JPH057336A - Method and device for image pickup - Google Patents

Method and device for image pickup

Info

Publication number
JPH057336A
JPH057336A JP3150042A JP15004291A JPH057336A JP H057336 A JPH057336 A JP H057336A JP 3150042 A JP3150042 A JP 3150042A JP 15004291 A JP15004291 A JP 15004291A JP H057336 A JPH057336 A JP H057336A
Authority
JP
Japan
Prior art keywords
signal
picture
field
image
image pickup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3150042A
Other languages
Japanese (ja)
Other versions
JP3110797B2 (en
Inventor
Koji Takahashi
宏爾 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP03150042A priority Critical patent/JP3110797B2/en
Publication of JPH057336A publication Critical patent/JPH057336A/en
Application granted granted Critical
Publication of JP3110797B2 publication Critical patent/JP3110797B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To prevent picture quivering, and to take a picture whose practical dynamic range is wide by providing a motion information detecting means and a picture moving means. CONSTITUTION:In a camera part, the odd frame ODD and the even frame EVEN of one frame are distinguished by a field index FI. The H period and the L period of a vertical blanking signal VBLK are an effective picture and a blanking period respectively. The charge accumulation time of an image pickup element is controlled by T pulse, and the accumulation signal of either 1/10<3> seconds or 1/60 seconds is selected by an iris gate signal. The signals of the quantity of light of 1/10<3> seconds and 1/60 seconds are outputted alternately at every field. In a camera using A CCD image pickup element, the picture is improved by utilizing positively white void and back paint-out in the field of one side. Namely, a part where the white void or the black paint-out occurs is replaced with the corresponding part of another field and the signals of both the fields are synthesized into a final video signal. If a through picture and a memory picture are combined properly in this way, a good picture free from the black paint-out and the white void can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、画像信号のダイナミツ
クレンジを見かけ上拡大する撮像方法及び撮像装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image pickup method and an image pickup apparatus for apparently enlarging a dynamic range of an image signal.

【0002】[0002]

【従来の技術】撮像装置は、カメラ一体形VTRやスチ
ルビデオカメラ等の撮像部として広く使用されている。
これらのビデオカメラ等に用いられる撮像管や固体撮像
素子を用いた撮像装置は、旧来の銀塩写真システムに比
べダイナミツクレンジが狭く、従つて、逆光時などには
「白とび」や「黒つぶれ」(輝度レベルが著しく高い又
は低い部分の俗称)などが発生する。このような場合に
は、通常、主たる被写体が「黒つぶれ」しているので、
従来のビデオカメラ等においては、この主たる被写体に
露出を合わせるために、手動による絞りの操作、又は逆
光補正ボタンの操作により絞りを2絞り分程度開放し、
撮像素子等の露光量を増加させる様に調節していた。
2. Description of the Related Art An image pickup device is widely used as an image pickup section for a VTR with a built-in camera, a still video camera and the like.
The image pickup device using the image pickup tube and the solid-state image pickup element used in these video cameras has a narrow dynamic range as compared with the conventional silver halide photographic system. "Collapse" (common name for the part where the brightness level is extremely high or low) occurs. In such a case, the main subject is usually "black out", so
In a conventional video camera or the like, in order to adjust the exposure to this main subject, the aperture is manually opened or the backlight compensation button is operated to open the aperture by about 2 apertures,
It was adjusted so as to increase the exposure amount of the image pickup device and the like.

【0003】しかし、このような逆光補正を適切に行つ
た場合でも、主たる被写体が適正露光量になっても、背
景で「白とび」が発生してしまい、背景が白いだけの画
面になつてしまう。つまり、従来の撮像装置のように主
たる被写体の露光量が適正になるように光量調節するだ
けでは、撮像装置のダイナミツクレンジの狭さは解決さ
れない。そこで、例えばラインスキヤナなどを用いて静
止画像を電気信号に変換するような撮像装置では、従
来、同一被写体から得られた露光量の異なる複数の画面
から1つの画面を合成する構成がとられている。
However, even when such backlight correction is properly performed, "whiteout" occurs in the background even if the main subject has an appropriate exposure amount, resulting in a screen with only a white background. I will end up. In other words, the narrow dynamic range of the image pickup device cannot be solved only by adjusting the light amount so that the exposure amount of the main subject becomes appropriate as in the conventional image pickup device. Therefore, for example, in an image pickup apparatus that converts a still image into an electric signal by using a line scanner or the like, conventionally, one screen is composed from a plurality of screens having different exposure amounts obtained from the same subject. .

【0004】[0004]

【発明が解決しようとする課題】そして、上記の様な従
来の構成を採用した撮像装置においては、撮像装置と被
写体との位置関係は常に一定に固定されているため、夫
々の画面の撮像のタイミングが経時的にずれていても、
画像のずれが生じることがなく全く問題を発生しなかっ
た。しかしながら、上記の様な方法をビデオカメラ、あ
るいはスチルビデオカメラ等に適用した場合には、手ぶ
れ等により、ビデオカメラ等と被写体との位置関係が細
かく変化するため、同一被写体の露光量の異なる複数の
画面を撮像しようとすると、それらの夫々の画面の位置
が僅かづつずれることになり、これらの画面を合成する
と被写体が2重や3重にずれて写ってしまうという問題
点があった。このことは、特に最近の小型軽量化が進ん
だビデオカメラにおいては、手持ち撮影時に手ぶれを発
生し易いことから考えると、より大きな問題となってく
る。
In the image pickup apparatus adopting the conventional structure as described above, since the positional relationship between the image pickup apparatus and the subject is always fixed, the image pickup of each screen is performed. Even if the timing is shifted over time,
No image shift occurred and no problem occurred. However, when the above method is applied to a video camera, a still video camera, or the like, the positional relationship between the video camera and the subject changes minutely due to camera shake or the like. When the images of the screens are to be imaged, the positions of the respective screens are slightly shifted, and when these screens are combined, there is a problem in that the subject is shifted in double or triple. This becomes a more serious problem in view of the tendency of camera shake during handheld shooting, especially in video cameras that have recently been made smaller and lighter.

【0005】従って、本発明は上述の課題に鑑みてなさ
れたものであり、その目的とするところは、画面ぶれを
生じ易いビデオカメラ等においても、画像がずれること
なく、且つ実質的なダイナミツクレンジが広い画像を撮
像することができる撮像方法及び撮像装置を提供するこ
とにある。
Therefore, the present invention has been made in view of the above-mentioned problems, and an object of the present invention is not to shift an image even in a video camera or the like, which is likely to cause a screen blur, and to have a substantial dynamics. An object of the present invention is to provide an imaging method and an imaging device capable of capturing an image with a wide range.

