JPH0573790B2 - - Google Patents

Info

Publication number
JPH0573790B2
JPH0573790B2 JP10534588A JP10534588A JPH0573790B2 JP H0573790 B2 JPH0573790 B2 JP H0573790B2 JP 10534588 A JP10534588 A JP 10534588A JP 10534588 A JP10534588 A JP 10534588A JP H0573790 B2 JPH0573790 B2 JP H0573790B2
Authority
JP
Japan
Prior art keywords
resin
parts
reaction
printing ink
rosin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10534588A
Other languages
Japanese (ja)
Other versions
JPH01275677A (en
Inventor
Minoru Matsumoto
Kenichi Doi
Takashi Kadokuma
Ryoichi Fukui
Shinichi Uno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink SC Holdings Co Ltd
Arakawa Chemical Industries Ltd
Original Assignee
Toyo Ink Mfg Co Ltd
Arakawa Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Mfg Co Ltd, Arakawa Chemical Industries Ltd filed Critical Toyo Ink Mfg Co Ltd
Priority to JP63105345A priority Critical patent/JPH01275677A/en
Publication of JPH01275677A publication Critical patent/JPH01275677A/en
Publication of JPH0573790B2 publication Critical patent/JPH0573790B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Phenolic Resins Or Amino Resins (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は印刷インキ用樹脂およびその製造法に
関する。 [従来の技術] 従来、印刷インキ用樹脂、ことにオフセツト印
刷インキ用樹脂としてロジン変性フエノール樹脂
が賞用されてきた。ところが近時、省力化、高速
印刷化の要請から印刷インキ用樹脂の高速印刷適
性が強く要求されるにいたり、光沢、乾燥性、セ
ツト(印刷された直後にインキ中の低粘度成分、
とくに溶剤が紙の繊維のコート層へ吸収されイン
キの急激な増粘がおこり、次々と積み重なつてく
る印刷物の裏面に色が移らなくなることをいい、
セツトが良好なものとは印刷時からセツトにいた
るまでの経過時間が短いものをいう)についての
要求性能も高度化してきている。 近年の高速印刷においては、光沢もさることな
がらインキの乾燥状態にいたる前のセツトがはや
いことがより重要な特性として求められている。 該印刷インキの光沢やインキ用溶剤に対する溶
解性を樹脂したばあいには、ロジン変性フエノ
ール樹脂のフエノール成分として長鎖アルキルフ
エノールを多量に用いるか、高級脂肪酸、乾性
油アルキツド樹脂などの綿状の改質成分を併用す
ることが行なわれてきた。しかし、一般には光沢
と乾燥性・セツトとは相反する性能であり、両者
のバランスをとることは困難であるばあいが多
く、上記手段によればえられる樹脂の軟化点が著
しく低下し、インキの乾燥性、セツトが遅くなる
傾向が大きい。 本出願人は、すでに特開昭59−191776号公報に
おいて、ロジンとレゾール型フエノール樹脂とを
酸触媒の存在下で反応せしめてえられる低酸価の
ロジン変性フエノール樹脂が、インキ溶剤に対す
る溶解性が良好であるため、高光沢であり、さら
に乾燥性、セツト、ミスチングなどの要求性能を
ある程度満足しうる旨を開示している。 しかしながら、未だ樹脂の軟化点が充分には高
くないため、乾燥性、セツトの点で改良の余地が
ある。 しかして、高速印刷下にある程度の光沢を保持
しつつ、しかも乾燥性、セツト、ミスチングなど
の要求性能(以下、印刷適性という)を同時に満
足する印刷インキ用樹脂の開発が要望されてい
る。 [発明が解決しようとする課題] 本発明者らは、従来公知のロジン変性フエノー
ル樹脂では高速印刷時の印刷適性(とくに乾燥性
およびセツト)を満足しえないという実状に鑑
み、該欠点を解決しうる新規な印刷インキ用樹脂
を開発せんとしたのである。 [課題を解決するための手段] 前記問題点に鑑みて、本発明者らはロジン変性
フエノール樹脂の分子構造、物理定数、軟化点な
どに着目して目的樹脂をうるために種々の製造法
につき鋭意検討を行なつた。その結果、特開昭59
−191776号公報における樹脂原料であるロジンに
かえて特定のロジン誘導体を使用したばあいに
は、前記問題点がことごとく解決されうることを
見出した。本発明はこの新しい知見に基づいて完
成されたものである。 すなわち、本発明はロジン類およびフエノー
ル類を酸触媒の存在下で加熱反応せしめてえられ
る反応物Aとレゾール型フエノール樹脂Bとを酸
触媒の存在下でエステル化反応させてえられる反
応生成物からなる印刷インキ用樹脂、ならびに
ロジン類およびフエノール類を酸触媒の存在下で
加熱反応せしめてえられる反応物Aとレゾール型
フエノール樹脂Bとを酸触媒の存在下でエステル
化反応させることを特徴とする印刷インキ用樹脂
の製造法に関する。 [作用および実施例] 本発明は従来の樹脂の分子構造とは明確に異な
る新規な分子構造を有する印刷インキ用樹脂およ
びその製造法に関するものであり、該樹脂を使用
して初めて従来のロジン変性フエノール樹脂にみ
られる問題点がことごとく解消され、すぐれた高
速印刷適性を有する印刷インキがえられるのであ
る。 以下に、本発明の印刷インキ用樹脂の製造法お
よびえられた印刷インキ用樹脂の特性について説
明する。 本発明における前記反応物A、(以下、中間体
Aという)は、ロジン類およびフエノール類を酸
触媒の存在下で加熱反応せしめてえられる反応物
である。 ここに、ロジン類とは、ガムロジン、ウツドロ
ジン、トール油ロジン、不均化ロジン、重合ロジ
ンなどをいう。フエノール類としては、石炭酸、
クレゾールが好適である。酸触媒としては、パラ
トルエンスルホン酸、ドデシルベンゼンスルホン
酸、メタンスルホン酸、エタンスルホン酸、硫
酸、塩酸、三フツ化ホウ素、無水塩化アルミニウ
ムなどが好ましい。 該中間体はつぎの方法を採用して容易に製造し
うる。 すなわち、前記ロジン類1モルに対して、フエ
ノール類、1.5〜4モルを酸触媒の存在下に約140
〜180℃で4〜14時間反応させる。さらに反応系
内を最終温度が250〜300℃となるまで徐々に昇温
しながら未反応フエノール類を留去する。酸触媒
の使用量についてはとくに制限はないが、通常ロ
ジン類に対して0.05〜0.5重量%とされる。該中
間体Aの構造は未明確であるが、フエノール類と
ロジン類がフリーデルクラフト反応してフエノー
ル類のパラ位の水素原子がロジン類により置換さ
れたものが主反応生成物であると考えられる。該
中間体Aは酸価100〜110mgKOH/g、水酸基価
60〜90mgKOH/g、軟化点100〜125℃の範囲と
なるように前記反応条件を操作することにより適
宜調整されうる。 前記中間体Aとの反応に供されるレゾール型フ
エノール樹脂(以下、樹脂Bという)としては以
下のものがあげられる。 すなわち、水酸化ナトリウム、水酸化カリウ
ム、水酸化カルシウム、アンモニウムなどのアル
カリ触媒の存在下に、ホルムアルデヒドあるいは
パラホルムアルデヒドなどのホルムアルデヒド供
給物質と以下のフエノール類とを反応してえられ
るレゾール型フエノール樹脂の初期縮合物を例示
しうる。 前記フエノール類の具体例としては、たとえば
石炭酸、クレゾール、sec−ブチルフエノール、
t−ブチルフエノール、アミルフエノール、シク
ロヘキシルフエノール、オクチルフエノール、ノ
ニルフエノール、ドデシルフエノール、フエニル
フエノール、クミルフエノールなどがあげられる
が、なかでもブチルフエノール、オクチルフエノ
ール、ノニルフエノールなどのアルキルフエノー
ルを主成分とするのが溶解性の点から好ましい。 樹脂Bは公知方法を採用して容易に製造され
る。具体的には以下の反応条件を適宜設定するこ
とにより製造される。すなわち、ホルムアルデヒ
ドの使用量は、前記フエノール類1モルに対して
通常1〜4モル程度、好ましくは1.5〜3モルと
される。アルカリ触媒は、フエノール類に対して
通常は0.5〜30モル%の範囲で使用される。反応
温度は40〜100℃程度、飯能時間は2〜8時間程
度とされる。このようにしてえられる樹脂Bは通
常、分子量(ポリスチレン換算重量平均分子量)
が400〜3500程度の範囲となるように適宜調整す
るのがよい。 かくしてえられた中間体Aと樹脂Bとを以下の
条件下に酸触媒を使用してエステル化反応させる
ことにより本発明の印刷インキ用樹脂を収得しう
る。また必要により多価アルコールを反応成分と
して併用することができる。 本発明の印刷インキ用樹脂を収得するにあた
り、中間体Aと樹脂Bとの仕込比率はえられるイ
ンキ用樹脂の光沢、溶解性、軟化点を考慮して適
