reached the desired level.

実施例 2 実施例1の通常浴に酸化ランタンを0.1〜10グ
ラム/リツトルの割合で添加した浴について、浴
温10〜80℃、電流密度10〜120A/dm2の範囲条
件で同様に電解処理をおこなつたところ、全範囲
条件で優れた光沢を有するクロムめつき被膜を得
た。
Example 2 A bath in which lanthanum oxide was added at a rate of 0.1 to 10 g/liter to the normal bath of Example 1 was electrolytically treated in the same manner under the conditions of a bath temperature of 10 to 80°C and a current density of 10 to 120 A/ dm2. As a result, a chrome-plated film with excellent gloss was obtained under all conditions.

実施例 3 実施例1の通常浴に市敗のミツシユメタル(セ
リウム33%)粉末を1グラム/リツトルの割合で
撹拌しつつ添加しクロムめつき浴を調製した。こ
の浴を用い、浴温20〜60℃、電流密度20〜50A/
dm2で電解処理をおこなつたところ、全範囲条件
の下で光沢の優れたクロムめつき被膜を得た。電
流効率は15.5〜35.5%の範囲内にあり、浴温が低
い程効率が高かつた。
Example 3 A chromium plating bath was prepared by adding commercially available Mitsushimetal (33% cerium) powder at a rate of 1 gram/liter to the normal bath of Example 1 while stirring. Using this bath, bath temperature 20-60℃, current density 20-50A/
When electrolytically treated at dm 2 , a chromium plated film with excellent gloss was obtained under the entire range of conditions. The current efficiency was in the range of 15.5-35.5%, and the lower the bath temperature, the higher the efficiency.

実施例 4 無水クロム酸50〜1000グラム/リツトルにサー
ジエント浴比(対クロム酸)の硫酸1/100ない
し1/200を添加した種々の浴を用い、浴温40℃、
電流密度15A/dm2の条件で電解処理をおこなつ
たところ、析出物は全て灰色であつた。これらの
浴にクロム酸に対し1/100量の硫酸セリウムを
添加して電解処理をおこなつたところ、全ての条
件において光沢クロムめつき被膜を得ることがで
きた。
Example 4 Using various baths in which 50 to 1000 grams/liter of chromic acid anhydride was added with 1/100 to 1/200 of sulfuric acid at a sergeant bath ratio (to chromic acid), the bath temperature was 40°C.
When electrolytic treatment was carried out at a current density of 15 A/dm 2 , all precipitates were gray in color. When electrolytic treatment was carried out by adding 1/100 the amount of cerium sulfate to chromic acid to these baths, a bright chrome plating film could be obtained under all conditions.

実施例 5 実施例3の浴に、粒径2.0μmの炭化ケイ素粉末
を100〜800グラム/リツトルの割合で撹拌しなが
ら徐々に加えてクロム複合めつき浴を調製した。
この浴を用い、浴温20〜40℃、電流密度20A/d
m2の条件で1時間電解処理をおこなつた。
Example 5 A chromium composite plating bath was prepared by gradually adding silicon carbide powder having a particle size of 2.0 μm to the bath of Example 3 at a rate of 100 to 800 grams/liter while stirring.
Using this bath, the bath temperature is 20 to 40℃ and the current density is 20A/d.
Electrolytic treatment was carried out for 1 hour under conditions of m 2 .

炭化ケイ素の量が増加するにつれて、複合めつ
き被膜のHvは1100から1450に変化したが、炭化
ケイ素の量が150グラム/リツトル以上ではHvは
1450でほぼ一定であつた。これら複合めつき被膜
を塩酸で処理し、残渣より炭化ケイ素量を分析し
たところ、複合めつき被膜中に炭化ケイ素が1.2
〜3.0重量%の割合で共析していることがわかつ
た。
As the amount of silicon carbide increased, the Hv of the composite plating coating changed from 1100 to 1450, but when the amount of silicon carbide was more than 150 g/liter, the Hv decreased.
It remained almost constant at 1450. When these composite plating films were treated with hydrochloric acid and the amount of silicon carbide was analyzed from the residue, it was found that 1.2% of silicon carbide was present in the composite plating films.
It was found that eutectoid was present at a rate of ~3.0% by weight.

同様にして、アルミナ粉末(粒径0.5μm)を50
〜200グラム/リツトルの割合で添加したところ、
アルミナを2.1〜2.5重量%の割合で共析させるこ
とができた。これら複合めつき被膜のHvは1200
〜1350であり、安定した硬さを得ることができ
た。
In the same way, 50% alumina powder (particle size 0.5μm)
When added at a rate of ~200 grams/liter,
It was possible to eutectoid alumina at a ratio of 2.1 to 2.5% by weight. The Hv of these composite plating films is 1200
~1350, and stable hardness could be obtained.