【0006】[0006]

【課題を解決するための手段】上述の課題を解決し、目
的を達成するために、本発明の撮像方法は、異なる露光
時間にて、順次撮像した複数の画面を合成することによ
り、映像信号のダイナミツクレンジを見かけ上拡大する
撮像方法において、前記複数の画面間の撮像時の経時的
な位置ずれに対応して、前記複数の画面の夫々の座標変
換を行い、前記複数の画面の合成を行なう事を特徴とし
ている。
In order to solve the above-mentioned problems and to achieve the object, an image pickup method of the present invention is a video signal by synthesizing a plurality of screens sequentially picked up at different exposure times. In the imaging method of apparently enlarging the dynamic range, the coordinate conversion of each of the plurality of screens is performed in response to the positional shift with time between the plurality of screens during imaging, and the plurality of screens are combined. It is characterized by performing.

【0007】また、本発明の撮像装置は、異なる露光時
間にて、順次撮像した複数の画面を合成することによ
り、映像信号のダイナミックレンジを見かけ上拡大する
機能を有する撮像装置において、前記複数の画面間の動
き情報を検出する検出手段と、該検出手段の検出情報に
基づいて、前記複数の画面の夫々を、平面座標内で位置
変換する画像移動手段とを具備することを特徴としてい
る。
The image pickup apparatus of the present invention is an image pickup apparatus having a function of apparently enlarging a dynamic range of a video signal by synthesizing a plurality of screens sequentially picked up at different exposure times. It is characterized by comprising a detection means for detecting movement information between the screens, and an image moving means for position-shifting each of the plurality of screens in plane coordinates based on the detection information of the detection means.

【0008】[0008]

【作用】以上の様に、この発明に係わる撮像方法及び撮
像装置は構成されているので、手ぶれ等の為に発生した
画面ぶれを有する映像信号に対しても、画像のずれのな
い実用的なダイナミツク・レンジ拡大処理が施すことが
できる。
As described above, since the image pickup method and the image pickup apparatus according to the present invention are configured, the image pickup apparatus according to the present invention can be practically used with no image shift even with respect to a video signal having a screen blur caused by camera shake or the like. Dynamic range expansion processing can be performed.

【0009】[0009]

【実施例】以下、本発明の好適な一実施例について、添
付図面を参照して詳細に説明する。図1はカメラ一体形
VTRに一実施例を適用した場合の全体構成ブロツク図
を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described in detail below with reference to the accompanying drawings. FIG. 1 is a block diagram of the entire configuration when one embodiment is applied to a camera-integrated VTR.

【0010】図1において、100はカメラ部、200
は処理部、300は記録部である。カメラ部100にお
いて、光学系101から入射した光線は絞り102によ
り光量制限され、撮像素子103に結像する。撮像素子
103はMOSやCCDなどの半導体撮像素子からな
る。焦点駆動回路107、絞り駆動回路106及び光蓄
積時間の制御などを行なう撮像素子駆動回路105は、
カメラ制御回路108の制御の下で、それぞれ光学系1
01、絞り102及び撮像素子103を駆動する。カメ
ラ信号処理回路104は通常のビデオ・カメラの信号処
理回路と同様のγ補正その他の周知の処理を行うデジタ
ル回路である。
In FIG. 1, 100 is a camera unit, and 200 is a camera unit.
Is a processing unit, and 300 is a recording unit. In the camera unit 100, the amount of light rays incident from the optical system 101 is limited by the diaphragm 102 and forms an image on the image sensor 103. The image sensor 103 is a semiconductor image sensor such as a MOS or CCD. The focus drive circuit 107, the diaphragm drive circuit 106, and the image sensor drive circuit 105 that controls the light accumulation time are
Under the control of the camera control circuit 108, the optical system 1
01, the diaphragm 102, and the image sensor 103 are driven. The camera signal processing circuit 104 is a digital circuit that performs known processing such as γ correction similar to the signal processing circuit of a normal video camera.

【0011】カメラ部100から出力される映像信号
は、処理部200のA/D変換器201でデイジタル信
号に変換され、演算回路202で後述する画素データの
変換を行われ、D/A変換器203でアナログ信号に戻
され、記録部300に提供される。
A video signal output from the camera section 100 is converted into a digital signal by an A / D converter 201 of the processing section 200, and pixel data, which will be described later, is converted by an arithmetic circuit 202, and a D / A converter. At 203, it is converted back to an analog signal and provided to the recording unit 300.

【0012】204は演算回路202及び画面振れ検出
回路206での演算用の画像メモリであり、205はこ
れを制御するためのメモリ制御回路である。メモリ制御
回路205はカメラ部100の制御回路108からのタ
イミング信号に応じて画像メモリ204の書込、読出ア
ドレス信号を出力する。
Reference numeral 204 is an image memory for calculation in the arithmetic circuit 202 and the screen shake detection circuit 206, and 205 is a memory control circuit for controlling the image memory. The memory control circuit 205 outputs a write / read address signal of the image memory 204 according to a timing signal from the control circuit 108 of the camera unit 100.

【0013】又、画面合成時に、画面振れ検出回路の出
力に応じ、画面振れを補正する様に、毎画面度に位置合
わせの為のアドレス信号を発生する。読み出した共通信
号を合成し、入力信号と同一形態に合わせる為に、演算
回路202にて拡大補間の処理が行われる。この様にし
て、画面のズレが発生しない様に階調合成された映像信
号が、演算回路202より出力され、D/A変換器20
3にて、アナログ信号に変換され、周知のVTR(映像
信号記録装置)301に記録される。
Further, when the screens are combined, an address signal for position adjustment is generated for each screen so as to correct the screen shake according to the output of the screen shake detection circuit. In order to combine the read common signals and match the input signals with the same form, the arithmetic circuit 202 performs enlargement interpolation processing. In this way, the gradation-combined video signal so that the screen shift does not occur is output from the arithmetic circuit 202, and the D / A converter 20
At 3, the signal is converted into an analog signal and recorded in a known VTR (video signal recording device) 301.

【0014】このVTRが、デイジタル記録方式の場合
には、当然D/A変換器203は不要である。次に、撮
像素子103の動作を説明する。図2はカメラ部100
のより詳細な構成ブロツク図であり、図3はNTSC信
号を例にとつた場合に、カメラ部100のタイミング・
チヤートを示す。フイールド・インデツクス(FI)信
号は、1フレームを構成する奇(ODD)フイールドと
偶(EVEN)フイールドとを区別するための信号であ
る。VBLK 信号は垂直ブランキング信号であり、H
(高)の期間が有効画面、L(低)の部分が垂直ブラン
キング期間に対応する。TPU LSA は撮像素子103の電
荷蓄積時間制御のための信号であり、例えばCCD撮像
素子の場合には画素出力を垂直転送用CCDに読み出す
ためのパルスである。アイリス・ゲート信号は、後述す
る自動露出のための基準となる映像信号として、1/1
000秒の蓄積信号か1/60秒の蓄積信号のどちらを
用いるかを指定する信号である。
If this VTR is of the digital recording type, the D / A converter 203 is of course unnecessary. Next, the operation of the image sensor 103 will be described. FIG. 2 shows the camera unit 100.
FIG. 3 is a more detailed block diagram of the configuration of FIG. 3, and FIG. 3 is a timing chart of the camera unit 100 when an NTSC signal is taken as an example.
Indicates a chart. The field index (FI) signal is a signal for distinguishing between an odd (ODD) field and an even (EVEN) field which form one frame. The V BLK signal is a vertical blanking signal, and H
The (high) period corresponds to the effective screen, and the L (low) portion corresponds to the vertical blanking period. T PU LSA is a signal for controlling the charge storage time of the image sensor 103, and is a pulse for reading the pixel output to the vertical transfer CCD in the case of a CCD image sensor, for example. The iris gate signal is 1/1 as a reference video signal for automatic exposure described later.
This is a signal that specifies whether to use the accumulated signal for 000 seconds or the accumulated signal for 1/60 seconds.