宜決定され、通常は中間体A100部(重量部、以
下同様)に対して5〜140部程度、好ましくは20
〜100部の範囲とするのがよい。5部未満または
140部をこえるばあいには、いずれもえられるイ
ンキ用樹脂の軟化点が低下する傾向にあり、とく
に140部をこえるばあいには、色調が低下すると
いう不利がある。 酸触媒の種類についてはとくに制限はされず、
前記中間体Aの製造に際して用いられる各種のも
のをそのまま使用することができる。該触媒の使
用量は、通常中間体に対して0.01〜0.3重量%と
される。なお、必要によりエステル化の助触媒と
してトリフエニルフオスフアイト、トリフエニル
フオスフエートなどを使用することもでき、これ
らはえられる樹脂の色調劣化防止に対しても効果
がある。 本発明において、エステル化反応とは、中間体
Aと樹脂Bのみを使用し、多価アルコールを使用
しないばあいには、中間体A中に存在するロジン
に由来するカルボキシル基と中間体A中のフエノ
ール類に由来する水酸基もしくは樹脂Bのメチロ
ール基もしくは樹脂Bのフエノールに由来するフ
エノール性水酸基とのあいだで生じる脱水反応を
いい、他方、多価アルコールを使用するばあいに
は、前記脱水反応のみならずロジンに由来するカ
ルボキシル基と多価アルコールに由来するアルコ
ール性水酸基とのあいだでの脱水反応を含めてい
う。 前記エステル化反応は、以下のようにして実施
される。すなわち、該エステル化反応はたとえば
前記中間体A、樹脂Bおよび必要により多価アル
コールのそれぞれ所定量を酸触媒の存在下に約
200〜270℃、5〜15時間攪拌しながら所望の酸
価、軟化点となるまでエステル反応せしめること
により行なわれる。 なお、該エステル化反応に際しては、酸触媒の
仕込時期についてはとくに制限はされず、中間体
A、樹脂Bおよび多価アルコールを同時に仕込む
か、あるいは中間体Aをあらかじめ加熱してお
き、これに樹脂Bおよび酸触媒を混合滴下したの
ち、多価アルコールを仕込んでもよい。 前記したように多価アルコールは本発明のエス
テル化工程において任意成分として使用されるも
のであり、かかる種類については本発明において
はとくに制限はされず、各種公知のものを使用す
ることができる。かかる多価アルコールの具体例
としては、たとえばグリセリン、トリメチロール
エタン、トリメチロールプロパン、ジエチレング
リコール、ペンタエリスリトールなどがあげられ
る。かかる多価アルコールの使用量はえられる印
刷インキ用樹脂の溶解性と密接に関係するため、
ある程度制限され、通常は中間体Aに対して最大
限10重量%、好ましくは6重量%までとするのが
よい。10重量%をこえるばあいには、溶解性が低
下するため好ましくない。 かくしてえられる反応生成物は、その酸価が通
常は50mgKOH/g以下、好ましくは40mgKOH/
g以下とされる。酸価が50mgKOH/gをこえる
ばあいは、印刷時に汚れなどのトラブルを生じる
傾向があるためである。また反応生成物の軟化点
は、通常は160℃以上、好ましくは170℃以上とさ
れる。160℃未満のばあいには、乾燥性、セツト
が顕著に低下するためである。 本発明の印刷インキ用樹脂は、通常の方法にし
たがつて各種公知の顔料、石油系溶剤、乾性油、
添加剤などを適宜配合して練肉することにより印
刷インキとすることができる。該印刷インキは、
とくにオフセツト印刷用に賞用することができる
ほか、凸版印刷、グラビア印刷にも好適に使用す
ることができる。なお、前記インキの調製の際に
は、ロジン変性フエノール樹脂などの公知の印刷
インキ用樹脂を適当量併用しうることはもとより
である。 以下、参考例および実施例をあげて本発明をさ
らに詳細に説明するが、本発明はかかる各例のみ
に限定されるものではない。 参考例 1 攪拌機、リービツヒ冷却管および温度計を付し
たフラスコにガムロジン1000(3.0モル)、石炭酸
1000(10.6モル)および酸触媒としてパラトルエ
ンスルホン酸0.7部を仕込み、150〜170℃まで昇
温した。つぎに同温度で5時間反応を行ない、未
反応石炭酸を留去させながらさらに250〜260℃ま
で昇温し、ロジン−フエノール反応物(以下、中
間体という)約1250部をえた。該中間体の酸価は
107mgKOH/g、軟化点は110℃、水酸基価は75
mgKOH/gであつた。 参考例 2 参考例1において、石炭酸の使用量を570部
(6.1モル)に減少させ、また150〜170℃での反応
時間を10〜13時間に延長させたほかは参考例1と
同様の操作を行ない、酸価105mgKOH/g、軟化
点120℃、水酸基価70mgKOH/gの中間体約1200
部をえた。 参考例 3 攪拌機、分水器つき還流冷却管および温度計を
付したフラスコに、パラオクチルフエノール1000
(4.85モル)、37%ホルマリン800部(9.87モル)
および48%水酸化ナトリウム110部を仕込み、攪
拌下で90℃まで昇温し、同温度で3時間反応を行
なつた。ついでトルエン500部を加えて溶解させ
たのち、6N塩酸120部、水1000部の塩酸溶液を添
加して水酸化ナトリウムを中和し、静置した。上
澄水層と樹脂層を分離し、さらに樹脂層を水洗す
ることにより、不揮発分66%のレゾール型フエノ
ール樹脂初期縮合物のトルエン溶液約1500部をえ
た。また該樹脂の分子量は1000であつた。 参考例 4 参考例3において、パラオクチルフエノール
1000部にかえてパラオクチルフエノール700部
(3.4モル)およびパラターンシヤリーブチルフエ
ノール220部(1.47モル)を使用したほかは参考
例3と同様の操作を行ない。不揮発分64%のレゾ
ール型フエノール樹脂初期縮合物のトルエン溶液
約1350部をえた。また該樹脂の分子量は1150であ
つた。 参考例 5 参考例3において、パラオクチルフエノール
1000部にかえてパラオクチルフエノール700部
(3.4モル)およびパラノニルフエノール320部
(1.45モル)を使用したほかは参考例3と同様の
操作を行ない、不揮発分66%のレゾール型フエノ
ール樹脂初期縮合物のトルエン溶液約1500部をえ
た。また該樹脂の分子量は950であつた。 参考例 6 参考例3において、パラオクチルフエノール
1000部にかえてパラオクチルフエノール850部
(4.13モル)およびパラターシヤリーブチルフエ
ノール110部(0.73モル)を使用したほかは参考
例3と同様の操作を行ない、不揮発分66%のレゾ
ール型フエノール樹脂初期縮合物のトルエン溶液
約1515部をえた。また該樹脂の分子量は1100であ
つた。 実施例 1 攪拌機、分水器付き還流冷却管および温度計を
付したフラスコに、参考例1でえられた中間体
1000部および参考例3でえられたレゾール型フエ
ノール樹脂初期縮合物のトルエン溶液600部(固
形分として400部に相当)、エステル化触媒として
パラトルエンスルホン酸1部および助触媒として
トリフエニルフオスフアイト1部を仕込み、トル
エンを留去させながら加熱昇温し、250〜260℃で
10時間エステル化反応を行ない、本発明の印刷イ
ンキ用樹脂約1300部をえた。このものの酸価は16
mgKOH/g、軟化点は184℃であり、またノルマ
ルパラフイン系溶剤(日本石油(株)製、商品名「日
石0号ソルベント」)に対するトレランスは25℃
で2.0g/gであつた。 実施例2〜8 実施例1において、使用中間体の種類、該中間
体の使用量、使用レゾール型フエノール樹脂初期
縮合物のトルエン溶液の種類、該溶液の使用量、
パラトルエンスルホン酸の使用量およびトリフエ
ニルフオスフアイトの使用量のうち少なくとも1
種を第1表に示すように変化させたほかは実施例
1と同様の操作を行ない、各種樹脂をえた。これ
らのものの酸価、軟化点およびトレランスを第2
表に示す。 実施例 9 攪拌機、分水器付き還流冷却管および温度計を
付したフラスコに、参考例1でえられた中間体
1000部および参考例3でえられたレゾール型フエ
ノール樹脂初期縮合物のトルエン溶液900部(固
形分として600部に相当)、パラトルエンスルホン
酸0.2部およびトリフエニルフオスフアイト0.5部
を仕込み、トルエンを留去させながら、250〜260
℃まで加熱昇温した。さらに同温度でグリセリン
50部を仕込み6時間エステル化反応を行ない、樹
脂約1500部をえた。このものの酸価は21mg
KOH/g、軟化点は173℃であり、トレランスは
25℃で1.3g/gであつた。 比較例 1 実施例1の反応装置に、ガムロジン1000部、参
考例3でえられたレゾール型フエノール樹脂初期
縮合物のトルエン溶液1515部(固形として1000部
に相当)、エステル化触媒としてパラトルエンス
ルホン酸3部および助触媒としてトリフエニルフ
オスフアイト3部を仕込み、トルエンを留去させ
ながら加熱昇温し、250〜260℃で2時間エステル
化反応を行ない、印刷インキ用樹脂約2000部をえ
た。このものの酸価は20mgKOH/g、軟化点は
152℃であり、トレランスは25℃で12.0g/gで
あつた。 比較例 2 実施例1で用いたのと同じ反応装置に、ガムロ
ジン1000部、参考例6でえられたレゾール型フエ
ノール樹脂初期縮合物のトルエン溶液1515部(固
形分として1000部に相当)、エステル化触媒とし
てパラトルエンスルホン酸3部および助触媒とし
てトリフエニルフオスフアイト3部を仕込み、ト
ルエンを留去させながら加熱昇温し、250〜260℃
で2時間エステル化反応を行ない、印刷インキ用
樹脂約2000部をえた。えられた樹脂の酸価は20mg
KOH/g、軟化点は163℃であり、トレランスは
25℃で9.0g/gであつた。 実施例1〜9でえられた本発明の印刷インキ用
樹脂および比較例1〜2でえられた比較用の印刷
インキ用樹脂を用いて以下の方法によりインキの
調製を行ない、それらのインキの性能を評価し