こうして得た複合めつき被膜について、Tabar
摩耗試験機を用い、摩耗輪(CS−10)によつて
10000回転後の被膜の減量を測定した。その結果、
複合めつき被膜の減量は、クロムめつきのみの被
膜の減量の1/2となり、耐摩耗性が著しく向上し
た。
Regarding the composite plating film obtained in this way, Tabar
By using a wear tester and a wear ring (CS-10)
The weight loss of the coating after 10,000 rotations was measured. the result,
The weight loss of the composite plated coating was 1/2 of that of the chrome plated coating, and the wear resistance was significantly improved.

実施例 6 硫酸クロム200グラム/リツトル、硫酸アンモ
ニウム450グラム/リツトル、尿素240グラム/リ
ツトル、およびミツシユメタル0.2グラム/リツ
トルよりなる浴に粒径2μmの炭化ケイ素粉末を
300グラム/リツトルの割合で添加し(浴のPH2.2
〜2.5)、浴温45℃、電流密度15A/dm2の条件で
電解処理をおこなつた。こうして、炭化ケイ素が
1重量%共析したクロムめつき被膜を得た。
Example 6 Silicon carbide powder with a particle size of 2 μm was placed in a bath consisting of 200 grams/liter of chromium sulfate, 450 grams/liter of ammonium sulfate, 240 grams/liter of urea, and 0.2 grams/liter of Mitsushimetal.
Added at a rate of 300 grams/liter (bath pH 2.2)
~2.5), the electrolytic treatment was carried out under the conditions of a bath temperature of 45° C. and a current density of 15 A/dm 2 . In this way, a chromium-plated film in which 1% by weight of silicon carbide was eutectoid was obtained.

実施例 7 無水クロム酸150グラム/リツトル、次亜硫酸
ナトリウム15グラム/リツトルおよび硫酸ランタ
ン0.5グラム/リツトルよりなる浴を用い、浴温
35℃、電流密度80A/dm2で30分間電解をおこな
つたところ、光沢の優れたクロムめつき被膜を得
た。この被膜のHvは1500であつた。
Example 7 Using a bath consisting of 150 g/liter of chromic anhydride, 15 g/liter of sodium hyposulfite, and 0.5 g/liter of lanthanum sulfate, the bath temperature was
When electrolysis was carried out for 30 minutes at 35° C. and a current density of 80 A/dm 2 , a chromium-plated film with excellent gloss was obtained. The Hv of this coating was 1500.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、サージエント浴を用いたクロムめつ
きにおける陰極電位−電流密度曲線図。
FIG. 1 is a cathode potential-current density curve diagram in chromium plating using a sergeant bath.

Claims (1)

【特許請求の範囲】 1 クロムめつき処理に当り、硫酸根を含有し、
フツ化物イオンを含まない非フツ化物系クロムめ
つき浴であつて希土類元素およびその化合物から
なる群の中から選ばれた少なくとも1種の希土類
系物質を金属として少なくとも約0.01グラム/リ
ツトルの割合で含有させた非フツ化物系クロムめ
つき浴を用いることを特徴とするクロムめつき方
法。 2 希土類化合物が、希土類元素の硫酸塩、塩酸
塩、硝酸塩、酢酸塩、酒石酸塩、酸化物、窒化
物、炭化物およびホウ化物からなる群の中から選
ばれた少なくとも1種の化合物である特許請求の
範囲第1項記載のクロムめつき方法。 3 めつき浴が、セラミツク微粉末を分散・含有
するものである特許請求の範囲第1項または第2
項記載のクロムめつき方法。
[Claims] 1. Contains a sulfate group for chromium plating treatment,
A non-fluoride chromium plating bath containing no fluoride ions containing at least one rare earth material selected from the group consisting of rare earth elements and their compounds at a rate of at least about 0.01 g/liter as metal. A chromium plating method characterized by using a fluoride-free chromium plating bath. 2. A patent claim in which the rare earth compound is at least one compound selected from the group consisting of sulfates, hydrochlorides, nitrates, acetates, tartrates, oxides, nitrides, carbides, and borides of rare earth elements. Chromium plating method according to item 1. 3. Claim 1 or 2, wherein the plating bath contains fine ceramic powder dispersed therein.
Chrome plating method described in section.
JP12470584A 1984-06-18 1984-06-18 Method for plating chromium Granted JPS613895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12470584A JPS613895A (en) 1984-06-18 1984-06-18 Method for plating chromium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12470584A JPS613895A (en) 1984-06-18 1984-06-18 Method for plating chromium