【0015】図示例では、垂直ブランキング期間の間に
1/1000秒の蓄積を行い、次の有効期間にその1/
1000秒蓄積信号を出力する。そして、1/1000
秒蓄積期間の直後に実質1/60秒の電荷蓄積を行い、
次フイールドの有効画面期間にその1/60秒蓄積信号
を出力する。このようにして、各フイールド毎に、2種
類(1/1000秒と1/60秒)の光量の信号が交互
に出力される。
In the illustrated example, 1/1000 second is accumulated during the vertical blanking period, and 1/1000 second is accumulated during the next effective period.
Output the accumulation signal for 1000 seconds. And 1/1000
Immediately after the second accumulation period, charge is accumulated for substantially 1/60 second,
The 1/60 second accumulation signal is output during the effective screen period of the next field. In this way, two types of light amount signals (1/1000 seconds and 1/60 seconds) are alternately output for each field.

【0016】なお、図2において、20はカメラ信号処
理回路104からの信号(例えば映像信号)をA/D変
換器201を介して受け、露出制御のための制御信号を
演算する公知のAE制御回路、22は合焦制御のための
制御信号を出力する公知のAF制御回路、24は垂直ブ
ランキング信号VBLK を2分周する1/2分周回路であ
る。26,27はサンプル・ホールド回路、28はイン
バータ、29,30は1/2分周回路24の出力又はイ
ンバータ28によるその反転信号のどちらかでサンプリ
ング・タイミングを決定するかを選択するスイツチであ
る。サンプル・ホールド回路26,27の出力はそれぞ
れ絞り駆動回路106及び焦点駆動回路107に印加さ
れ、自動露出制御,自動焦点調節が実行される。
In FIG. 2, a known AE control 20 receives a signal (for example, a video signal) from the camera signal processing circuit 104 via an A / D converter 201 and calculates a control signal for exposure control. A circuit, 22 is a known AF control circuit that outputs a control signal for focus control, and 24 is a 1/2 frequency divider circuit that divides the vertical blanking signal V BLK by 2. Reference numerals 26 and 27 are sample and hold circuits, 28 is an inverter, and 29 and 30 are switches for selecting whether to determine the sampling timing by the output of the 1/2 frequency dividing circuit 24 or its inverted signal by the inverter 28. . The outputs of the sample and hold circuits 26 and 27 are applied to the diaphragm drive circuit 106 and the focus drive circuit 107, respectively, and automatic exposure control and automatic focus adjustment are executed.

【0017】上記実施例では、1/1000秒と1/6
0秒の組み合わせであり、約4段(24 倍)の光量変化
であるので、例えばCCD撮像素子を用いたカメラの場
合、EVENフイールドで1/60秒の蓄積時間を基準
に主被写体に露出を合わせると、そのEVENフイール
ドでは背景に「白とび」が生じ易いのに対し、4段光量
を少なくしたODDフイールドでは主被写体で「黒つぶ
れ」が発生することが多い。なお、この例は逆光補正時
に背景側に露出を合わせた場合を想定したもので、勿
論、その場合の状況により1/1000秒以外に設定し
てもよい。
In the above embodiment, 1/1000 seconds and 1/6
Since it is a combination of 0 seconds and the light amount changes by about 4 steps (2 4 times), for example, in the case of a camera using a CCD image sensor, the main subject is exposed based on the accumulation time of 1/60 seconds at the EVEN field. In contrast, in the EVEN field, “whiteout” is likely to occur in the background, whereas in the ODD field with a reduced amount of four-stage light, “blackout” often occurs in the main subject. Note that this example assumes the case where the exposure is adjusted to the background side at the time of backlight compensation, and of course, it may be set to a value other than 1/1000 seconds depending on the situation in that case.

【0018】上記の例以外にも、近年VOD方式の高速
シヤツター機能を有するCCDが実用化されている。こ
れは、CCDの基板の垂直方向に不要電荷に排出するも
ので、非常に細かなシヤツタースピード設定が可能であ
り、主被写体と背景被写体の輝度差に応じ、制御回路1
08内のAE制御回路20の判断で最適なシヤツタース
ピードが駆動回路105により設定可能になる。
In addition to the above examples, a CCD having a VOD type high speed shutter function has been put into practical use in recent years. This discharges unnecessary charges in the vertical direction of the substrate of the CCD, enables very fine shutter speed setting, and controls circuit 1 according to the brightness difference between the main subject and the background subject.
The optimum shutter speed can be set by the drive circuit 105 by the judgment of the AE control circuit 20 in 08.

【0019】一実施例では、このように、一方のフイー
ルドでの「白とび」及び「黒つぶれ」を積極的に利用し
て、画面の改善を行う。つまり「白とび」又は「黒つぶ
れ」の生じる部分については、他のフイールドの対応部
分(露出が異なるので「黒つぶれ」又は「白とび」は生
じていない。)で代替し、両フイールドの信号を合成し
て最終的な映像信号とする。その基本的考え方を、図4
を参照して説明する。図4では、主被写体を縦長の長方
形で模式的に示している。図4でスルー(T)画とは撮
像素子103の直接出力をいい、メモリ(M)画又はメ
モリ出力とは画像メモリ204に一旦記憶された直前フ
イールドの信号をいう。スルー画ではODDフイールド
毎に逆光時の主被写体が「黒つぶれ」になり、EVEN
フイールド毎に背景が「白とび」になつている。また、
メモリ画では、1フイールド期間遅延した信号からなる
ので、「白とび」と「黒つぶれ」はスルー画とは異なる
フイールドで生じている。
In one embodiment, the screen is improved by positively utilizing "whiteout" and "blackout" in one field. In other words, the part where "whiteout" or "blackout" occurs is replaced by the corresponding part of another field ("blackout" or "whiteout" does not occur because the exposure is different), and the signal of both fields is replaced. To be the final video signal. Figure 4 shows the basic idea.
Will be described with reference to. In FIG. 4, the main subject is schematically shown by a vertically long rectangle. In FIG. 4, the through (T) image refers to the direct output of the image sensor 103, and the memory (M) image or the memory output refers to the signal of the immediately preceding field once stored in the image memory 204. In the through image, the main subject at the time of backlighting becomes "black out" in each ODD field, and EVEN
The background is "whiteout" for each field. Also,
Since the memory image is composed of signals delayed by one field period, "whiteout" and "blackout" occur at fields different from those of the through image.