た。その評価結果を第3表に示す。 (インキの調製) 樹脂45部、アマニ油20部および日石5号ソルベ
ント35部を混合溶解してワニスをえた。このワニ
スを用いてつぎの配合割合で3本ロールにより練
肉してインキとした。 カーミン6B(紅顔料) 20部 前記ワニス 65〜70部 日石5号ソルベント 4〜9部 耐摩擦向上剤(ワツクス系コンパウンド) 5部 インキ用ドライヤー 1部 上記配合に基づいてインキのタツク値が9±
0.5、フロー値が18±0.5となるように調整した。 (光沢) インキ0.4mlをRIテスター((株)明製作所製)に
てアート紙に展色したのち、20℃、65%R.H.に
て24時間調湿し、60°−60°の反射率(%)を光沢
計により測定した。 (セツト) インキ0.4mlをRIテスター((株)明製作所製)に
てアート紙に展色したのち、展色物を時間ごとに
分割し、RIテスターローラーを用いて展色物か
ら別のアート紙上へのインキの付着度を観察し、
インキが付着しなくなるまでの時間(分)を測定
した。 (ミスチング) インキ4mlをインコーメーターにチヤージし、
400rpmで1分間、さらに1200rpmで3分間回転
させ、ロール直下に置いた白色紙上へのインキの
飛散度合を観察して評価を行なつた。
[Industrial Application Field] The present invention relates to a resin for printing ink and a method for producing the same. [Prior Art] Hitherto, rosin-modified phenolic resins have been used as resins for printing inks, particularly as resins for offset printing inks. However, in recent years, there has been a strong demand for printing ink resins to be suitable for high-speed printing due to demands for labor-saving and high-speed printing.
In particular, when the solvent is absorbed into the coated layer of paper fibers, the ink rapidly thickens, and the color does not transfer to the back side of the printed matter that is being piled up one after another.
The required performance is also becoming more sophisticated. In recent high-speed printing, in addition to gloss, an even more important characteristic is the ability to quickly set the ink before it reaches a dry state. When the gloss of the printing ink and its solubility in ink solvents are modified by a resin, a large amount of long-chain alkyl phenol is used as the phenol component of the rosin-modified phenolic resin, or a cotton-like resin such as higher fatty acids or drying oil alkyd resin is used. The combined use of modifying components has been practiced. However, in general, gloss and drying/setting properties are contradictory, and it is often difficult to maintain a balance between the two.The softening point of the resin obtained by the above method is significantly lowered, and the ink is There is a strong tendency for drying and slow setting. The present applicant has already reported in JP-A-59-191776 that a rosin-modified phenolic resin with a low acid value obtained by reacting a rosin and a resol type phenolic resin in the presence of an acid catalyst has a high solubility in an ink solvent. The patent discloses that it has a high gloss and satisfies required performances such as drying properties, setting, and misting to some extent. However, since the softening point of the resin is still not high enough, there is room for improvement in terms of drying properties and setting. Therefore, there is a demand for the development of a resin for printing ink that maintains a certain level of gloss under high-speed printing and also satisfies required performances such as drying properties, setting, and misting (hereinafter referred to as printability). [Problems to be Solved by the Invention] In view of the actual situation that conventionally known rosin-modified phenolic resins cannot satisfy printability (especially drying properties and setting) during high-speed printing, the present inventors have solved the drawbacks. The aim was to develop a new resin for printing ink that could be used. [Means for Solving the Problems] In view of the above-mentioned problems, the present inventors focused on the molecular structure, physical constants, softening point, etc. of the rosin-modified phenolic resin, and conducted various manufacturing methods to obtain the desired resin. We conducted a thorough study. As a result, JP-A-59
It has been found that all of the above problems can be solved if a specific rosin derivative is used instead of rosin, which is the resin raw material in Publication No. 191776. The present invention was completed based on this new knowledge. That is, the present invention provides a reaction product obtained by subjecting a reactant A obtained by heating a rosin and a phenol to a reaction in the presence of an acid catalyst and an esterification reaction of a resol type phenolic resin B in the presence of an acid catalyst. A printing ink resin consisting of a resin, a rosin, and a phenol are subjected to a heating reaction in the presence of an acid catalyst, and a reaction product A and a resol type phenolic