Publications (2)

Publication Number Publication Date
JPS613895A JPS613895A (en) 1986-01-09
JPH0573835B2 true JPH0573835B2 (en) 1993-10-15

Family

ID=14892056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12470584A Granted JPS613895A (en) 1984-06-18 1984-06-18 Method for plating chromium

Country Status (1)

Country Link
JP (1) JPS613895A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1042753C (en) * 1994-06-02 1999-03-31 北京科技大学 Liquid for electroplating trivalent chromium
US6013380A (en) * 1996-11-11 2000-01-11 Teiko Piston Ring Co., Ltd. Composite chromium plating film and sliding member covered thereof
DE69704752T3 (en) * 1996-11-11 2005-08-04 Teikoku Piston Ring Co., Ltd. Galvanic composite chromium coating and coated sliding part

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50104141A (en) * 1974-01-23 1975-08-16
JPS5717960A (en) * 1980-07-07 1982-01-29 Toshiba Corp Image forming system apparatus
JPS5929119A (en) * 1982-08-09 1984-02-16 Sanwa Kako Kk Bonding method of conductive plastic material
JPS59123792A (en) * 1982-12-28 1984-07-17 Toshiba Corp Wear resistant coating

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50104141A (en) * 1974-01-23 1975-08-16
JPS5717960A (en) * 1980-07-07 1982-01-29 Toshiba Corp Image forming system apparatus
JPS5929119A (en) * 1982-08-09 1984-02-16 Sanwa Kako Kk Bonding method of conductive plastic material
JPS59123792A (en) * 1982-12-28 1984-07-17 Toshiba Corp Wear resistant coating

Also Published As

Publication number Publication date
JPS613895A (en) 1986-01-09

Similar Documents

Publication Publication Date Title
Dolati et al. The electrodeposition of quaternary Fe–Cr–Ni–Mo alloys from the chloride-complexing agents electrolyte. Part I. Processing
Thiemig et al. Influence of pulse plating parameters on the electrocodeposition of matrix metal nanocomposites
Stanković et al. The influence of thiourea on kinetic parameters on the cathodic and anodic reaction at different metals in H2SO4 solution
US3996114A (en) Electroplating method
Donten et al. Pulse electroplating of rich-in-tungsten thin layers of amorphous Co-W alloys
US20010054557A1 (en) Electroplating of metals using pulsed reverse current for control of hydrogen evolution
Belevskii et al. Electrodeposition of Nanocrystalline Fe—W Coatings from a Citrate Bath
Hagarova et al. Microstructure and properties of electroplated Ni-Co alloy coatings
US3326782A (en) Bath and method for electroforming and electrodepositing nickel
Yin et al. Current pulse plating of nickel-iron alloys on rotating disk electrodes
Ghorbani et al. Electrodeposition of Ni–Fe alloys in the presence of complexing agents
Fukushima et al. Mechanism of the electrodeposition of zinc with iron-group metals from sulfate baths
Boukhouiete et al. Effect of current density on the microstructure and morphology of the electrodepositednickel coatings
JPH0573835B2 (en)
CA1195645A (en) High-rate chromium alloy plating
US3421986A (en) Method of electroplating a bright adherent chromium coating onto cast-iron
US4111760A (en) Method and electrolyte for the electrodeposition of cobalt and cobalt-base alloys in the presence of an insoluble anode
Agladze et al. Comparision of Physico-chemical Properties of Cr, Ni-P, Ni-Mo, Ni'W'-P and Mn-Zn Alloys Coatings
Tian et al. Study of the process of preparing amorphous Fe–W (La) alloy plating by induced co-deposition
US3274079A (en) Bath and process for the electrodeposition of nickel and nickel-cobalt alloys
Omidi et al. Addition of Mo in the Zn based alloy coating in the citrate solution and investigation of its corrosion behavior
JP2006131987A (en) Chromium-plating method
Sulcius et al. Influence of ammonium selenate and thiourea mixture on mechanical properties and morphology of Zn–Mn alloy coatings electrodeposited from sulphate–citrate bath
Protsenko Electrodeposition from trivalent chromium baths as an environmentally friendly alternative to electroplating from hazardous hexavalent chromium baths
SU1344817A1 (en) Method of preparing surface of aluminium and its alloys for applying electroplating