【0020】従つて、スルー画とメモリ画とを適切に組
み合わせれば、「白とび」及び「黒つぶれ」の無い良好
な映像が得られることになる。つまり各フイールド毎に
スルー画及びメモリ画の信号を所定の閾値と比較して、
当該閾値より大きければ1、小さければ0として、画素
毎に「白とび」又は「黒つぶれ」を判定する。
Therefore, if the through image and the memory image are properly combined, a good image without "whiteout" and "blackout" can be obtained. In other words, the through image and memory image signals are compared with a predetermined threshold for each field,
If it is larger than the threshold, it is set to 1, and if it is smaller, it is set to 0, and "whiteout" or "blackout" is determined for each pixel.

【0021】図6はその閾値と、画素の輝度値、フイー
ルドとの関係を示す。図6(a)の横軸は輝度レベル、
縦軸は1画面中の各輝度レベルの出現頻度を示す。図6
(a)に示すように、閾値TH1は「黒つぶれ」を判定
できるように設定され、閾値TH2は、「白とび」を判
定できるように設定される。即ち、TH1以下が「黒つ
ぶれ」であり、閾値TH2以上が「白とび」と判定され
る。図6(b)は各フイールドと閾値との関係を示す。
上記の如くODDフイールドとEVENフイールドでは
「白とび」と「黒つぶれ」が交互するので、その判定用
の閾値もフイールド毎に変更する。
FIG. 6 shows the relationship between the threshold value, the brightness value of the pixel, and the field. The horizontal axis of FIG. 6A is the brightness level,
The vertical axis represents the appearance frequency of each brightness level in one screen. Figure 6
As shown in (a), the threshold TH1 is set so that "blackout" can be determined, and the threshold TH2 is set so that "whiteout" can be determined. That is, TH1 or less is determined as "blackout", and threshold TH2 or more is determined as "whiteout". FIG. 6B shows the relationship between each field and the threshold value.
As described above, in the ODD field and the EVEN field, "whiteout" and "blackout" alternate, so the threshold value for the determination is also changed for each field.

【0022】このようにしてどのフイールドのどの画素
部分が「黒つぶれ」又は「白とび」であるかを判定でき
るから、その判定結果を用い、スルー画とメモリ画とで
適正な露光量の画素信号を選択できる。例えば、判定A
と判定Bの論理積をとり、ODDフイールドでは、論理
積が1である画素に対してはスルー画の信号を選択し、
論理積が0である画素に対してはメモリ画の信号を選択
し、EVENフイールドではその逆の関係にすることに
より、図4に示すような選択フラグが得られる。図4の
最下段の絵は、その選択フラグによる合成画像を示す。
この図では、主被写体が等速度運動を行つた場合を想定
し、時間軸ズレが画像に及ぼす影響を確認したが、実用
上充分な動画になりうることが分かる。
In this way, it is possible to judge which pixel portion of which field is "blackout" or "overexposure". Therefore, by using the judgment result, a pixel having an appropriate exposure amount is used for the through image and the memory image. You can select the signal. For example, judgment A
And the determination B are ANDed, and in the ODD field, a through image signal is selected for a pixel whose AND is 1.
A selection flag as shown in FIG. 4 is obtained by selecting the signal of the memory image for the pixel whose logical product is 0 and setting the opposite relationship in the EVEN field. The picture at the bottom of FIG. 4 shows a composite image according to the selection flag.
In this figure, it is assumed that the main subject is moving at a constant velocity, and the influence of the time axis shift on the image is confirmed, but it can be seen that the moving image can be practically sufficient.

【0023】図5は処理部200の演算回路202にお
いて、上記閾値TH1,TH2との比較及び選択フラグ
を形成する回路部分の詳細な構成ブロツク図を示す。T
H切換制御信号は、FI信号などのように、フイールド
毎に“H”,“L”が反転する信号であり、閾値発生回
路53及びインバータ51を介して第2の閾値発生回路
52に印加される。閾値発生回路52,53はその切換
信号に応じて、図6(b)の関係の閾値TH1又は同T
H2を発生する。比較回路54,55はそれぞれメモリ
画,スルー画と閾値発生回路52,53からの閾値とを
比較し、判定結果としてのA信号,B信号を出力する。
アンド・ゲート56はそのA信号とB信号との論理積を
とり、選択フラグ信号を出力する。スイツチ57は当該
選択フラグ信号に従つて切り換わり、メモリ画又はスル
ー画の信号を選択する。
FIG. 5 is a block diagram showing the detailed structure of the circuit portion of the arithmetic circuit 202 of the processing section 200 which forms a comparison flag and a comparison with the threshold values TH1 and TH2. T
The H switching control signal is a signal in which “H” and “L” are inverted for each field like the FI signal, and is applied to the second threshold generation circuit 52 via the threshold generation circuit 53 and the inverter 51. It Depending on the switching signal, the threshold value generating circuits 52 and 53 have the threshold value TH1 or the threshold value TH1 shown in FIG.
Generates H2. The comparison circuits 54 and 55 compare the memory image and the through image with the threshold values from the threshold value generation circuits 52 and 53, respectively, and output the A signal and the B signal as the determination result.
The AND gate 56 calculates the logical product of the A signal and the B signal and outputs a selection flag signal. The switch 57 switches according to the selection flag signal and selects the signal of the memory image or the through image.

【0024】図7は階調特性図を示す。同(a)の実線
が通常のビデオ・カメラの特性図であり、100%まで
は入出力がリニアになつており、それ以上の入力(10
0〜400%)に対してはKNEE特性と呼ばれる傾き
の緩い関係となつている。この変化点をP1とすると、
高速シャッタ時にはこの変化点がP2の位置に移行す
る。但しP1が1/60秒で、P2が2段の露光量変化
の1/250秒であるとする。上述のように、4段の差
の場合には、図7(d)の(1)と(5)の関係にな
る。因に、図7(d)の(1)は1/60秒,(2)は
1/125秒,(3)は1/250秒,(4)は1/5
00秒,(5)は1/1000秒とした場合の特性図で
ある。傾きの違う2つの特性から好みのカーブを持つ特
性を合成する。図7(b)は「白とび」及び「黒つぶ
れ」判定の閾値が異なる各場合の合成特性例を示し、図
7(c)は、対応する2つの画素の信号を加算平均して
出力とする場合(同(1))、一方を選択する場合(同
(2))、及び適当な計数のもとで加算平均する場合
(同(3))の各特性を示す。
FIG. 7 shows a gradation characteristic diagram. The solid line in (a) is the characteristic diagram of a normal video camera, and the input / output is linear up to 100%, and the input (10) is higher than that.
(0 to 400%), there is a loose relationship called the KNEE characteristic. If this change point is P1,
At the time of high-speed shutter, this change point moves to the position P2. However, it is assumed that P1 is 1/60 second and P2 is 1/250 second of the change in the exposure amount of two steps. As described above, in the case of the difference of 4 steps, the relationship of (1) and (5) of FIG. Incidentally, in FIG. 7D, (1) is 1/60 seconds, (2) is 1/125 seconds, (3) is 1/250 seconds, and (4) is 1/5 seconds.
00 seconds and (5) are characteristic diagrams in the case of 1/1000 seconds. A characteristic having a desired curve is synthesized from two characteristics having different inclinations. FIG. 7B shows an example of the combined characteristic in the case where the threshold values for the “whiteout” and “blackout” judgments are different, and FIG. 7C shows the output obtained by averaging the signals of the corresponding two pixels. The respective characteristics are shown in the case of performing (the same (1)), the case of selecting one (the same (2)), and the case of performing the averaging under an appropriate count (the same (3)).