resin B are subjected to an esterification reaction in the presence of an acid catalyst. This invention relates to a method for producing a resin for printing ink. [Function and Examples] The present invention relates to a resin for printing ink having a novel molecular structure that is clearly different from that of conventional resins, and a method for producing the same. All of the problems seen with phenolic resins are eliminated, and a printing ink with excellent high-speed printing suitability can be obtained. Below, the method for producing a printing ink resin of the present invention and the characteristics of the obtained printing ink resin will be explained. The reactant A (hereinafter referred to as intermediate A) in the present invention is a reactant obtained by subjecting rosins and phenols to a heating reaction in the presence of an acid catalyst. Here, rosin refers to gum rosin, oil rosin, tall oil rosin, disproportionated rosin, polymerized rosin, and the like. Phenols include carbolic acid,
Cresol is preferred. Preferred acid catalysts include para-toluenesulfonic acid, dodecylbenzenesulfonic acid, methanesulfonic acid, ethanesulfonic acid, sulfuric acid, hydrochloric acid, boron trifluoride, anhydrous aluminum chloride, and the like. This intermediate can be easily produced by employing the following method. That is, for 1 mole of the rosin, 1.5 to 4 moles of phenols are added in the presence of an acid catalyst at a rate of about 140%.
React at ~180°C for 4-14 hours. Furthermore, unreacted phenols are distilled off while gradually increasing the temperature in the reaction system until the final temperature reaches 250 to 300°C. There are no particular restrictions on the amount of acid catalyst used, but it is usually 0.05 to 0.5% by weight based on the rosin. Although the structure of Intermediate A is unclear, it is thought that the main reaction product is a Friedel-Crafts reaction between phenols and rosins, in which the hydrogen atom at the para position of the phenols is replaced by the rosin. It will be done. The intermediate A has an acid value of 100 to 110 mgKOH/g and a hydroxyl value.
The reaction conditions can be adjusted as appropriate by manipulating the reaction conditions so as to have a range of 60 to 90 mgKOH/g and a softening point of 100 to 125°C. Examples of the resol type phenol resin (hereinafter referred to as resin B) used in the reaction with intermediate A include the following. That is, a resol-type phenolic resin obtained by reacting a formaldehyde supplying substance such as formaldehyde or paraformaldehyde with the following phenols in the presence of an alkali catalyst such as sodium hydroxide, potassium hydroxide, calcium hydroxide, or ammonium. An example may be an initial condensate. Specific examples of the phenols include carbolic acid, cresol, sec-butylphenol,
Examples include t-butylphenol, amylphenol, cyclohexylphenol, octylphenol, nonylphenol, dodecylphenol, phenylphenol, cumylphenol, among others, alkylphenols such as butylphenol, octylphenol, and nonylphenol are the main components. This is preferable from the viewpoint of solubility. Resin B is easily produced by employing known methods. Specifically, it is produced by appropriately setting the following reaction conditions. That is, the amount of formaldehyde used is usually about 1 to 4 mol, preferably 1.5 to 3 mol, per 1 mol of the phenols. The alkaline catalyst is usually used in an amount of 0.5 to 30 mol% based on the phenols. The reaction temperature is about 40 to 100°C, and the reaction time is about 2 to 8 hours. Resin B obtained in this way usually has a molecular weight (weight average molecular weight in terms of polystyrene)
It is best to adjust it appropriately so that it is in the range of about 400 to 3500. The resin for printing ink of the present invention can be obtained by subjecting the thus obtained intermediate A and resin B to an esterification reaction using an acid catalyst under the following conditions. Further, if necessary, a polyhydric alcohol can be used in combination as a reaction component. In obtaining the resin for printing ink of the present invention, the charging ratio of intermediate A and resin B is appropriately determined in consideration of the gloss, solubility, and softening point of the resin for ink to be obtained, and is usually 100 parts of intermediate A. Approximately 5 to 140 parts (parts by weight, the same shall apply hereinafter), preferably 20 parts