【0025】上記の例では1秒間に実質30枚の時間分
解能になり、フレーム蓄積CCD撮像素子などと同程度
になる。そこで、フイールド蓄積CCD撮像素子と同程
度の時間分解能を実現すべく、1フイールドに2枚の画
面を取り込む例を説明する。その構成例の変更部分を図
9に示し、タイミング・チヤートを図8に示す。原理的
には、通常のビデオ・レートより速い速度で撮像素子1
03の信号を読み出し、それを時間軸変換して通常レツ
ドに戻す。フイールド・メモリ90,91は各々1フイ
ールド分の画像情報に相当する記憶容量を有しており、
メモリ90では1/120秒読出と同時化するために1
/1000秒蓄積信号の遅延を行い、メモリ91では、
1/120秒単位の映像信号を1/60秒単位のNTS
C信号に変更するための2倍の時間伸張処理を行う。図
9中の(a)〜(d)は、図8の信号(a)〜(d)に
対応している。このような作用を試す撮像素子103と
しては、XYアドレス方式のMOS固体撮像素子が考え
られる。
In the above example, the time resolution is substantially 30 per second, which is almost the same as that of the frame accumulation CCD image pickup device. Therefore, an example will be described in which two screens are captured in one field in order to achieve the same time resolution as that of the field accumulation CCD image pickup device. FIG. 9 shows a modified portion of the configuration example, and FIG. 8 shows a timing chart. In principle, the image sensor 1 is faster than the normal video rate.
The signal No. 03 is read out, converted on the time axis, and returned to the normal disk. The field memories 90 and 91 each have a storage capacity corresponding to one field of image information,
In memory 90, it is set to 1 in order to synchronize with 1/120 second reading.
/ 1000 seconds The accumulated signal is delayed, and in the memory 91,
Video signal of 1/120 second unit is NTS of 1/60 second unit
Double time extension processing for changing to C signal is performed. (A) to (d) in FIG. 9 correspond to the signals (a) to (d) in FIG. An XY address type MOS solid-state image pickup device can be considered as the image pickup device 103 that tests such an action.

【0026】次に、制御回路108の他の詳細例を図1
0に示す。マスター・クロツク発生器40は外部からの
基準信号に従い、制御回路108内部用のマスター・ク
ロツクを発生する。1/1000シヤツター用のクロツ
ク発生器41はそのマスター・クロツクに従い高速用ク
ロツクを発生し、1/60シヤツター用のクロツク発生
器42はそのマスター・クロツクに従い低速用クロツク
を発生する。スイツチ45はフイールド毎に切り換わ
り、クロツク発生器41及び同42の出力を交互に駆動
回路105に印加する。AE制御信号発生器43は、カ
メラ信号処理回路104からの映像信号を共に、絞り制
御のためのAE制御信号を発生する。制御信号保持回路
44はその制御信号を1フイールド間保持する。スイツ
チ46は、フイールド毎に切り換わり、AE制御信号発
生器43の出力及び制御信号保持回路44による保持信
号を交互に絞り制御回路106に印加する。切換信号発
生器47は、スイツチ45,46の切換を制御する。ス
イツチ45,46は同期して切り換わる。
Next, another detailed example of the control circuit 108 is shown in FIG.
It shows in 0. The master clock generator 40 generates a master clock for the control circuit 108 according to an external reference signal. The 1/1000 shutter clock generator 41 generates a high speed clock in accordance with its master clock, and the 1/60 shutter clock generator 42 generates a low speed clock in accordance with its master clock. The switch 45 switches for each field and alternately applies the outputs of the clock generators 41 and 42 to the drive circuit 105. The AE control signal generator 43 generates an AE control signal for aperture control together with the video signal from the camera signal processing circuit 104. The control signal holding circuit 44 holds the control signal for one field. The switch 46 switches for each field, and alternately applies the output of the AE control signal generator 43 and the holding signal from the control signal holding circuit 44 to the aperture control circuit 106. The switching signal generator 47 controls switching of the switches 45 and 46. The switches 45 and 46 are switched in synchronization.

【0027】上記の例では、低速用,高速用それぞれに
クロツク発生器を設け、そのクロツクを、フイールド毎
の信号を発生する切換信号発生器の出力信号により切り
変えているので、回路構成及び動作が簡単になるという
効果があり、特に動画に適している。
In the above example, a clock generator is provided for each of the low speed and the high speed, and the clock is switched by the output signal of the switching signal generator which generates a signal for each field. It has the effect of simplifying, and is especially suitable for movies.

【0028】以上の説明では、シヤツター・スピードを
変化させることで異なる露光量の画面を生成したが、高
速の絞り装置を用意できる場合には、その絞りを高速で
変化させてもよく、また、例えばPLZTなどのよう
に、減光フイルタを電気的に制御する方式で実現しても
よい。
In the above description, screens having different exposure amounts are generated by changing the shutter speed. However, if a high-speed diaphragm device can be prepared, the diaphragm may be changed at high speed. For example, PLZT or the like may be realized by a method of electrically controlling the dimming filter.

【0029】以上、説明してきた様に、一実施例におい
ては、様々な演算処理が考えられるが、簡単な処理で効
果の高い単純加算による画面合成を例にとり、以下に説
明する。
As described above, various arithmetic processes are conceivable in one embodiment, but the following description will be given by taking an example of screen combination by simple addition which is highly effective with simple processes.

【0030】図11は画面振れの概念図で、2画面(O
DDフィールド画面とEVENフィールド画面)の被写
体に対する画面(撮像素子103)の位置ずれを示して
いる(図11−a)。
FIG. 11 is a conceptual diagram of screen shake, which shows two screens (O
The displacement of the screen (image sensor 103) with respect to the subject in the DD field screen and the EVEN field screen is shown (FIG. 11-a).

【0031】ODD画面とEVEN画面の共通部分(共
通エリア)の左上部を、メモリ読み出し開始点Pとする
と、ODD画面に対しては、図11−bで示すPODD
点、EVEN画面に対しては、図11−cで示すPEVEN
点が画像メモリ204aよりの読み出し開始位置とな
り、ODDとEVENの共通エリアに関してのズレの無
い、映像信号の生成が可能となる。
Assuming that the upper left portion of the common portion (common area) of the ODD screen and the EVEN screen is the memory read start point P, for the ODD screen, P ODD shown in FIG. 11-b.
For point and EVEN screens, P EVEN shown in Figure 11-c
The point becomes the reading start position from the image memory 204a, and it is possible to generate a video signal without a shift in the common area of ODD and EVEN.

【0032】図1の構成図を一実施例に合わせて具体化
したものが図12に示す構成図である。入力された映像
信号はA/D変換器201にてデイジタル信号化され、
フイールドメモリ204aと動き検出回路206へ供給
される。フイールドメモリ204aの出力は、動き検出
回路206の他の入力端子へ供給され、1フイールド時
間差の映像信号から、画像の動き情報を検出し、画面振
れ補正信号を生成する。この補正信号はメモリ制御回路
205に供給され、このメモリ制御回路205は、面振
れ補正信号をもとにフイールドメモリ204aを制御す
る。
A configuration diagram shown in FIG. 12 is an embodiment of the configuration diagram of FIG. 1 according to one embodiment. The input video signal is converted into a digital signal by the A / D converter 201,
It is supplied to the field memory 204a and the motion detection circuit 206. The output of the field memory 204a is supplied to the other input terminal of the motion detection circuit 206 and detects the motion information of the image from the video signal of one field time difference and generates the screen shake correction signal. This correction signal is supplied to the memory control circuit 205, and the memory control circuit 205 controls the field memory 204a based on the surface shake correction signal.

【0033】図11−aで示した共通エリア部分がフイ
ールドメモリ204aより出力され、この信号が次段の
拡大補間回路202aにて、入力信号と同様の信号形態
(例えばNTSC信号)に戻される。
The common area portion shown in FIG. 11-a is output from the field memory 204a, and this signal is returned to the same signal form (for example, NTSC signal) as the input signal in the expansion interpolation circuit 202a at the next stage.

【0034】共通エリア部分が小さい程、この処理での
拡大率が高くなる。どの様な拡大率であつても、画像信
号は元の形態に戻されてから加算器202b経由で、フ
イールドメモリ204bに格納される。格納された画像
信号がODD画面の信号とすると、次のフイールド期間
にはEVEN画面の信号が拡大補間回路202aより出
力され、加算器202bにて対応する画素データが加算
される。加算された信号は選択器207のEVEN側端
子経由でD/A変換器203へ供給される。その一方
で、この加算信号はフイールドメモリ204bにも格納
され、次フイールドのODD期間にはREAD−MOD
IFY−WRITE動作で、同一画面を選択器207の
ODD端子経由で、D/A変換器203へ供給しつつ、
新たなODD画面情報をフイールドメモリ204bへ格
納してゆく。この時、スイツチ208はODDで開、E
VENで閉とし、新たなODD画面をメモリに書き込む
時には、加算器202bがスルーとなる様に切り変え
る。
The smaller the common area is, the higher the enlargement ratio in this process is. Regardless of the enlargement ratio, the image signal is restored to the original form and then stored in the field memory 204b via the adder 202b. Assuming that the stored image signal is an ODD screen signal, the EVEN screen signal is output from the enlargement interpolation circuit 202a in the next field period, and the corresponding pixel data is added by the adder 202b. The added signal is supplied to the D / A converter 203 via the EVEN side terminal of the selector 207. On the other hand, this addition signal is also stored in the field memory 204b, and in the ODD period of the next field, READ-MOD.
While supplying the same screen to the D / A converter 203 via the ODD terminal of the selector 207 in the IFY-WRITE operation,
The new ODD screen information is stored in the field memory 204b. At this time, the switch 208 opens in ODD, E
When the new ODD screen is written in the memory, the adder 202b is switched to be through.

【0035】この様にして生成された信号は、D/A変
換器203より入力信号と同様のアナログ信号として出
力される。上記の処理の時間的な関係を図13のタイミ
ングチヤートに示す。図13のタイミングチヤートにお
いて、AはODD,EVENフイールドの判別信号であ
り、拡大補間回路202aの出力タイミングである。B
はスイツチ208の開閉タイミングを示しており、加算
器202bは、このスイッチ208の開閉により機能が
変化し、スイッチ208が開の場合には、信号を素通り
させ、スイツチ208が閉の場合には加算器として働
く。Cはメモリ204bへの書込みタイミングを示した
ものであり、AにおけるODD期間はそのままODD画
面を書き込み、AにおけるEVEN期間は、READ−
MODIFY−WRITE動作により、現ODD画面に
EVEN画面を加算し、再度、同一アドレスに書き込み
処理を行なう。Dは選択器207の端子切換のタイミン
グを示したものであり、t1期間におけるODD画面情
報は、同t2のEVEN画面情報と加算され、Dにおけ
るt2期間に出力され、更に、t3期間に同一情報が再
度読み出され、出力される。
The signal thus generated is output from the D / A converter 203 as an analog signal similar to the input signal. The time chart of the above processing is shown in the timing chart of FIG. In the timing chart of FIG. 13, A is an ODD / EVEN field discrimination signal, which is the output timing of the enlarged interpolation circuit 202a. B
Indicates the opening / closing timing of the switch 208. The function of the adder 202b is changed by opening / closing the switch 208. When the switch 208 is open, the signal is passed through, and when the switch 208 is closed, the addition is performed. Work as a container. C shows the write timing to the memory 204b, the ODD screen is written as it is during the ODD period in A, and the READ- during the EVEN period in A.
By the MODIFY-WRITE operation, the EVEN screen is added to the current ODD screen, and the writing process is performed again at the same address. D indicates the timing of switching the terminals of the selector 207. The ODD screen information in the t1 period is added to the EVEN screen information in the same t2 and output in the t2 period in D, and the same information in the t3 period. Is read out again and output.

【0036】以上、2フイールド期間を単位時間として
処理が完了する。ちなみに、ODDとEVENでライン
補間処理を切換え、インターレース対応にして、いわゆ
る画面妨害を低減させる事も可能である。この妨害低減
の為には、フイールドメモリ204bと選択器207の
間の点Qにライン補間回路を挿入すると良い。なお、本
発明は、その主旨を逸脱しない範囲で上記実施例を修正
または変形したものに適用可能である。
As described above, the processing is completed with the two-field period as a unit time. By the way, it is also possible to switch the line interpolation processing between ODD and EVEN to make it compatible with interlacing and reduce so-called screen interference. In order to reduce this interference, it is advisable to insert a line interpolation circuit at the point Q between the field memory 204b and the selector 207. The present invention can be applied to modifications and variations of the above embodiments without departing from the spirit of the present invention.