It is recommended that the number of copies be in the range of ~100 copies. Less than 5 copies or
If it exceeds 140 parts, the softening point of the obtained ink resin tends to decrease, and especially if it exceeds 140 parts, there is a disadvantage that the color tone deteriorates. There are no particular restrictions on the type of acid catalyst;
Various materials used in the production of the intermediate A can be used as they are. The amount of the catalyst used is usually 0.01 to 0.3% by weight based on the intermediate. Incidentally, if necessary, triphenyl phosphite, triphenyl phosphate, etc. may be used as a co-catalyst for esterification, and these are also effective in preventing deterioration of the color tone of the resulting resin. In the present invention, the esterification reaction means that only intermediate A and resin B are used, and when a polyhydric alcohol is not used, a carboxyl group derived from rosin present in intermediate A and a carboxyl group derived from rosin present in intermediate A are used. refers to the dehydration reaction that occurs between the hydroxyl group derived from the phenols of resin B or the methylol group of resin B or the phenolic hydroxyl group derived from the phenol of resin B. On the other hand, when a polyhydric alcohol is used, the dehydration reaction It also includes the dehydration reaction between carboxyl groups derived from rosin and alcoholic hydroxyl groups derived from polyhydric alcohols. The esterification reaction is carried out as follows. That is, the esterification reaction involves, for example, predetermined amounts of each of the intermediate A, resin B, and optionally a polyhydric alcohol in the presence of an acid catalyst.
The ester reaction is carried out at 200 to 270°C with stirring for 5 to 15 hours until the desired acid value and softening point are achieved. In the esterification reaction, there is no particular restriction on the timing of charging the acid catalyst, and intermediate A, resin B, and polyhydric alcohol may be charged at the same time, or intermediate A may be heated in advance and then mixed with the acid catalyst. After the resin B and the acid catalyst are mixed and dropped, the polyhydric alcohol may be charged. As mentioned above, the polyhydric alcohol is used as an optional component in the esterification step of the present invention, and the type thereof is not particularly limited in the present invention, and various known ones can be used. Specific examples of such polyhydric alcohols include glycerin, trimethylolethane, trimethylolpropane, diethylene glycol, and pentaerythritol. Since the amount of polyhydric alcohol used is closely related to the solubility of the resulting printing ink resin,
The content is limited to some extent, and is usually limited to a maximum of 10% by weight, preferably 6% by weight, based on Intermediate A. If it exceeds 10% by weight, it is not preferable because solubility decreases. The reaction product thus obtained has an acid value of usually 50 mgKOH/g or less, preferably 40 mgKOH/g.
g or less. This is because if the acid value exceeds 50 mgKOH/g, problems such as staining tend to occur during printing. Further, the softening point of the reaction product is usually 160°C or higher, preferably 170°C or higher. This is because if the temperature is lower than 160°C, the drying property and setting will be significantly reduced. The resin for printing ink of the present invention can be prepared using various known pigments, petroleum solvents, drying oils,
It can be made into a printing ink by appropriately blending additives and kneading it. The printing ink is
In addition to being particularly useful for offset printing, it can also be suitably used for letterpress printing and gravure printing. In preparing the ink, it is of course possible to use an appropriate amount of a known resin for printing ink such as a rosin-modified phenolic resin. Hereinafter, the present invention will be explained in more detail with reference to Reference Examples and Examples, but the present invention is not limited to these Examples. Reference example 1 Gum rosin 1000 (3.0 mol) and carbolic acid were placed in a flask equipped with a stirrer, a Liebig condenser, and a thermometer.
1000 (10.6 mol) and 0.7 part of para-toluenesulfonic acid as an acid catalyst were charged, and the temperature was raised to 150 to 170°C. Next, the reaction was carried out at the same temperature for 5 hours, and the temperature was further raised to 250 to 260°C while distilling off unreacted carbolic acid, yielding about 1250 parts of a rosin-phenol reaction product (hereinafter referred to as intermediate). The acid value of the intermediate is
107mgKOH/g, softening point 110℃, hydroxyl value 75
It was mgKOH/g. Reference Example 2 Same operation as in Reference Example 1 except that the amount of carbolic acid used was reduced to 570 parts (6.1 mol) and the reaction time at 150 to 170°C was extended to 10 to 13 hours. An intermediate with an acid value of 105 mgKOH/g, a softening point of 120°C, and a hydroxyl value of 70 mgKOH/g was obtained.
I got a department. Reference example 3 Add paraoctylphenol 1000 to a flask equipped with a stirrer, a reflux condenser with a water separator, and a thermometer.
(4.85 mol), 37% formalin 800 parts (9.87 mol)
and 110 parts of 48% sodium hydroxide were charged, and the temperature was raised to 90°C while stirring, and the reaction was carried out at the same temperature for 3 hours. Next, 500 parts of toluene was added and dissolved, and then a hydrochloric acid solution of 120 parts of 6N hydrochloric acid and 1000 parts of water was added to neutralize the sodium hydroxide, and the mixture was allowed to stand still. By separating the supernatant water layer and the resin layer and further washing the resin layer with water, about 1500 parts of a toluene solution of a resol type phenolic resin initial condensate with a non-volatile content of 66% was obtained. Further, the molecular weight of the resin was 1000. Reference example 4 In reference example 3, paraoctylphenol
The same operation as in Reference Example 3 was carried out, except that 700 parts (3.4 moles) of para-octylphenol and 220 parts (1.47 moles) of para-shaributylphenol were used instead of 1000 parts. Approximately 1,350 parts of a toluene solution of a resol type phenolic resin initial condensate having a non-volatile content of 64% was obtained. Further, the molecular weight of the resin was 1150. Reference Example 5 In Reference Example 3, paraoctylphenol
The same operation as in Reference Example 3 was carried out except that 700 parts (3.4 mol) of para-octylphenol and 320 parts (1.45 mol) of para-nonylphenol were used instead of 1000 parts, and a resol type phenolic resin initial condensation with a non-volatile content of 66% was obtained. Approximately 1,500 parts of a toluene solution of the same substance was obtained. Further, the molecular weight of the resin was 950. Reference Example 6 In Reference Example 3, paraoctylphenol
The same operation as in Reference Example 3 was performed except that 850 parts (4.13 mol) of para-octylphenol and 110 parts (0.73 mol) of para-octylphenol were used instead of 1000 parts, and a resol type phenolic resin with a non-volatile content of 66% was obtained. Approximately 1515 parts of a toluene solution of the initial condensate was obtained. Further, the molecular weight of the resin was 1100. Example 1 The intermediate obtained in Reference Example 1 was placed in a flask equipped with a stirrer, a reflux condenser with a water separator, and a thermometer.
1,000 parts and 600 parts of a toluene solution of the resol type phenolic resin initial condensate obtained in Reference Example 3 (equivalent to 400 parts as solid content), 1 part of para-toluenesulfonic acid as an esterification catalyst, and triphenylphosphite as a co-catalyst. Pour 1 part and heat to 250-260℃ while distilling toluene off.
The esterification reaction was carried out for 10 hours, yielding about 1300 parts of the resin for printing ink of the present invention. The acid value of this thing is 16
mgKOH/g, the softening point is 184℃, and the tolerance to normal paraffin solvent (manufactured by Nippon Oil Co., Ltd., trade name "Nisseki No. 0 Solvent") is 25℃.