【0037】[0037]

【発明の効果】以上説明した様に、本発明によれば、ダ
イナミツク・レンジを実質的に広くすることができ、例
えば、逆光の場合であつても、主被写体のみならず背景
も、適正な露光量の画像が得られるという効果がある。
また、手ぶれ等の為に発生した画面ぶれを有する映像信
号に対しても、画像のずれのない実用的なダイナミツク
・レンジ拡大処理が施せるという効果を有する。これは
小型・軽量化の激しいカムコーダーには、大変な利点で
ある。
As described above, according to the present invention, the dynamic range can be substantially widened. For example, even in the case of backlight, not only the main subject but also the background is appropriate. There is an effect that an image of the exposure amount can be obtained.
Further, the present invention has an effect that a practical dynamic range expanding process without image shift can be applied to a video signal having a screen blur caused by camera shake or the like. This is a great advantage for camcorders that are becoming smaller and lighter.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を適用したカメラ一体形VR
Tの構成ブロツク図である。
FIG. 1 is a camera-integrated VR to which an embodiment of the present invention is applied.
It is a block diagram of the configuration of T.

【図2】図1のカメラ部の制御回路の具体的構成ブロツ
ク図である。
FIG. 2 is a block diagram of a specific configuration of a control circuit of the camera unit shown in FIG.

【図3】撮像素子の動作タイミング・チヤートである。FIG. 3 is an operation timing chart of the image sensor.

【図4】一実施例による画像処理の概念図である。FIG. 4 is a conceptual diagram of image processing according to an embodiment.

【図5】図1の演算回路の具体的構成ブロツク図であ
る。
5 is a block diagram of a specific configuration of the arithmetic circuit of FIG.

【図6】「白とび」及び「黒つぶれ」判定の閾値の決定
法を説明する図である。
FIG. 6 is a diagram illustrating a method of determining a threshold value for “whiteout” and “blackout” determination.

【図7】階調特性図である。FIG. 7 is a gradation characteristic diagram.

【図8】撮像素子の動作タイミング・チヤートである。FIG. 8 is an operation timing chart of the image pickup device.

【図9】カメラ部の一部の構成ブロツク図である。FIG. 9 is a block diagram of a part of the camera unit.

【図10】図1における制御回路の一例である。10 is an example of a control circuit in FIG.

【図11】画面振れの概念図である。FIG. 11 is a conceptual diagram of screen shake.

【図12】図1の構成図を具体化した図である。FIG. 12 is a diagram in which the configuration diagram of FIG. 1 is embodied.

【図13】一実施例の動作を示すタイミングチヤートで
ある。
FIG. 13 is a timing chart showing the operation of the embodiment.

【符号の説明】[Explanation of symbols]

100 カメラ部 101 光学系 102 絞り 200 処理部 300 記録部 100 camera section 101 Optical system 102 aperture 200 Processing unit 300 recording section

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 異なる露光時間にて、順次撮像した複数
の画面を合成することにより、映像信号のダイナミツク
レンジを見かけ上拡大する撮像方法において、前記複数
の画面間の撮像時の経時的な位置ずれに対応して、前記
複数の画面の夫々の座標変換を行った後、該複数の画面
の合成を行なう事を特徴とする撮像方法。
1. An image pickup method for apparently enlarging a dynamic range of a video signal by synthesizing a plurality of screens sequentially picked up at different exposure times. An image pickup method comprising: performing coordinate conversion of each of the plurality of screens in response to a position shift and then synthesizing the plurality of screens.
【請求項2】 異なる露光時間にて、順次撮像した複数
の画面を合成することにより、映像信号のダイナミック
レンジを見かけ上拡大する機能を有する撮像装置におい
て、前記複数の画面間の動き情報を検出する検出手段
と、該検出手段の検出情報に基づいて、前記複数の画面
の夫々を、平面座標内で位置変換する画像移動手段とを
具備することを特徴とする撮像装置。
2. An image pickup apparatus having a function of apparently enlarging a dynamic range of a video signal by synthesizing a plurality of screens sequentially picked up at different exposure times, and detecting motion information between the plurality of screens. And an image moving unit that performs position conversion of each of the plurality of screens in plane coordinates based on the detection information of the detecting unit.
JP03150042A 1991-06-21 1991-06-21 Imaging method and imaging screen synthesis device Expired - Fee Related JP3110797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03150042A JP3110797B2 (en) 1991-06-21 1991-06-21 Imaging method and imaging screen synthesis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03150042A JP3110797B2 (en) 1991-06-21 1991-06-21 Imaging method and imaging screen synthesis device

Publications (2)

Publication Number Publication Date
JPH057336A true JPH057336A (en) 1993-01-14
JP3110797B2 JP3110797B2 (en) 2000-11-20

Family

ID=15488235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03150042A Expired - Fee Related JP3110797B2 (en) 1991-06-21 1991-06-21 Imaging method and imaging screen synthesis device

Country Status (1)

Country Link
JP (1) JP3110797B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6466253B1 (en) 1997-06-06 2002-10-15 Kabushiki Kaisha Toshiba Still image producing method and still image capture system
KR100619681B1 (en) * 1999-12-07 2006-09-06 엘지전자 주식회사 Iris recognition method by using one field image only
WO2007074774A1 (en) * 2005-12-26 2007-07-05 Kyocera Corporation Blur detecting device, blur correcting device, imaging device, and blur detecting method
JP2007281831A (en) * 2006-04-05 2007-10-25 Kyocera Corp Blur detecting device, blur correcting device, imaging apparatus, and blur detecting method
JP2007300592A (en) * 2005-12-26 2007-11-15 Kyocera Corp Blur detecting device, blur correcting device, imaging device, and blur detecting method
JP2008011119A (en) * 2006-06-28 2008-01-17 Kyocera Corp Hand shake quantity detecting device and method, hand shake correcting device, and imaging device
JP2008054200A (en) * 2006-08-28 2008-03-06 Olympus Corp Imaging apparatus and image processing program
US7349119B2 (en) 2001-03-12 2008-03-25 Olympus Corporation Image storage and control device for camera to generate synthesized image with wide dynamic range
US7424213B2 (en) 2004-09-17 2008-09-09 Canon Kabushiki Kaisha Camera system, image capturing apparatus, and a method of an image capturing apparatus
US7468743B2 (en) 2003-05-30 2008-12-23 Canon Kabushiki Kaisha Photographing device and method for obtaining photographic image having image vibration correction
US7586518B2 (en) 2004-06-18 2009-09-08 Canon Kabushiki Kaisha Imaging technique performing focusing on plurality of images
US7612803B2 (en) 2003-06-10 2009-11-03 Zoran Corporation Digital camera with reduced image buffer memory and minimal processing for recycling through a service center
US7616354B2 (en) 2004-04-08 2009-11-10 Canon Kabushiki Kaisha Image capture apparatus configured to divisionally read out accumulated charges with a plurality of fields using interlaced scanning
US7664293B2 (en) 2004-09-17 2010-02-16 Canon Kabushiki Kaisha Image sensing apparatus and control method thereof
US7667763B2 (en) 2005-07-13 2010-02-23 Fujifilm Corporation Image pickup equipment and method
US7907205B2 (en) 2006-12-20 2011-03-15 Canon Kabushiki Kaisha Optical apparatus with unit for correcting blur of captured image caused by displacement of optical apparatus in optical-axis direction
WO2012147719A1 (en) 2011-04-28 2012-11-01 オリンパス株式会社 Image processing apparatus, image processing method, and image processing program
US8305453B2 (en) 2009-05-20 2012-11-06 Pentax Ricoh Imaging Company, Ltd. Imaging apparatus and HDRI method
US8456541B2 (en) 2009-02-18 2013-06-04 Olympus Corporation Image processing apparatus and image processing program
US9066011B2 (en) 2011-06-30 2015-06-23 Canon Kabushiki Kaisha Image synthesizing apparatus that synthesizes multiple images to obtain moving image, control method therefor, and storage medium
WO2018076942A1 (en) * 2016-10-26 2018-05-03 努比亚技术有限公司 Method and apparatus for implementing slow shutter photography
WO2018161640A1 (en) * 2017-03-06 2018-09-13 中兴通讯股份有限公司 Long-exposure photographing method and device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7295232B2 (en) 2003-01-15 2007-11-13 Canon Kabushiki Kaisha Camera and program
JP4898151B2 (en) * 2004-06-18 2012-03-14 キヤノン株式会社 Imaging apparatus and imaging method
JP2006050457A (en) 2004-08-06 2006-02-16 Canon Inc Imaging apparatus
JP4350616B2 (en) 2004-08-24 2009-10-21 キヤノン株式会社 Imaging apparatus and control method thereof
JP2009017078A (en) 2007-07-03 2009-01-22 Fujifilm Corp Digital still camera and its operation controlling method
EP2688288B1 (en) 2011-10-14 2018-05-16 Morpho, Inc. Image compositing device, image compositing method, image compositing program, and recording medium
JP6449320B2 (en) 2014-11-07 2019-01-09 オリンパス株式会社 Imaging device