It was 2.0g/g. Examples 2 to 8 In Example 1, the type of intermediate used, the amount of the intermediate used, the type of toluene solution of the resol type phenolic resin initial condensate used, the amount of the solution used,
At least one of the amount of paratoluenesulfonic acid used and the amount of triphenylphosphite used
Various resins were obtained by carrying out the same operations as in Example 1 except that the seeds were changed as shown in Table 1. The acid value, softening point, and tolerance of these items are
Shown in the table. Example 9 The intermediate obtained in Reference Example 1 was placed in a flask equipped with a stirrer, a reflux condenser with a water separator, and a thermometer.
1000 parts, 900 parts of toluene solution of the resol type phenolic resin initial condensate obtained in Reference Example 3 (equivalent to 600 parts as solid content), 0.2 part of para-toluenesulfonic acid and 0.5 part of triphenyl phosphorite were charged, and toluene was added. 250-260 while distilling off
The temperature was raised to ℃. Furthermore, at the same temperature, glycerin
50 parts were charged and the esterification reaction was carried out for 6 hours, yielding about 1500 parts of resin. The acid value of this thing is 21mg
KOH/g, softening point is 173℃, tolerance is
It was 1.3 g/g at 25°C. Comparative Example 1 In the reaction apparatus of Example 1, 1000 parts of gum rosin, 1515 parts of a toluene solution of the resol type phenolic resin initial condensate obtained in Reference Example 3 (equivalent to 1000 parts as a solid), and para-toluenesulfone as an esterification catalyst. 3 parts of acid and 3 parts of triphenyl phosphorite as a co-catalyst were charged, the temperature was raised while toluene was distilled off, and the esterification reaction was carried out at 250-260°C for 2 hours, yielding about 2000 parts of resin for printing ink. The acid value of this material is 20mgKOH/g, and the softening point is
The temperature was 152°C, and the tolerance was 12.0g/g at 25°C. Comparative Example 2 In the same reaction apparatus as used in Example 1, 1000 parts of gum rosin, 1515 parts of a toluene solution of the resol type phenolic resin initial condensate obtained in Reference Example 6 (equivalent to 1000 parts as solid content), and ester were added. 3 parts of para-toluenesulfonic acid as a catalyst and 3 parts of triphenyl phosphite as a co-catalyst were charged, and heated to 250-260°C while distilling toluene off.
The esterification reaction was carried out for 2 hours, yielding approximately 2000 parts of resin for printing ink. The acid value of the obtained resin is 20 mg.
KOH/g, softening point is 163℃, tolerance is
It was 9.0 g/g at 25°C. Inks were prepared by the following method using the printing ink resins of the present invention obtained in Examples 1 to 9 and the comparative printing ink resins obtained in Comparative Examples 1 to 2. Performance was evaluated. The evaluation results are shown in Table 3. (Preparation of ink) A varnish was obtained by mixing and dissolving 45 parts of resin, 20 parts of linseed oil, and 35 parts of Nisseki No. 5 solvent. This varnish was kneaded using three rolls at the following blending ratio to form an ink. Carmine 6B (red pigment) 20 parts The above varnish 65-70 parts Nisseki No. 5 solvent 4-9 parts Friction improver (wax-based compound) 5 parts Ink dryer 1 part Based on the above formulation, the tack value of the ink is 9 ±
0.5, and the flow value was adjusted to be 18±0.5. (Gloss) After applying 0.4 ml of ink on art paper using an RI tester (manufactured by Mei Seisakusho Co., Ltd.), the humidity was controlled at 20°C and 65% RH for 24 hours, and the reflectance at 60°-60° ( %) was measured using a gloss meter. (Set) After spreading 0.4ml of ink onto art paper using an RI tester (manufactured by Mei Seisakusho Co., Ltd.), divide the displayed color object into sections according to time, and use the RI tester roller to separate art from the displayed color object. Observe the degree of ink adhesion on the paper,
The time (minutes) until the ink stopped adhering was measured. (Misting) Charge 4ml of ink to an incormeter,
The roll was rotated at 400 rpm for 1 minute and then at 1200 rpm for 3 minutes, and the degree of ink scattering on white paper placed directly below the roll was observed and evaluated.

【表】【table】

【表】【table】

【表】 [発明の効果] 本発明の印刷インキ用樹脂は、従来公知のロジ
ン変性フエノール樹脂の欠点を顕著に改良したも
のであり、高速印刷下においても光沢、セツト、
ミスチングなどの印刷適性を充分満足しうるもの
であるため、高速印刷化などの今日の要請に合致
する印刷インキを提供しうるという効果を奏す
る。
[Table] [Effects of the Invention] The printing ink resin of the present invention has significantly improved the drawbacks of conventionally known rosin-modified phenolic resins, and has excellent gloss, set, and high gloss even under high-speed printing.
Since it can sufficiently satisfy printing suitability such as misting, it has the effect of being able to provide a printing ink that meets today's demands such as high-speed printing.

Claims (1)

【特許請求の範囲】 1 ロジン類およびフエノール類を酸触媒の存在
下で加熱反応せしめてえられる反応物Aとレゾー
ル型フエノール樹脂Bとを酸触媒の存在下でエス
テル化反応させてえられる反応生成物からなる印
刷インキ用樹脂。 2 前記反応物Aの仕込量に対して10重量%をこ
えない範囲の多価アルコールを用いてエステル化
反応させてなる請求項1記載の印刷インキ用樹
脂。 3 前記レゾール型フエノール樹脂Bが炭素数4
〜12のアルキル基を有するアルキルフエノール類
をフエノール類の主成分として使用したレゾール
型フエノール樹脂である請求項1記載の印刷イン
キ用樹脂。 4 ロジン類およびフエノール類を酸触媒の存在
下で加熱反応せしめてえられる反応物Aとレゾー
ル型フエノール樹脂Bとを酸触媒の存在下でエス
テル化反応させることを特徴とする印刷インキ用
樹脂の製造法。
[Scope of Claims] 1. A reaction obtained by subjecting a rosin and a phenol to a heating reaction in the presence of an acid catalyst to cause an esterification reaction between a reactant A and a resol type phenolic resin B in the presence of an acid catalyst. Printing ink resin made from the product. 2. The printing ink resin according to claim 1, which is obtained by carrying out an esterification reaction using a polyhydric alcohol in an amount not exceeding 10% by weight based on the amount of the reactant A charged. 3 The resol type phenolic resin B has 4 carbon atoms.
The resin for printing ink according to claim 1, which is a resol type phenolic resin using an alkylphenol having 12 to 12 alkyl groups as the main component of the phenol. 4. A resin for printing ink, characterized in that a reaction product A obtained by heat-reacting rosins and phenols in the presence of an acid catalyst and a resol type phenolic resin B are subjected to an esterification reaction in the presence of an acid catalyst. Manufacturing method.
JP63105345A 1988-04-27 1988-04-27 Resin for printing ink and its production Granted JPH01275677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63105345A JPH01275677A (en) 1988-04-27 1988-04-27 Resin for printing ink and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63105345A JPH01275677A (en) 1988-04-27 1988-04-27 Resin for printing ink and its production

Publications (2)

Publication Number Publication Date
JPH01275677A JPH01275677A (en) 1989-11-06
JPH0573790B2 true JPH0573790B2 (en) 1993-10-15

Family

ID=14405148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63105345A Granted JPH01275677A (en) 1988-04-27 1988-04-27 Resin for printing ink and its production

Country Status (1)

Country Link
JP (1) JPH01275677A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4316069C1 (en) * 1993-05-13 1994-12-08 Feldmuehle Ag Stora Printing ink for application of a developer layer and its use for the production of a pressure-sensitive recording sheet
US20050054801A1 (en) 2003-09-04 2005-03-10 Arizona Chemical Company Resins and adhesive formulations therewith

Also Published As

Publication number Publication date
JPH01275677A (en) 1989-11-06

Similar Documents

Publication Publication Date Title
US4391640A (en) Process for producing oil-modified and rosin-modified phenolic resin for printing inks
US5556454A (en) Modified natural resin esters, processes for their preparation and their use as binder resins in printing inks
US4116910A (en) Printing ink binders
EP0041838B1 (en) Rosin-modified phenolic resin compositions and their production
JP2724621B2 (en) Waterless lithographic printing ink resin
JPH0573790B2 (en)
JPS6127424B2 (en)
JPS6127425B2 (en)
JP3298268B2 (en) Method for producing rosin phenol resin
JP4166394B2 (en) Method for producing resin composition for printing ink
JP3277520B2 (en) Binder for offset printing ink
JPH1088052A (en) Production of resin varnish for printing ink
JP2856328B2 (en) Production method of resin for printing ink
JP3240768B2 (en) Method for producing rosin-modified phenolic resin
JP3277519B2 (en) Method for producing resin for waterless lithographic printing ink
JPH0573153B2 (en)
JPH05279612A (en) Ink composition for waterless lithographic printing
JP3079846B2 (en) Printing ink
DE19907582C2 (en) Binder for printing inks and manufacturing processes
JPH07179546A (en) Phenol resin modified with rosin and printing ink using the same
JP3166274B2 (en) Printing ink binder
JPS6059269B2 (en) Binder for printing ink
JPH09302056A (en) Rosin-modified phenol resin and printing ink
JPH0573152B2 (en)
JP2949178B2 (en) Waterless printing ink binder