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6466253B1 (en) 1997-06-06 2002-10-15 Kabushiki Kaisha Toshiba Still image producing method and still image capture system
KR100619681B1 (en) * 1999-12-07 2006-09-06 엘지전자 주식회사 Iris recognition method by using one field image only
US7349119B2 (en) 2001-03-12 2008-03-25 Olympus Corporation Image storage and control device for camera to generate synthesized image with wide dynamic range
US7468743B2 (en) 2003-05-30 2008-12-23 Canon Kabushiki Kaisha Photographing device and method for obtaining photographic image having image vibration correction
US8120669B2 (en) 2003-06-10 2012-02-21 Zoran Corporation Digital camera with reduced image buffer memory and minimal processing for recycling through a service center
US7612803B2 (en) 2003-06-10 2009-11-03 Zoran Corporation Digital camera with reduced image buffer memory and minimal processing for recycling through a service center
US7616354B2 (en) 2004-04-08 2009-11-10 Canon Kabushiki Kaisha Image capture apparatus configured to divisionally read out accumulated charges with a plurality of fields using interlaced scanning
US7586518B2 (en) 2004-06-18 2009-09-08 Canon Kabushiki Kaisha Imaging technique performing focusing on plurality of images
US7424213B2 (en) 2004-09-17 2008-09-09 Canon Kabushiki Kaisha Camera system, image capturing apparatus, and a method of an image capturing apparatus
US7664293B2 (en) 2004-09-17 2010-02-16 Canon Kabushiki Kaisha Image sensing apparatus and control method thereof
US7667763B2 (en) 2005-07-13 2010-02-23 Fujifilm Corporation Image pickup equipment and method
JP2007300592A (en) * 2005-12-26 2007-11-15 Kyocera Corp Blur detecting device, blur correcting device, imaging device, and blur detecting method
WO2007074774A1 (en) * 2005-12-26 2007-07-05 Kyocera Corporation Blur detecting device, blur correcting device, imaging device, and blur detecting method
US8542278B2 (en) 2005-12-26 2013-09-24 Kyocera Corporation Shaking detection device, shaking correction device, imaging device, and shaking detection method
JP2007281831A (en) * 2006-04-05 2007-10-25 Kyocera Corp Blur detecting device, blur correcting device, imaging apparatus, and blur detecting method
JP2008011119A (en) * 2006-06-28 2008-01-17 Kyocera Corp Hand shake quantity detecting device and method, hand shake correcting device, and imaging device
JP2008054200A (en) * 2006-08-28 2008-03-06 Olympus Corp Imaging apparatus and image processing program
US7907205B2 (en) 2006-12-20 2011-03-15 Canon Kabushiki Kaisha Optical apparatus with unit for correcting blur of captured image caused by displacement of optical apparatus in optical-axis direction
US8456541B2 (en) 2009-02-18 2013-06-04 Olympus Corporation Image processing apparatus and image processing program
US8305453B2 (en) 2009-05-20 2012-11-06 Pentax Ricoh Imaging Company, Ltd. Imaging apparatus and HDRI method
WO2012147719A1 (en) 2011-04-28 2012-11-01 オリンパス株式会社 Image processing apparatus, image processing method, and image processing program
US9118840B2 (en) 2011-04-28 2015-08-25 Olympus Corporation Image processing apparatus which calculates motion vectors between images shot under different exposure conditions, image processing method, and computer readable medium
US9066011B2 (en) 2011-06-30 2015-06-23 Canon Kabushiki Kaisha Image synthesizing apparatus that synthesizes multiple images to obtain moving image, control method therefor, and storage medium
WO2018076942A1 (en) * 2016-10-26 2018-05-03 努比亚技术有限公司 Method and apparatus for implementing slow shutter photography
WO2018161640A1 (en) * 2017-03-06 2018-09-13 中兴通讯股份有限公司 Long-exposure photographing method and device

Also Published As

Publication number Publication date
JP3110797B2 (en) 2000-11-20

Similar Documents

Publication Publication Date Title
JP3110797B2 (en) Imaging method and imaging screen synthesis device
JP3630905B2 (en) Imaging method and imaging apparatus
US5638118A (en) Image sensing device with diverse storage times used in picture composition
US5497192A (en) Video signal processing apparatus for correcting for camera vibrations using CCD imager with a number of lines greater than the NTSC standard
US5162914A (en) Image sensing device with diverse storage fumes used in picture composition
JP3977906B2 (en) Automatic focus adjustment device
JP2005130045A (en) Image pickup apparatus and image pickup element used therefor
JPH0797841B2 (en) Imaging device
JP2007027845A (en) Imaging apparatus
JP2006261929A (en) Image pickup device
JP2749849B2 (en) Imaging device
JPH0817455B2 (en) Imaging device
JPH08205021A (en) Image input device
JP3397384B2 (en) Imaging device
JP2521986B2 (en) Imaging device
JP2000299810A (en) Image pickup device
JPH11244229A (en) Electronic endoscope device
JP2970092B2 (en) Video camera
JPH11187299A (en) Image-pickup device
JP2007060577A (en) Imaging apparatus
JPH0817456B2 (en) Imaging device
JPS63306778A (en) Image pickup device
JPS62219778A (en) Photometric device
JP3441882B2 (en) Imaging device
JPH0795470A (en) Image pickup device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000814

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070914

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080914

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090914

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090914

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees